Advances in Psychological Science ›› 2021, Vol. 29 ›› Issue (5): 827-837.doi: 10.3724/SP.J.1042.2021.00827
• Regular Articles • Previous Articles Next Articles
LIANG Xiao, KANG Jingmei, WANG Lijuan()
Received:
2020-06-19
Online:
2021-05-15
Published:
2021-03-30
Contact:
WANG Lijuan
E-mail:wanglj699@nenu.edu.cn
CLC Number:
LIANG Xiao, KANG Jingmei, WANG Lijuan. The relationship between the approximate number system and mathematical abilities: Evidence from developmental research[J]. Advances in Psychological Science, 2021, 29(5): 827-837.
[1] |
Agrillo, C., Piffer, L., & Adriano, A. (2013). Individual differences in non-symbolic numerical abilities predict mathematical achievements but contradict ATOM. Behavioral and Brain Functions, 9(1),26.
URL pmid: 23815866 |
[2] | Alvarez, J., Abdul-Chani, M., Deutchman, P., DiBiasie, K., Iannucci, J., Lipstein, R.,... Sullivan, J. (2017). Estimation as analogy-making: Evidence that preschoolers' analogical reasoning ability predicts their numerical estimation. Cognitive Development, 41,73-84. |
[3] |
Bartelet, D., Vaessen, A., Blomert, L., & Ansari, D. (2014). What basic number processing measures in kindergarten explain unique variability in first-grade arithmetic proficiency? Journal of Experimental Child Psychology, 117,12-28.
URL pmid: 24128690 |
[4] |
Bethany, R. J., Emily, R. F., Kerry, G. H., & Dale, C. F. (2016). Early math trajectories: Low-income children's mathematics knowledge from ages 4 to 11. Child Development, 88(5),1727-1742.
doi: 10.1111/cdev.12662 URL pmid: 27921305 |
[5] |
Bonny, J. W., & Lourenco, S. F. (2013). The approximate number system and its relation to early math achievement: evidence from the preschool years. Journal of Experimental Child Psychology, 114(3),375-388.
doi: 10.1016/j.jecp.2012.09.015 URL |
[6] |
Buckley, P. B., & Gillman, C. B. (1974). Comparisons of digits and dot patterns. Journal of Experimental Psychology, 103(6),1131-1136.
URL pmid: 4457588 |
[7] | Bull, R., & Lee, K. (2014). Executive functioning and mathematics achievement. Child Development Perspectives, 8(1),36-41. |
[8] | Butterworth, B., & Walsh, V. (2011). Neural basis of mathematical cognition. Current Biology, 21(16),R618- R621. |
[9] | Castronovo, J., & Göbel, S. M. (2012). Impact of high mathematics education on the number sense. Plos One, 7(4),e33832. |
[10] | Chu, F. W., Vanmarle, K., & Geary, D. C. (2015). Early numerical foundations of young children's mathematical development. Journal of Experimental Child Psychology, 132,205-212. |
[11] | Chu, F. W., Vanmarle, K., & Geary, D. C. (2016). Predicting children's reading and mathematics achievement from early quantitative knowledge and domain-general cognitive abilities. Frontiers in Psychology, 7,775. |
[12] |
Clark, C. A. C., Pritchard, V. E., & Woodward, L. J. (2010). Preschool executive functioning abilities predict early mathematics achievement. Developmental Psychology, 46(5),1176-1191.
doi: 10.1037/a0019672 URL pmid: 20822231 |
[13] | Clayton, S., Gilmore, C., & Inglis, M. (2015). Dot comparison stimuli are not all alike: The effect of different visual controls on ANS measurement. Acta Psychologica, 161,177-184. |
[14] | Cochrane, A., Cui, L., Hubbard, E. M., & Green, C. S. (2019). “Approximate number system” training: A perceptual learning approach. Attention Perception & Psychophysics, 81(3),621-636. |
[15] | Cordes, S., Gelman, R., Gallistel, C. R., & Whalen, J. (2001). Variability signatures distinguish verbal from nonverbal counting for both large and small numbers. Psychonomic Bulletin & Review, 8(4),698-707. |
[16] |
Crollen, V., Castronovo, J., & Seron, X. (2011). Under- and over-estimation: a bi-directional mapping process between symbolic and non-symbolic representations of number? Experimental Psychology, 58(1),39-49.
