Advances in Psychological Science ›› 2025, Vol. 33 ›› Issue (4): 717-728.doi: 10.3724/SP.J.1042.2025.0717
• Research Method • Previous Articles
FANG Jie1, WEN Zhonglin2(), DONG Yuming3, WANG Xiaojie3
Received:
2024-07-02
Online:
2025-04-15
Published:
2025-03-05
Contact:
WEN Zhonglin
E-mail:wenzl@scnu.edu.cn
CLC Number:
FANG Jie, WEN Zhonglin, DONG Yuming, WANG Xiaojie. Mediation analysis of intensive longitudinal data[J]. Advances in Psychological Science, 2025, 33(4): 717-728.
被试(j) | 时间(t) | X | M | Y |
---|---|---|---|---|
1 | 1 | 0.33 | 0.43 | −1.72 |
1 | 2 | −0.48 | −0.68 | −1.61 |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
1 | 20 | 0.14 | 0.26 | 1.05 |
2 | 1 | 0.31 | 0.68 | 0.15 |
2 | 2 | 0.46 | 0.03 | −0.94 |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
2 | 20 | −0.86 | 0.51 | −0.56 |
被试(j) | 时间(t) | X | M | Y |
---|---|---|---|---|
1 | 1 | 0.33 | 0.43 | −1.72 |
1 | 2 | −0.48 | −0.68 | −1.61 |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
1 | 20 | 0.14 | 0.26 | 1.05 |
2 | 1 | 0.31 | 0.68 | 0.15 |
2 | 2 | 0.46 | 0.03 | −0.94 |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
2 | 20 | −0.86 | 0.51 | −0.56 |
参数估计 | DSEM | MAM | 交叉分类DSEM | |||
---|---|---|---|---|---|---|
估计值 | 95% CI | 估计值 | 95% CI | 估计值 | 95% CI | |
a | 0.618 | [0.525, 0.713] | 0.621 | [0.540, 0.703] | 0.576 | [0.551, 0.598] |
b | 0.725 | [0.594, 0.851] | 0.762 | [0.638, 0.879] | 0.734 | [0.684, 0.780] |
c′ | 0.044 | [0.005, 0.085] | 0.037 | [−0.017, 0.092] | 0.010 | [−0.019, 0.039] |
0.158 | [0.093, 0.253] | 0.110 | [0.061, 0.171] | |||
0.001 | [−0.002, 0.004] | |||||
βX | 0.301 | [0.265, 0.338] | 0.277 | [0.227, 0.336] | 0.302 | [0.269, 0.335] |
βM | 0.293 | [0.263, 0.323] | 0.285 | [0.245, 0.324] | 0.335 | [0.305, 0.363] |
βY | 0.280 | [0.247, 0.314] | 0.256 | [0.214, 0.298] | 0.324 | [0.292, 0.355] |
lX | −0.074 | [−0.220, 0.071] | 0.000 | [−0.027, 0.027] | −0.076 | [−0.206, 0.050] |
lM | 0.075 | [−0.061, 0.210] | 0.000 | [−0.021, 0.022] | 0.073 | [−0.046, 0.195] |
lY | 1.926 | [1.776, 2.075] | 0.000 | [−0.028, 0.027] | 1.925 | [1.794, 2.055] |
ωX | −1.922 | [−2.167, −1.680] | −1.922 | [−2.136, −1.712] | ||
ωM | −4.172 | [−4.483, −3.861] | −3.259 | [−3.531, −2.994] | ||
ωY | −1.875 | [−2.104, −1.650] | −1.667 | [−1.853, −1.481] | ||
var(μ1j) | 0.519 | [0.381, 0.732] | 0.014 | [0.010, 0.019] | 0.402 | [0.304, 0.544] |
var(μ2j) | 0.458 | [0.334, 0.649] | 0.011 | [0.008, 0.015] | 0.354 | [0.268, 0.479] |
var(μ3j) | 0.526 | [0.378, 0.756] | 0.014 | [0.011, 0.019] | 0.409 | [0.307, 0.561] |
var(μ4j) | 0.015 | [0.007, 0.029] | 0.032 | [0.022, 0.046] | 0.007 | [0.001, 0.016] |
var(μ5j) | 0.016 | [0.011, 0.025] | 0.027 | [0.020, 0.038] | 0.012 | [0.008, 0.020] |
var(μ6j) | 0.016 | [0.009, 0.027] | 0.028 | [0.020, 0.040] | 0.012 | [0.007, 0.019] |
