Advances in Psychological Science ›› 2025, Vol. 33 ›› Issue (4): 548-564.doi: 10.3724/SP.J.1042.2025.0548
• Neuropsychological Mechanisms of Autism from a Multidisciplinary Perspective: A Special Column • Previous Articles Next Articles
SHAN Xiaolong, CHEN Huafu, DUAN Xujun()
Received:
2023-08-18
Online:
2025-04-15
Published:
2025-03-05
Contact:
DUAN Xujun
E-mail:duanxujun@uestc.edu.cn
CLC Number:
SHAN Xiaolong, CHEN Huafu, DUAN Xujun. Multimodal magnetic resonance imaging pattern recognition in autism spectrum disorder[J]. Advances in Psychological Science, 2025, 33(4): 548-564.
[1] | 何长春. (2021). 基于磁共振成像的孤独症谱系障碍脑连接异常发育模式研究[博士学位论文]. 电子科技大学, 成都. |
[2] | 黄渝萍, 李伟生. (2023). 医学图像融合方法综述. 中国图象图形学报, 28(1), 118-143. |
[3] | 王培实. (2022). 中国孤独症教育康复行业发展状况报告IV. 光明日报出版社. |
[4] |
Alexander, A. L., Lee, J. E., Lazar, M., Boudos, R., DuBray, M. B., Oakes, T. R., ... Lainhart, J. E. (2007). Diffusion tensor imaging of the corpus callosum in autism. Neuroimage, 34(1), 61-73.
doi: 10.1016/j.neuroimage.2006.08.032 pmid: 17023185 |
[5] | Ali, M. T., ElNakieb, Y., Elnakib, A., Shalaby, A., Mahmoud, A., Ghazal, M., ... El-Baz, A. (2022). The role of structure MRI in diagnosing autism. Diagnostics, 12(1), 165. |
[6] | Anderson, J. S., Nielsen, J. A., Froehlich, A. L., DuBray, M. B., Druzgal, T. J., Cariello, A. N., ... Lainhart, J. E. (2011). Functional connectivity magnetic resonance imaging classification of autism. Brain, 134(12), 3742-3754. |
[7] |
Balardin, J. B., Comfort, W. E., Daly, E., Murphy, C., Andrews, D., Murphy, D. G., ... Sato, J. R. (2015). Decreased centrality of cortical volume covariance networks in autism spectrum disorders. Journal of Psychiatric Research, 69, 142-149.
doi: 10.1016/j.jpsychires.2015.08.003 pmid: 26343606 |
[8] |
Barnea-Goraly, N., Kwon, H., Menon, V., Eliez, S., Lotspeich, L., & Reiss, A. L. (2004). White matter structure in autism: Preliminary evidence from diffusion tensor imaging. Biological Psychiatry, 55(3), 323-326.
pmid: 14744477 |
[9] |
Baron-Cohen, S., Ring, H. A., Bullmore, E. T., Wheelwright, S., Ashwin, C., & Williams, S. C. (2000). The amygdala theory of autism. Neuroscience and Biobehavioral Reviews, 24(3), 355-364.
pmid: 10781695 |
[10] |
Bashat, D. B., Kronfeld-Duenias, V., Zachor, D. A., Ekstein, P. M., Hendler, T., Tarrasch, R., ... Sira, L. B. (2007). Accelerated maturation of white matter in young children with autism: A high b value dwi study. Neuroimage, 37(1), 40-47.
pmid: 17566764 |
[11] | Baum, G. L., Cui, Z., Roalf, D. R., Ciric, R., Betzel, R. F., Larsen, B., ... Satterthwaite, T. D. (2020). Development of structure-function coupling in human brain networks during youth. Proceedings of the National Academy of Sciences, 117(1), 771-778. |
[12] | Baumeister, S., Moessnang, C., Bast, N., Hohmann, S., Aggensteiner, P., Kaiser, A.,...EU-AIMS LEAP Group. (2023). Processing of social and monetary rewards in autism spectrum disorders. The British Journal of Psychiatry, 222(3), 100-111. |
[13] | Bessadok, A., Mahjoub, M. A., & Rekik, I. (2022). Graph neural networks in network neuroscience. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(5), 5833-5848. |
[14] |
Breakspear, M. (2017). Dynamic models of large-scale brain activity. Nature Neuroscience, 20(3), 340-352.