URL pmid: 20494869 |
[17] | Cui, J., Zhang, Y., Cheng, D., Li, D., & Zhou, X. (2017). Visual form perception can be a cognitive correlate of lower level math categories for teenagers. Frontiers in Psychology, 8,1336. |
[18] | Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive Neuropsychology, 20(3-6),487-506. |
[19] | DeWind, N. K., & Brannon, E. M. (2012). Malleability of the approximate number system: Effects of feedback and training. Frontiers in Human Neuroscience, 6,68. |
[20] |
Dietrich, J. F., Huber, S., & Nuerk, H. C. (2015). Methodological aspects to be considered when measuring the approximate number system (ANS) - A research review. Frontiers in Psychology, 6,295.
URL pmid: 25852612 |
[21] | Elliott, L., Feigenson, L., Halberda, J., & Libertus, M. E. (2019). Bidirectional, longitudinal associations between math ability and approximate number system precision in childhood. Journal of Cognition and Development, 20(1),56-74. |
[22] |
Fazio, L. K., Bailey, D. H., Thompson, C. A., & Siegler, R. S. (2014). Relations of different types of numerical magnitude representations to each other and to mathematics achievement. Journal of Experimental Child Psychology, 123,53-72.
URL pmid: 24699178 |
[23] |
Feigenson, L., Dehaene, S., & Spelke, E. (2004). Core systems of number. Trends in Cognitive Sciences, 8(7),307-314.
URL pmid: 15242690 |
[24] |
Ferrigno, S., Jara-Ettinger, J., Piantadosi, S. T., & Cantlon, J. F. (2017). Universal and uniquely human factors in spontaneous number perception. Nature Communications, 8(1),1-10.
doi: 10.1038/s41467-016-0009-6 URL pmid: 28232747 |
[25] |
Fuhs, M. W., & Mcneil, N. M. (2013). ANS acuity and mathematics ability in preschoolers from low-income homes: Contributions of inhibitory control. Developmental Science, 16(1),136-148.
URL pmid: 23278935 |
[26] | Gallistel, C. (2011). Prelinguistic thought. Language Learning and Development, 7(4),253-262. |
[27] |
Geary, D. C. (2011). Cognitive predictors of achievement growth in mathematics: A 5-year longitudinal study. Developmental Psychology, 47(6),1539-1552.
URL pmid: 21942667 |
[28] |
Geary, D. C., Bailey, D. H., & Hoard, M. K. (2009). Predicting mathematical achievement and mathematical learning disability with a simple screening tool: The number sets test. Journal of Psychoeducational Assessment, 27(3),265-279.
URL pmid: 20161145 |
[29] | Geary, D. C., Hoard, M. K., Nugent, L., & Bailey, D. H. (2013). Adolescents' functional numeracy is predicted by their school entry number system knowledge. Plos One, 8(1),e54651. |
[30] |
Geary, D. C., Hoard, M. K., Nugent, L., & Rouder, J. N. (2015). Individual differences in algebraic cognition: Relation to the approximate number and semantic memory systems. Journal of Experimental Child Psychology, 140,211-227.
doi: 10.1016/j.jecp.2015.07.010 URL pmid: 26255604 |
[31] | Gebuis, T., & Reynvoet, B. (2012). The interplay between nonsymbolic number and its continuous visual properties. Journal of Experimental Psychology: General, 141(4),642-648. |
[32] |
Gilmore, C., Attridge, N., Clayton, S., Cragg, L., Johnson, S., Marlow, N.,... Inglis, M. (2013). Individual differences in inhibitory control, not non-verbal number acuity, correlate with mathematics achievement. Plos One, 8(6),e67374.