var(μ7j) | 0.213 | [0.155, 0.300] | 0.167 | [0.124, 0.222] | ||
var(μ8j) | 0.331 | [0.227, 0.501] | 0.286 | [0.197, 0.407] | ||
var(μ9j) | 0.009 | [0.003, 0.019] | 0.038 | [0.025, 0.056] | ||
var(μ7t) | 0.002 | [0.001, 0.006] | ||||
var(μ8t) | 0.008 | [0.003, 0.018] | ||||
var(μ9t) | 0.003 | [0.001, 0.008] | ||||
var(μ10j) | 1.455 | [1.058, 2.060] | 1.098 | [0.825, 1.500] | ||
var(μ11j) | 2.377 | [1.740, 3.354] | 1.811 | [1.367, 2.457] | ||
var(μ12j) | 1.233 | [0.897, 1.743] | 0.838 | [0.628, 1.142] |
参数估计 | DSEM | MAM | 交叉分类DSEM | |||
---|---|---|---|---|---|---|
估计值 | 95% CI | 估计值 | 95% CI | 估计值 | 95% CI | |
a | 0.618 | [0.525, 0.713] | 0.621 | [0.540, 0.703] | 0.576 | [0.551, 0.598] |
b | 0.725 | [0.594, 0.851] | 0.762 | [0.638, 0.879] | 0.734 | [0.684, 0.780] |
c′ | 0.044 | [0.005, 0.085] | 0.037 | [−0.017, 0.092] | 0.010 | [−0.019, 0.039] |
0.158 | [0.093, 0.253] | 0.110 | [0.061, 0.171] | |||
0.001 | [−0.002, 0.004] | |||||
βX | 0.301 | [0.265, 0.338] | 0.277 | [0.227, 0.336] | 0.302 | [0.269, 0.335] |
βM | 0.293 | [0.263, 0.323] | 0.285 | [0.245, 0.324] | 0.335 | [0.305, 0.363] |
βY | 0.280 | [0.247, 0.314] | 0.256 | [0.214, 0.298] | 0.324 | [0.292, 0.355] |
lX | −0.074 | [−0.220, 0.071] | 0.000 | [−0.027, 0.027] | −0.076 | [−0.206, 0.050] |
lM | 0.075 | [−0.061, 0.210] | 0.000 | [−0.021, 0.022] | 0.073 | [−0.046, 0.195] |
lY | 1.926 | [1.776, 2.075] | 0.000 | [−0.028, 0.027] | 1.925 | [1.794, 2.055] |
ωX | −1.922 | [−2.167, −1.680] | −1.922 | [−2.136, −1.712] | ||
ωM | −4.172 | [−4.483, −3.861] | −3.259 | [−3.531, −2.994] | ||
ωY | −1.875 | [−2.104, −1.650] | −1.667 | [−1.853, −1.481] | ||
var(μ1j) | 0.519 | [0.381, 0.732] | 0.014 | [0.010, 0.019] | 0.402 | [0.304, 0.544] |
var(μ2j) | 0.458 | [0.334, 0.649] | 0.011 | [0.008, 0.015] | 0.354 | [0.268, 0.479] |
var(μ3j) | 0.526 | [0.378, 0.756] | 0.014 | [0.011, 0.019] | 0.409 | [0.307, 0.561] |
var(μ4j) | 0.015 | [0.007, 0.029] | 0.032 | [0.022, 0.046] | 0.007 | [0.001, 0.016] |
var(μ5j) | 0.016 | [0.011, 0.025] | 0.027 | [0.020, 0.038] | 0.012 | [0.008, 0.020] |
var(μ6j) | 0.016 | [0.009, 0.027] | 0.028 | [0.020, 0.040] | 0.012 | [0.007, 0.019] |
var(μ7j) | 0.213 | [0.155, 0.300] | 0.167 | [0.124, 0.222] | ||
var(μ8j) | 0.331 | [0.227, 0.501] | 0.286 | [0.197, 0.407] | ||
var(μ9j) | 0.009 | [0.003, 0.019] | 0.038 | [0.025, 0.056] | ||
var(μ7t) | 0.002 | [0.001, 0.006] | ||||
var(μ8t) | 0.008 | [0.003, 0.018] | ||||
var(μ9t) | 0.003 | [0.001, 0.008] | ||||
var(μ10j) | 1.455 | [1.058, 2.060] | 1.098 | [0.825, 1.500] | ||
var(μ11j) | 2.377 | [1.740, 3.354] | 1.811 | [1.367, 2.457] | ||
var(μ12j) | 1.233 | [0.897, 1.743] | 0.838 | [0.628, 1.142] |
[1] | 方杰, 温忠麟. (2023). 中介效应和调节效应模型进阶. 北京: 教育科学出版社. |
[2] | 方杰, 温忠麟, 邱皓政. (2021). 纵向数据的中介效应分析. 心理科学, 44(4), 989-996. |
[3] |
方杰, 温忠麟, 张敏强, 任皓. (2014). 基于结构方程模型的多层中介效应分析. 心理科学进展, 22(3), 530-539.