doi: 10.1038/nn.4497 pmid: 28230845 |
[15] |
Bullmore, E., & Sporns, O. (2009). Complex brain networks: Graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience, 10(3), 186-198.
doi: 10.1038/nrn2575 pmid: 19190637 |
[16] | Cackowski, S., Barbier, E. L., Dojat, M., & Christen, T. (2023). Imunity: A generalizable vae-gan solution for multicenter MR image harmonization. Medical Image Analysis, 88, 102799. |
[17] | Cai, Y., Zhao, J., Wang, L., Xie, Y., & Fan, X. (2022). Altered topological properties of white matter structural network in adults with autism spectrum disorder. Asian Journal of Psychiatry, 75, 103211. |
[18] |
Calhoun, V. D., & Sui, J. (2016). Multimodal fusion of brain imaging data: A key to finding the missing link (s) in complex mental illness. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 1(3), 230-244.
doi: 10.1016/j.bpsc.2015.12.005 pmid: 27347565 |
[19] | Cash, R. F., Cocchi, L., Lv, J., Wu, Y., Fitzgerald, P. B., & Zalesky, A. (2021). Personalized connectivity‐guided dlpfc‐tms for depression: Advancing computational feasibility, precision and reproducibility. Human Brain Mapping, 42(13), 4155-4172. |
[20] |
Chang, C., & Glover, G. H. (2010). Time-frequency dynamics of resting-state brain connectivity measured with fMRI. Neuroimage, 50(1), 81-98.
doi: 10.1016/j.neuroimage.2009.12.011 pmid: 20006716 |
[21] |
Chen, H., Uddin, L. Q., Guo, X., Wang, J., Wang, R., Wang, X., ... Chen, H. (2019). Parsing brain structural heterogeneity in males with autism spectrum disorder reveals distinct clinical subtypes. Human Brain Mapping, 40(2), 628-637.
doi: 10.1002/hbm.24400 pmid: 30251763 |
[22] | Chen, Y., Yan, J., Jiang, M., Zhang, T., Zhao, Z., Zhao, W., ... Jiang, X. (2022, March). Adversarial learning based node-edge graph attention networks for autism spectrum disorder identification. IEEE Transactions on Neural Networks and Learning Systems. https://doi.org/10.1109/TNNLS.2022.3154755 |
[23] |
Chevallier, C., Kohls, G., Troiani, V., Brodkin, E. S., & Schultz, R. T. (2012). The social motivation theory of autism. Trends in Cognitive Sciences, 16(4), 231-239.
doi: 10.1016/j.tics.2012.02.007 pmid: 22425667 |
[24] |
Cocchi, L., & Zalesky, A. (2018). Personalized transcranial magnetic stimulation in psychiatry. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 3(9), 731-741.
doi: S2451-9022(18)30022-3 pmid: 29571586 |
[25] | Corbett, B. A., Carmean, V., Ravizza, S., Wendelken, C., Henry, M. L., Carter, C., & Rivera, S. M. (2009). A functional and structural study of emotion and face processing in children with autism. Psychiatry Research: Neuroimaging, 173(3), 196-205. |
[26] | Darki, F., Nyström, P., McAlonan, G., Bölte, S., & Falck-Ytter, T. (2021). T1-weighted/T2-weighted ratio mapping at 5 months captures individual differences in behavioral development and differentiates infants at familial risk for autism from controls. Cerebral Cortex, 31(9), 4068-4077. |
[27] |
Davies, M. S., Dapretto, M., Sigman, M., Sepeta, L., & Bookheimer, S. Y. (2011). Neural bases of gaze and emotion processing in children with autism spectrum disorders. Brain and Behavior, 1(1), 1-11.
doi: 10.1002/brb3.6 pmid: 22398976 |
[28] | Deemyad, T. (2022). Lateralized changes in language associated auditory and somatosensory cortices in autism. Frontiers in Systems Neuroscience, 16, 787448. |
[29] |
Dekhil, O., Ali, M., El-Nakieb, Y., Shalaby, A., Soliman, A., Switala, A., ... Casanova, M. F. (2019). A personalized autism diagnosis cad system using a fusion of structural MRI and resting-state functional MRI data. Frontiers in Psychiatry, 10, 392.
doi: 10.3389/fpsyt.2019.00392 pmid: 31333507 |
[30] |
Di Martino, A., Kelly, C., Grzadzinski, R., Zuo, X.-N., Mennes, M., Mairena, M. A., ... Milham, M. P. (2011). Aberrant striatal functional connectivity in children with autism. Biological Psychiatry, 69(9), 847-856.