doi: 10.1371/journal.pone.0067374 URL pmid: 23785521 |
[33] | Gilmore, C., Cragg, L., Hogan, G., & Inglis, M. (2016). Congruency effects in dot comparison tasks: Convex hull is more important than dot area. Journal of Cognitive Psychology, 28(8),923-931. |
[34] | Ginsburg, H. P., & Baroody, A. J. (2003). Test of early mathematics ability(3rd ed). Austin, TX: Pro-Ed. |
[35] | Glutting, J., & Jordan, N. C. (2012). Number sense screener. Baltimore, MD: Brookes Publishing. |
[36] | Goffin, C., & Ansari, D. (2019). How are symbols and nonsymbolic numerical magnitudes related? Exploring bidirectional relationships in early numeracy. Mind, Brain, and Education, 13(3),143-156. |
[37] | Gouet, C., Silva, C. A., Guedes, B., & Pena, M. (2018). Cognitive and neural effects of a brief nonsymbolic approximate arithmetic training in healthy first grade children. Frontiers in Integrative Neuroence, 12(13),28. |
[38] |
Guillaume, M., Nys, J., Mussolin, C., & Content, A. (2013). Differences in the acuity of the approximate number system in adults: The effect of mathematical ability. Acta Psychologica, 144(3),506-512.
doi: 10.1016/j.actpsy.2013.09.001 URL pmid: 24096088 |
[39] |
Halberda, J., Mazzocco, M. M. M., & Feigenson, L. (2008). Individual differences in non-verbal number acuity correlate with maths achievement. Nature, 455(7213),665-668.
URL pmid: 18776888 |
[40] | He, Y., Zhou, X., Shi, D., Song, H., Zhang, H., & Shi, J. (2016). New evidence on causal relationship between approximate number system (ANS) acuity and arithmetic ability in elementary-school students: A longitudinal cross-lagged analysis. Frontiers in Psychology, 7(26),1052. |
[41] |
Holloway, I. D., & Ansari, D. (2009). Mapping numerical magnitudes onto symbols: The numerical distance effect and individual differences in children's mathematics achievement. Journal of Experimental Child Psychology, 103(1),17-29.
doi: 10.1016/j.jecp.2008.04.001 URL pmid: 18513738 |
[42] |
Holloway, I. D., Price, G. R., & Ansari, D. (2010). Common and segregated neural pathways for the processing of symbolic and nonsymbolic numerical magnitude: An fMRI study. NeuroImage, 49(1),1006-1017.
URL pmid: 19666127 |
[43] |
Hutchison, J. E., Ansari, D., Zheng, S., De Jesus, S., & Lyons, I. M. (2020). The relation between subitizable symbolic and non-symbolic number processing over the kindergarten school year. Developmental Science, 23(2),e12884.
doi: 10.1111/desc.12884 URL pmid: 31271687 |
[44] |
Hyde, D. C., Khanum, S., & Spelke, E. S. (2014). Brief non-symbolic, approximate number practice enhances subsequent exact symbolic arithmetic in children. Cognition, 131(1),92-107.
URL pmid: 24462713 |
[45] |
Inglis, M., Attridge, N., Batchelor, S., & Gilmore, C. (2011). Non-verbal number acuity correlates with symbolic mathematics achievement: But only in children. Psychonomic Bulletin & Review, 18(6),1222-1229.
URL pmid: 21898191 |
[46] |
Inglis, M., & Gilmore, C. (2014). Indexing the approximate number system. Acta Psychologica, 145,147-155.
doi: 10.1016/j.actpsy.2013.11.009 URL pmid: 24361686 |
[47] |
Keller, L., & Libertus, M. (2015). Inhibitory control may not explain the link between approximation and math abilities in kindergarteners from middle class families. Frontiers in Psychology, 6,685.
URL pmid: 26052306 |
[48] |
Khanum, S., Hanif, R., Spelke, E. S., Berteletti, I., & Hyde, D. C. (2016). Effects of non-symbolic approximate number practice on symbolic numerical abilities in pakistani children. Plos One, 11(10),e0164436.
doi: 10.1371/journal.pone.0164436 URL pmid: 27764117 |
[49] | Kolkman, M. E., Kroesbergen, E. H., & Leseman, P. P. M. (2013). Early numerical development and the role of non-symbolic and symbolic skills. Learning and Instruction, 25,95-103. |
[50] |
LeFevre, J. -A., Fast, L., Skwarchuk, S. -L., Smith-Chant, B. L., Bisanz, J., Kamawar, D., & Penner-Wilger, M. (2010). Pathways to mathematics: Longitudinal predictors of performance. Child Development, 81(6),1753-1767.
doi: 10.1111/j.1467-8624.2010.01508.x URL pmid: 21077862 |
[51] |
Libertus, M. E., Feigenson, L., & Halberda, J. (2013). Is approximate number precision a stable predictor of math ability? Learning and Individual Differences, 25,126- 133.