doi: 10.3724/SP.J.1042.2014.00530 |
[4] | 温忠麟. (2017). 实证研究中的因果推理与分析. 心理科学, 40, 200-208. |
[5] |
肖悦, 刘红云, 徐永泽. (2024). 密集追踪成对数据分析的模型建构探索. 心理科学进展, 32(9), 1450-1462.
doi: 10.3724/SP.J.1042.2024.01450 |
[6] |
郑舒方, 张沥今, 乔欣宇, 潘俊豪. (2021). 密集追踪数据分析: 模型及其应用. 心理科学进展, 29(11), 1948-1969.
doi: 10.3724/SP.J.1042.2021.01948 |
[7] | Asparouhov, T., Hamaker, E. L., & Muthén, B. (2018). Dynamic structural equation models. Structural Equation Modeling: A Multidisciplinary Journal, 25(3), 359-388. |
[8] | Asparouhov, T., & Muthén, B. (2020). Comparison of models for the analysis of intensive longitudinal data. Structural Equation Modeling: A Multidisciplinary Journal, 27(2), 275-297. |
[9] |
Curran, P. J., & Bauer, D. J. (2011). The disaggregation of within-person and between-person effects in longitudinal models of change. Annual Review of Psychology, 62, 583-619.
doi: 10.1146/annurev.psych.093008.100356 pmid: 19575624 |
[10] | Fang, J., Wen, Z.,Hau, K-T. (2024). Mediation analyses of intensive longitudinal data with dynamic structural equation modeling. Structural Equation Modeling: A Multidisciplinary Journal, 31(4), 728-741. |
[11] | Gistelinck, F., Loeys, T., & Flamant, N. (2021). Multilevel autoregressive models when the number of time points is small. Structural Equation Modeling: A Multidisciplinary Journal, 28(1), 15-27. |
[12] |
Hamaker, E. L., Asparouhov, T., Brose, A., Schmiedek, F., & Muthén, B. (2018). At the frontiers of modeling intensive longitudinal data: Dynamic structural equation models for the affective measurements from the COGITO study. Multivariate Behavioral Research, 53(6), 820-841.
doi: 10.1080/00273171.2018.1446819 pmid: 29624092 |
[13] |
Kenny, D. A., Korchmaros, J. D., & Bolger, N. (2003). Lower level mediation in multilevel models. Psychological Methods, 8(2), 115-128.
pmid: 12924810 |
[14] | Kim, M., Winkler, C., Uanhoro, J., Peri, J., & Lochman, J. (2022). Using a cross-classified multilevel mediation model (CC-M3) with longitudinal data having changes in cluster membership. Structural Equation Modeling: A Multidisciplinary Journal, 29(2), 218-232. |
[15] | Kwiatkowski, D., Phillips, P. C. B., Schmidt, P., & Shin, Y. (1992). Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root. Journal of Econometrics, 54(1), 159-178. |
[16] | Laguna, M., De Longis, E., Mazur-Socha, Z., & Alessandri, G. (2022). Explaining prosocial behavior from the inter- and within-individual perspectives: A role of positive orientation and positive affect. Journal of Happiness Studies, 23, 1599-1615. |
[17] | Lischetzke, T., Schemer, L., Glombiewski, J. A., In-Albon, T., Karbach, J., & Könen, T. (2021). Negative emotion differentiation attenuates the within-person indirect effect of daily stress on nightly sleep quality through calmness. Frontiers in Psychology, 12, 684117. |
[18] |
Luo, W. (2017). Testing mediation effects in cross-classified multilevel data. Behavior Research Methods, 49(2), 674-684.