doi: 10.1016/j.biopsych.2010.10.029 pmid: 21195388 |
[31] |
Di Martino, A., Zuo, X.-N., Kelly, C., Grzadzinski, R., Mennes, M., Schvarcz, A., ... Milham, M. P. (2013). Shared and distinct intrinsic functional network centrality in autism and attention-deficit/hyperactivity disorder. Biological Psychiatry, 74(8), 623-632.
doi: 10.1016/j.biopsych.2013.02.011 pmid: 23541632 |
[32] | Dimitriadis, S. I., Liparas, D., Tsolaki, M. N., & Alzheimer's, Disease Neuroimaging Initiative. (2018). Random forest feature selection, fusion and ensemble strategy: Combining multiple morphological MRI measures to discriminate among healhy elderly, MCI, cMCI and alzheimer’s disease patients: From the alzheimer’s disease neuroimaging initiative (ADNI) database. Journal of Neuroscience Methods, 302, 14-23. |
[33] | Duan, X., & Chen, H. (2022). Mapping brain functional and structural abnormities in autism spectrum disorder: Moving toward precision treatment. Psychoradiology, 2(3), 78-85. |
[34] | Duan, X., Wang, R., Xiao, J., Li, Y., Huang, X., Guo, X., ... Chen, H. (2020). Subcortical structural covariance in young children with autism spectrum disorder. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 99, 109874. |
[35] |
DuPre, E., & Spreng, R. N. (2017). Structural covariance networks across the life span, from 6 to 94 years of age. Network Neuroscience, 1(3), 302-323.
doi: 10.1162/NETN_a_00016 pmid: 29855624 |
[36] |
Easson, A. K., Fatima, Z., & McIntosh, A. R. (2019). Functional connectivity-based subtypes of individuals with and without autism spectrum disorder. Network Neuroscience, 3(2), 344-362.
doi: 10.1162/netn_a_00067 pmid: 30793086 |
[37] | ElNakieb, Y., Ali, M. T., Dekhil, O., Khalefa, M. E., Soliman, A., Shalaby, A., ... El-Baz, A. (2018, December). Towards accurate personalized autism diagnosis using different imaging modalities: sMRI, fMRI, and DTI. 2018 IEEE International Symposium on Signal Processing and Information Technology, Louisville, USA. |
[38] | ElNakieb, Y., Ali, M. T., Elnakib, A., Shalaby, A., Soliman, A., Mahmoud, A., ... El-Baz, A. (2021). The role of diffusion tensor mr imaging (dti) of the brain in diagnosing autism spectrum disorder: Promising results. Sensors, 21(24), 8171. |
[39] | Eslami, T., & Saeed, F. (2019, September). Auto-ASD- network: A technique based on deep learning and support vector machines for diagnosing autism spectrum disorder using fMRI data. Proceedings of the 10th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, Niagara Falls, USA. |
[40] | Georgiades, S., Szatmari, P., Boyle, M., Hanna, S., Duku, E., Zwaigenbaum, L.,...Pathways in ASD Study Team. (2013). Investigating phenotypic heterogeneity in children with autism spectrum disorder: A factor mixture modeling approach. Journal of Child Psychology and Psychiatry, 54(2), 206-215. |
[41] | Glasser, M. F., & Van Essen, D. C. (2011). Mapping human cortical areas in vivo based on myelin content as revealed by T1-and T2-weighted MRI. Journal of Neuroscience, 31(32), 11597-11616. |
[42] |
Gonzalez-Castillo, J., & Bandettini, P. A. (2018). Task-based dynamic functional connectivity: Recent findings and open questions. Neuroimage, 180, 526-533.
doi: S1053-8119(17)30653-5 pmid: 28780401 |
[43] | Gori, I., Giuliano, A., Muratori, F., Saviozzi, I., Oliva, P., Tancredi, R., ... Retico, A. (2015). Gray matter alterations in young children with autism spectrum disorders: Comparing morphometry at the voxel and regional level. Neuroimaging, 25(6), 866-874. |
[44] | Graves, W. W., Levinson, H., Coulanges, L., Cahalan, S., Cruz, D., Sancimino, C., ... Rosenberg-Lee, M. (2022). Neural differences in social and figurative language processing on the autism spectrum. Neuropsychologia, 171, 108240. |
[45] | Guo, X., Cao, Y., Liu, J., Zhang, X., Zhai, G., Chen, H., & Gao, L. (2023). Dysregulated dynamic time-varying triple-network segregation in children with autism spectrum disorder. Cerebral Cortex, 33(9), 5717-5726. |
[46] |
Guo, X., Dominick, K. C., Minai, A. A., Li, H., Erickson, C. A., & Lu, L. J. (2017). Diagnosing autism spectrum disorder from brain resting-state functional connectivity patterns using a deep neural network with a novel feature selection method. Frontiers in Neuroscience, 11, 460.