URL pmid: 23814453 |
[52] |
Libertus, M. E., Odic, D., Feigenson, L., & Halberda, J. (2020). Effects of visual training of approximate number sense on auditory number sense and school math ability. Frontiers in Psychology, 11,2085.
URL pmid: 32973627 |
[53] |
Libertus, M. E., Odic, D., & Halberda, J. (2012). Intuitive sense of number correlates with math scores on college- entrance examination. Acta Psychologica, 141(3),373-379.
doi: 10.1016/j.actpsy.2012.09.009 URL pmid: 23098904 |
[54] |
Lindskog, M., & Winman, A. (2016). No evidence of learning in non-symbolic numerical tasks - A comment on Park and Brannon (2014). Cognition, 150,243-247.
doi: 10.1016/j.cognition.2016.01.005 URL pmid: 26972468 |
[55] | Lindskog, M., Winman, A., Juslin, P., & Poom, L. (2013). Measuring acuity of the approximate number system reliably and validly: The evaluation of an adaptive test procedure. Frontiers in Psychology, 4(8),510. |
[56] |
Lyons, I. M., & Beilock, S. L. (2011). Numerical ordering ability mediates the relation between number-sense and arithmetic competence. Cognition, 121(2),256-261.
doi: 10.1016/j.cognition.2011.07.009 URL |
[57] |
Lyons, I. M., Bugden, S., Zheng, S., De Jesus, S., & Ansari, D. (2018). Symbolic number skills predict growth in nonsymbolic number skills in kindergarteners. Developmental Psychology, 54(3),440-457.
doi: 10.1037/dev0000445 URL pmid: 29154653 |
[58] |
Maertens, B., de Smedt, B., Sasanguie, D., Elen, J., & Reynvoet, B. (2016). Enhancing arithmetic in pre-schoolers with comparison or number line estimation training: Does it matter? Learning and Instruction, 46,1-11.
doi: 10.1016/j.learninstruc.2016.08.004 URL |
[59] |
Malone, S. A., Pritchard, V. E., Heron-delaney, M., Burgoyne, K., Lervag, A., & Hulme, C. (2019). The relationship between numerosity discrimination and arithmetic skill reflects the approximate number system and cannot be explained by inhibitory control. Journal of Experimental Child Psychology, 184,220-231.
doi: 10.1016/j.jecp.2019.02.009 URL pmid: 30935590 |
[60] |
Matejko, A. A., & Ansari, D. (2016). Trajectories of symbolic and nonsymbolic magnitude processing in the first year of formal schooling. Plos One, 11(3),e0149863.
doi: 10.1371/journal.pone.0149863 URL pmid: 26930195 |
[61] |
Mazzocco, M. M. M., Feigenson, L., & Halberda, J. (2011). Preschoolers' precision of the approximate number system predicts later school mathematics performance. Plos One, 6 (9),e23749.
doi: 10.1371/journal.pone.0023749 URL pmid: 21935362 |
[62] |
Mussolin, C., Nys, J., & Leybaert, J. (2014). Symbolic number abilities predict later approximate number system acuity in preschool children. Plos One, 9(3),e91839.