doi: 10.3758/s13428-016-0723-3 pmid: 26983422 |
[19] | McNeish, D., & Hamaker, E. L. (2020). A primer on two-level dynamic structural equation models for intensive longitudinal data in Mplus. Psychological Methods, 25(5), 610-625. |
[20] | McNeish, D., & MacKinnon, D. P. (2022). Intensive longitudinal mediation in Mplus. Psychological Methods. https://dx.doi.org/10.1037/met0000536 |
[21] | Nickell, S. (1981). Biases in dynamic models with fixed effects. Econometrica, 49(6), 1417-1426. |
[22] | Wang, L., & Maxwell, S. E. (2015). A note on disaggregating betweenperson and within-person effects with longitudinal data using multilevel models. Psychological Methods, 20(1), 63-83. |
[23] |
Zhang, Q., Wang, L. J., & Bergeman, C. S. (2018). Multilevel autoregressive mediation models: Specification, estimation, and applications. Psychological Methods, 23(2), 278-297.
doi: 10.1037/met0000161 pmid: 29172610 |
[1] | XIAO Yue, LIU Hongyun, XU Yongze. Model construction for intensive longitudinal dyadic data analysis [J]. Advances in Psychological Science, 2024, 32(9): 1450-1462. |
[2] | LUO Xiaohui, LIU Hongyun. Estimating test reliability of intensive longitudinal studies: Perspectives on multilevel structure and dynamic nature [J]. Advances in Psychological Science, 2024, 32(4): 700-714. |
[3] | WU Fan, HU Yueqin. Personality dynamics: The integration of process and trait [J]. Advances in Psychological Science, 2023, 31(7): 1269-1287. |
[4] | WEN Zhonglin, FANG Jie, XIE Jinyan, OUYANG Jinying. Methodological research on mediation effects in China’s mainland [J]. Advances in Psychological Science, 2022, 30(8): 1692-1702. |
[5] | LIANG Xiao, KANG Jingmei, WANG Lijuan. The relationship between the approximate number system and mathematical abilities: Evidence from developmental research [J]. Advances in Psychological Science, 2021, 29(5): 827-837. |
[6] | BAI Yating, HE Wenguang. The embodied cognition effect of the second language: Automatic activation or native language mediation? [J]. Advances in Psychological Science, 2021, 29(11): 1970-1978. |
[7] | ZHENG Shufang, ZHANG Lijin, QIAO Xinyu, PAN Junhao. Intensive longitudinal data analysis: Models and application [J]. Advances in Psychological Science, 2021, 29(11): 1948-1969. |
[8] | QI Yafei; MO Shuliang. Active mediation of parents in the use of media in children and adolescents [J]. Advances in Psychological Science, 2016, 24(8): 1290-1299. |
[9] | REN Zhihong; LAI Lizu; YU Xianglian; LI Songwei; . Meta-analysis on CBM for anxiety disorder: effect sizes, moderators and mediation [J]. Advances in Psychological Science, 2016, 24(11): 1690-1711. |
[10] | FANG Jie;WEN Zhonglin;ZHANG Minqiang;REN Hao. Analyzing Multilevel Mediation Using Multilevel Structural Equation Models [J]. Advances in Psychological Science, 2014, 22(3): 530-539. |
[11] | FANG Jie; ZHANG Minqiang; GU Honglei; LIANG Dongmei. Moderated Mediation Model Analysis Based on Asymmetric Interval [J]. Advances in Psychological Science, 2014, 22(10): 1660-1668. |
[12] | LI Xiaoming;ZHOU Qiao. The Moderation Role of the Number of Missed Option in Producing Inaction Inertia [J]. Advances in Psychological Science, 2013, 21(2): 205-210. |
[13] | WANG Cheng;YOU Wen-Ping;ZHANG Qing-Fang. Cognitive Mechanism of Handwritten Production [J]. Advances in Psychological Science, 2012, 20(10): 1560-1572. |
[14] | FANG Jie;ZHANG Min-Qiang;CHIOU Hao-Jeng. Multilevel Mediation Based on Hierarchical Linear Model [J]. , 2010, 18(8): 1329-1338. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 454
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract |
|
|||||||||||||||||||||||||||||||||||||||||||||||||