doi: 10.3389/fnins.2017.00460 pmid: 28871217 |
[47] |
Guo, X., Duan, X., Chen, H., He, C., Xiao, J., Han, S., ... Chen, H. (2020). Altered inter- and intrahemispheric functional connectivity dynamics in autistic children. Human Brain Mapping, 41(2), 419-428.
doi: 10.1002/hbm.24812 pmid: 31600014 |
[48] |
Guo, X., Duan, X., Suckling, J., Chen, H., Liao, W., Cui, Q., & Chen, H. (2019). Partially impaired functional connectivity states between right anterior insula and default mode network in autism spectrum disorder. Human Brain Mapping, 40(4), 1264-1275.
doi: 10.1002/hbm.24447 pmid: 30367744 |
[49] | Guo, X., Duan, X., Suckling, J., Wang, J., Kang, X., Chen, H., ... Chen, H. (2021). Mapping progressive gray matter alterations in early childhood autistic brain. Cerebral Cortex, 31(3), 1500-1510. |
[50] |
Haigh, S. M., Keller, T. A., Minshew, N. J., & Eack, S. M. (2020). Reduced white matter integrity and deficits in neuropsychological functioning in adults with autism spectrum disorder. Autism Research, 13(5), 702-714.
doi: 10.1002/aur.2271 pmid: 32073209 |
[51] |
Hamilton, A. F. (2008). Emulation and mimicry for social interaction: A theoretical approach to imitation in autism. Quarterly Journal of Experimental Psychology, 61(1), 101-115.
doi: 10.1080/17470210701508798 pmid: 18038342 |
[52] | He, C., Chen, H., Uddin, L. Q., Erramuzpe, A., Bonifazi, P., Guo, X., ... Duan, X. (2020). Structure-function connectomics reveals aberrant developmental trajectory occurring at preadolescence in the autistic brain. Cerebral Cortex, 30(9), 5028-5037. |
[53] |
He, C., Chen, Y., Jian, T., Chen, H., Guo, X., Wang, J., ... Duan, X. (2018). Dynamic functional connectivity analysis reveals decreased variability of the default-mode network in developing autistic brain. Autism Research, 11(11), 1479-1493.
doi: 10.1002/aur.2020 pmid: 30270547 |
[54] | He, C., Cortes, J. M., Kang, X., Cao, J., Chen, H., Guo, X., ... Xiao, J. (2021). Individual‐based morphological brain network organization and its association with autistic symptoms in young children with autism spectrum disorder. Human Brain Mapping, 42(10), 3282-3294. |
[55] |
Hernandez, L. M., Rudie, J. D., Green, S. A., Bookheimer, S., & Dapretto, M. (2015). Neural signatures of autism spectrum disorders: Insights into brain network dynamics. Neuropsychopharmacology, 40(1), 171-189.
doi: 10.1038/npp.2014.172 pmid: 25011468 |
[56] |
Hogeveen, J., Krug, M. K., Elliott, M. V., & Solomon, M. (2018). Insula-retrosplenial cortex overconnectivity increases internalizing via reduced insight in autism. Biological Psychiatry, 84(4), 287-294.
doi: S0006-3223(18)30063-5 pmid: 29523413 |
[57] | Hong, S. J., Valk, S. L., Di Martino, A., Milham, M. P., & Bernhardt, B. C. (2018). Multidimensional neuroanatomical subtyping of autism spectrum disorder. Cerebral Cortex, 28(10), 3578-3588. |
[58] | Hong, S. J., Vogelstein, J. T., Gozzi, A., Bernhardt, B. C., Yeo, B. T. T., Milham, M. P., & Di Martino, A. (2020). Toward neurosubtypes in autism. Biological Psychiatry, 88(1), 111-128. |
[59] | Hrdlicka, M., Dudova, I., Beranova, I., Lisy, J., Belsan, T., Neuwirth, J., ... Urbanek, T. (2005). Subtypes of autism by cluster analysis based on structural MRI data. European Child & Adolescent Psychiatry, 14(3), 138-144. |
[60] |
Hull, J. V., Dokovna, L. B., Jacokes, Z. J., Torgerson, C. M., Irimia, A., & Van Horn, J. D. (2016). Resting-state functional connectivity in autism spectrum disorders: A review. Frontiers in Psychiatry, 7, 205.