doi: 10.1371/journal.pone.0091839 URL pmid: 24637785 |
[63] | Mussolin, C., Nys, J., Leybaert, J., & Content, A. (2016). How approximate and exact number skills are related to each other across development: a review. Developmental Review, 39,1-15. |
[64] | Norris, J. E., Clayton, S., Gilmore, C. K., Inglis, M., & Castronovo, J. (2019). The measurement of approximate number system acuity across the lifespan is compromised by congruency effects. Quarterly Journal of Experimental Psychology, 72(5),1037-1046. |
[65] | Nys, J., Ventura, P., Fernandes, T., Querido, L., Leybaert, J., & Content, A. (2013). Does math education modify the approximate number system? A comparison of schooled and unschooled adults. Trends in Neuroscience and Education, 2(1),13-22. |
[66] | Obersteiner, A., Reiss, K., & Ufer, S. (2013). How training on exact or approximate mental representations of number can enhance first-grade students' basic number processing and arithmetic skills. Learning and Instruction, 23,125- 135. |
[67] | Odic, D., Hock, H., & Halberda, J. (2014). Hysteresis affects approximate number discrimination in young children. Journal of Experimental Psychology: General, 143(1),255-265. |
[68] | Park, J., Bermudez, V., Roberts, R. C., & Brannon, E. M. (2016). Non-symbolic approximate arithmetic training improves math performance in preschoolers. Journal of Experimental Child Psychology, 152,278-293. |
[69] |
Park, J., & Brannon, E. M. (2013). Training the approximate number system improves math proficiency. Psychological Science, 24(10),2013-2019.
URL pmid: 23921769 |
[70] | Park, J., & Brannon, E. M. (2014). Improving arithmetic performance with number sense training: An investigation of underlying mechanism. Cognition, 133(1),188-200. |
[71] |
Peng, P., Yang, X., & Meng, X. (2017). The relation between approximate number system and early arithmetic: The mediation role of numerical knowledge. Journal of Experimental Child Psychology, 157,111-124.
URL pmid: 28142096 |
[72] | Piazza, M., Pica, P., Izard, V., Spelke, E., & Dehaene, S. (2013). Education enhances the acuity of the nonverbal approximate number system. Psychological Science, 24(6),1037-1043. |
[73] |
Piazza, M., Pinel, P., Bihan, D. L., & Dehaene, S. (2007). A magnitude code common to numerosities and number symbols in human intraparietal cortex. Neuron, 53(2),293-305.
URL pmid: 17224409 |
[74] |
Price, G. R., Palmer, D., Battista, C., & Ansari, D. (2012). Nonsymbolic numerical magnitude comparison: Reliability and validity of different task variants and outcome measures, and their relationship to arithmetic achievement in adults. Acta Psychologica, 140(1),50-57.
doi: 10.1016/j.actpsy.2012.02.008 URL pmid: 22445770 |
[75] | Sasanguie, D., Defever, E., Maertens, B., & Reynvoet, B. (2014). The approximate number system is not predictive for symbolic number processing in kindergarteners. Quarterly Journal of Experimental Psychology, 67(2),271-280. |
[76] |
Sasanguie, D., Defever, E., van den Bussche, E., & Reynvoet, B. (2011). The reliability of and the relation between non-symbolic numerical distance effects in comparison, same-different judgments and priming. Acta Psychologica, 136(1),73-80.
URL pmid: 21075357 |
[77] |
Sasanguie, D., Gobel, S. M., Moll, K., Smets, K., & Reynvoet, B. (2013). Approximate number sense, symbolic number processing, or number-space mappings: What underlies mathematics achievement? Journal of Experimental Child Psychology, 114(3),418-431.
URL pmid: 23270796 |
[78] | Schneider, M., Beeres, K., Coban, L., Merz, S., Schmidt, S. S., Stricker, J., & de Smedt, B. (2017). Associations of non-symbolic and symbolic numerical magnitude processing with mathematical competence: A meta-analysis. Developmental Science, 20(3),e12372. |
[79] | Sella, F., Tressoldi, P., Lucangeli, D., & Zorzi, M. (2016). Training numerical skills with the adaptive videogame “The Number Race”: A randomized controlled trial on preschoolers. Trends in Neuroscience and Education, 5(1),20-29. |
[80] |
Shusterman, A., Slusser, E., Halberda, J., & Odic, D. (2016). Acquisition of the cardinal principle coincides with improvement in approximate number system acuity in preschoolers. Plos One, 11(4),e0153072.