doi: 10.3389/fpsyt.2016.00205 pmid: 28101064 |
[61] |
Iglesias, A. H. (2020). Transcranial magnetic stimulation as treatment in multiple neurologic conditions. Current Neurology and Neuroscience Reports, 20(1), 1-9.
doi: 10.1007/s11910-020-1021-0 pmid: 32020300 |
[62] | Ismail, M., Barnes, G., Nitzken, M., Switala, A., Shalaby, A., Hosseini-Asl, E., ... El-Baz, A. (2017, September). A new deep-learning approach for early detection of shape variations in autism using structural mri. 2017 IEEE International Conference on Image Processing, Beijing, China. |
[63] | Itahashi, T., Yamada, T., Watanabe, H., Nakamura, M., Jimbo, D., Shioda, S., ... Hashimoto, R. (2014). Altered network topologies and hub organization in adults with autism: A resting-state fMRI study. PloS one, 9(4), e94115. |
[64] | Kang, J. N., Song, J. J., Casanova, M. F., Sokhadze, E. M., & Li, X. L. (2019). Effects of repetitive transcranial magnetic stimulation on children with low-function autism. CNS Neuroscience & Therapeutics, 25(11), 1254-1261. |
[65] | Kaur, P., & Kaur, A. (2023). Review of progress in diagnostic studies of autism spectrum disorder using neuroimaging. Interdisciplinary Sciences: Computational Life Sciences, 1-20. |
[66] | Keil, K. P., & Lein, P. J. (2016). DNA methylation: A mechanism linking environmental chemical exposures to risk of autism spectrum disorders. Environmental Epigenetics, 2(1), dvv012. |
[67] | Khodatars, M., Shoeibi, A., Sadeghi, D., Ghaasemi, N., Jafari, M., Moridian, P., ... Berk, M. (2021). Deep learning for neuroimaging-based diagnosis and rehabilitation of autism spectrum disorder: A review. Computers in Biology and Medicine, 139, 104949. |
[68] | Khundrakpam, B. S., Lewis, J. D., Kostopoulos, P., Carbonell, F., & Evans, A. C. (2017). Cortical thickness abnormalities in autism spectrum disorders through late childhood, adolescence, and adulthood: A large-scale MRI study. Cerebral Cortex, 27(3), 1721-1731. |
[69] |
Kim, J. I., Bang, S., Yang, J.-J., Kwon, H., Jang, S., Roh, S., ... Kim, B.-N. (2022). Classification of preschoolers with low-functioning autism spectrum disorder using multimodal MRI data. Journal of Autism and Developmental Disorders, 53(1), 25-37.
doi: 10.1007/s10803-021-05368-z pmid: 34984638 |
[70] | Kim, S. H. (2020). Decomposing heterogeneity in autism spectrum disorder through neurosubtyping. Biological Psychiatry, 87(12), e37-e38. |
[71] | Kim, S. H., Bal, V. H., Benrey, N., Choi, Y. B., Guthrie, W., Colombi, C., & Lord, C. (2018). Variability in autism symptom trajectories using repeated observations from 14 to 36 months of age. Journal of the American Academy of Child & Adolescent Psychiatry, 57(11), 837-848. e832. |
[72] |
Kleinhans, N. M., Richards, T., Johnson, L. C., Weaver, K. E., Greenson, J., Dawson, G., & Aylward, E. (2011). fMRI evidence of neural abnormalities in the subcortical face processing system in ASD. Neuroimage, 54(1), 697-704.
doi: 10.1016/j.neuroimage.2010.07.037 pmid: 20656041 |
[73] |
Kleinhans, N. M., Richards, T., Weaver, K., Johnson, L. C., Greenson, J., Dawson, G., & Aylward, E. (2010). Association between amygdala response to emotional faces and social anxiety in autism spectrum disorders. Neuropsychologia, 48(12), 3665-3670.