URL pmid: 27078257 |
[81] |
Sigmundsson, H., Anholt, S. K., & Talcott, J. B. (2010). Are poor mathematics skills associated with visual deficits in temporal processing. Neuroscience Letters, 469(2),248-250.
URL pmid: 19995594 |
[82] | Smets, K., Sasanguie, D., Szucs, D., & Reynvoet, B. (2015). The effect of different methods to construct non-symbolic stimuli in numerosity estimation and comparison. Journal of Cognitive Psychology, 27(3),310-325. |
[83] |
Sokolowski, H. M., Fias, W., Mousa, A., & Ansari, D. (2016). Common and distinct brain regions in both parietal and frontal cortex support symbolic and nonsymbolic number processing in humans: A functional neuroimaging meta-analysis. NeuroImage, 146,376-394.
URL pmid: 27769786 |
[84] | Soltész, F., Szucs, D., & Szucs, L. (2010). Relationships between magnitude representation, counting and memory in 4- to 7-year-old children: A developmental study. Behavioral and Brain Functions, 6(1),13. |
[85] |
Soto-Calvo, E., Simmons, F., Willis, C., & Adams, A. (2015). Identifying the cognitive predictors of early counting and calculation skills: Evidence from a longitudinal study. Journal of Experimental Child Psychology, 140,16-37.
URL pmid: 26218332 |
[86] | Suárez-Pellicioni, M., & Booth, J. R. (2018). Fluency in symbolic arithmetic refines the approximate number system in parietal cortex. Human Brain Mapping, 39(10),3956-3971. |
[87] | Swanson, H. L. (2011). Working memory, attention, and mathematical problem solving: A longitudinal study of elementary school children. Journal of Educational Psychology, 103(4),821-837. |
[88] |
Szkudlarek, E., & Brannon, E. M. (2017). Does the approximate number system serve as a foundation for symbolic mathematics. Language Learning and Development, 13(2),171-190.
doi: 10.1080/15475441.2016.1263573 URL |
[89] |
Szkudlarek, E., & Brannon, E. M. (2018). Approximate arithmetic training improves informal math performance in low achieving preschoolers. Frontiers in Psychology, 9,606.
doi: 10.3389/fpsyg.2018.00606 URL pmid: 29867624 |
[90] | Vanbinst, K., Ghesquiere, P., & de Smedt, B , . (2012). Numerical magnitude representations and individual differences in children's arithmetic strategy use. Mind, Brain, and Education, 6(3),129-136. |
[91] | Vanbinst, K., Ghesquière, P., & de Smedt, B. (2015). Does numerical processing uniquely predict first graders' future development of single-digit arithmetic? Learning and Individual Differences, 37,153-160. |
[92] |
van Marle, K., Chu, F. W., Li, Y., & Geary, D. C. (2014). Acuity of the approximate number system and preschoolers' quantitative development. Developmental Science, 17(4),492-505.
URL pmid: 24498980 |
[93] |
Wang, J., Odic, D., Halberda, J., & Feigenson, L. (2016). Changing the precision of preschoolers' approximate number system representations changes their symbolic math performance. Journal of Experimental Child Psychology, 147,82-99.
URL pmid: 27061668 |
[94] | Wang, L., Sun, Y., & Zhou, X. (2016). Relation between approximate number system acuity and mathematical achievement: The influence of fluency. Frontiers in Psychology, 7(26),1966. |
[95] | Wei, W., Yuan, H., Chen, C., & Zhou, X. (2012). Cognitive correlates of performance in advanced mathematics. British Journal of Educational Psychology, 82(1),157- 181. |
[96] | Woodcock, R. W., Johnson, M. B., & Mather, N. (1990). Woodcock-Johnson psycho-educational battery — Revised. DLM Teaching Resources. |
[97] | Zhang, Y., Chen, C., Liu, H., Cui, J., & Zhou, X. (2016). Both non-symbolic and symbolic quantity processing are important for arithmetical computation but not for mathematical reasoning. Journal of Cognitive Psychology, 28(7),807-824. |
[98] | Zhang, Y., Liu, T., Chen, C., & Zhou, X. (2019). Visual form perception supports approximate number system acuity and arithmetic fluency. Learning & Individual Differences, 71,1-12. |
[99] | Zhou, X., & Cheng, D. (2015). When and why numerosity processing is associated with developmental dyscalculia. In The Routledge international handbook of dyscalculia and mathematical learning difficulties (pp.78-89). Routledge. |
[100] |
Zhou, X., Wei, W., Zhang, Y., Cui, J., & Chen, C. (2015). Visual perception can account for the close relation between numerosity processing and computational fluency. Frontiers in Psychology, 6,1364.
doi: 10.3389/fpsyg.2015.01364 URL pmid: 26441740 |
[1] | CUI Nan, WANG Jiuju, ZHAO Jing. Effectiveness and underlying mechanism of the intervention for children with comorbidity between attention deficit hyperactivity disorder and developmental dyslexia [J]. Advances in Psychological Science, 2023, 31(4): 622-630. |
[2] | LI Qian, LI Chaofan, GONG Shiyang, ZHOU Qiwei, KE Yi. The effect of multicultural experiences on the capabilities and development of leaders [J]. Advances in Psychological Science, 2022, 30(9): 1922-1943. |
[3] | WANG Yang, WEN Zhonglin, LI Wei, FANG Jie. Methodological research and model development on structural equation models in China’s mainland from 2001 to 2020 [J]. Advances in Psychological Science, 2022, 30(8): 1715-1733. |
[4] | HAO Xin, YUAN Zhongping, LIN Shuting, SHEN Ting. Cognitive neural mechanism of boundary processing in spatial navigation [J]. Advances in Psychological Science, 2022, 30(7): 1496-1510. |
[5] | ZHANG Yiyun, MA Yuanyuan, ZHAO Jin, ZHOU Xinlin, SHAO Yuanying. Role of visual form perception in the relationship between approximate number system and arithmetical fluency [J]. Advances in Psychological Science, 2022, 30(6): 1242-1252. |
[6] | CAO Xinyun, TONG Yu, WANG Fuxing, LI Hui. Video chat and child development [J]. Advances in Psychological Science, 2022, 30(6): 1282-1293. |
[7] | LI Liang, LI Hong. Cognitive mechanism and neural basis of shyness [J]. Advances in Psychological Science, 2022, 30(5): 1038-1049. |
[8] | WANG Dongmei, XIANG Kejia. Facilitating the client change: A perspective from the therapeutic zone of proximal development [J]. Advances in Psychological Science, 2022, 30(3): 648-659. |
[9] | LI Hehui, HUANG Huiya, DONG Lin, LUO Yuejia, TAO Wuhai. Developmental dyslexia and cerebellar abnormalities: Multiple roles of the cerebellum and causal relationships between the two [J]. Advances in Psychological Science, 2022, 30(2): 343-353. |
[10] | WANG Runzhou, BI Hongyan. A possible mechanism for the audiovisual temporal integration deficits in developmental dyslexia: Impaired ability in audiovisual temporal recalibration [J]. Advances in Psychological Science, 2022, 30(12): 2764-2776. |
[11] | HOU Wenwen, SU Yi (ESTHER). The influence of atypical attention and memory on vocabulary delay in children with autism spectrum disorder [J]. Advances in Psychological Science, 2022, 30(11): 2558-2569. |
[12] | ZHANG Yingqian, ZHAO Guangyi, HAN Yuwei, ZHANG Jingyi, CAO Chengqi, WANG Li, ZHANG Kunlin. The mechanisms of histone modification in post-traumatic stress disorder [J]. Advances in Psychological Science, 2022, 30(1): 98-114. |
[13] | WANG Hui, LI Guangzheng. Children’s gestures and the relationship with learning [J]. Advances in Psychological Science, 2021, 29(9): 1617-1627. |
[14] | JING Wei, ZHANG Jie, FU Jinxia, TIAN Lin, ZHAO Wei. Attention bias to faces in infants and toddlers: Inborn predispositions and developmental changes [J]. Advances in Psychological Science, 2021, 29(7): 1216-1230. |
[15] | WANG Runzhou, BI Hongyan. Auditory temporal processing deficits in developmental dyslexia [J]. Advances in Psychological Science, 2021, 29(7): 1231-1238. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||