doi: 10.1016/j.neuropsychologia.2010.07.022 pmid: 20655320 |
[74] |
Knaus, T. A., Silver, A. M., Kennedy, M., Lindgren, K. A., Dominick, K. C., Siegel, J., & Tager-Flusberg, H. (2010). Language laterality in autism spectrum disorder and typical controls: A functional, volumetric, and diffusion tensor MRI study. Brain and Language, 112(2), 113-120.
doi: 10.1016/j.bandl.2009.11.005 pmid: 20031197 |
[75] | Knaus, T. A., Silver, A. M., Lindgren, K. A., Hadjikhani, N., & Tager-Flusberg, H. (2008). fMRI activation during a language task in adolescents with ASD. Journal of the International Neuropsychological Society, 14(6), 967-979. |
[76] |
Kohls, G., Antezana, L., Mosner, M. G., Schultz, R. T., & Yerys, B. E. (2018). Altered reward system reactivity for personalized circumscribed interests in autism. Molecular autism, 9, 9.
doi: 10.1186/s13229-018-0195-7 pmid: 29423135 |
[77] |
Kohls, G., Schulte-Rüther, M., Nehrkorn, B., Müller, K., Fink, G. R., Kamp-Becker, I., ... Konrad, K. (2013). Reward system dysfunction in autism spectrum disorders. Social Cognitive and Affective Neuroscience, 8(5), 565-572.
doi: 10.1093/scan/nss033 pmid: 22419119 |
[78] |
Koldewyn, K., Whitney, D., & Rivera, S. M. (2011). Neural correlates of coherent and biological motion perception in autism. Developmental Science, 14(5), 1075-1088.
doi: 10.1111/j.1467-7687.2011.01058.x pmid: 21884323 |
[79] | Kong, X., Kong, R., Orban, C., Wang, P., Zhang, S., Anderson, K., ... Thomas Yeo, B. T.(2021). Sensory-motor cortices shape functional connectivity dynamics in the human brain. Nature Communications, 12(1), 6373. |
[80] | Kong, Y., Gao, J., Xu, Y., Pan, Y., Wang, J., & Liu, J. (2019). Classification of autism spectrum disorder by combining brain connectivity and deep neural network classifier. Neurocomputing, 324, 63-68. |
[81] |
Koolschijn, P. C. M., & Geurts, H. M. (2016). Gray matter characteristics in mid and old aged adults with ASD. Journal of Autism and Developmental Disorders, 46(8), 2666-2678.
doi: 10.1007/s10803-016-2810-9 pmid: 27177894 |
[82] | Kou, J., Le, J., Fu, M., Lan, C., Chen, Z., Li, Q., ... Kendrick, K. M. (2019). Comparison of three different eye‐tracking tasks for distinguishing autistic from typically developing children and autistic symptom severity. Autism Research, 12(10), 1529-1540. |
[83] | Lai, M.-C., Lombardo, M. V., & Baron-Cohen, S. (2014). Autism. The Lancet, 383(9920), 896-910. |
[84] |
Lange, N., Travers, B. G., Bigler, E. D., Prigge, M. B., Froehlich, A. L., Nielsen, J. A., ... Lainhart, J. E. (2015). Longitudinal volumetric brain changes in autism spectrum disorder ages 6-35 years. Autism Research, 8(1), 82-93.
doi: 10.1002/aur.1427 pmid: 25381736 |
[85] |
Lee, J. E., Bigler, E. D., Alexander, A. L., Lazar, M., DuBray, M. B., Chung, M. K., ... Lainhart, J. E. (2007). Diffusion tensor imaging of white matter in the superior temporal gyrus and temporal stem in autism. Neuroscience Letters, 424(2), 127-132.
pmid: 17714869 |
[86] | Leming, M., Górriz, J. M., & Suckling, J. (2020). Ensemble deep learning on large, mixed-site fMRI datasets in autism and other tasks. International Journal of Neural Systems, 30(7), 2050012. |
[87] |
Li, J., Biswal, B. B., Wang, P., Duan, X., Cui, Q., Chen, H., & Liao, W. (2019). Exploring the functional connectome in white matter. Human Brain Mapping, 40(15), 4331-4344.
doi: 10.1002/hbm.24705 pmid: 31276262 |
[88] | Li, J., Seidlitz, J., Suckling, J., Fan, F., Ji, G. J., Meng, Y., ... Liao, W. (2021). Cortical structural differences in major depressive disorder correlate with cell type-specific transcriptional signatures. Nature Communications, 12(1), 1647. |
[89] | Li, L., He, C., Jian, T., Guo, X., Xiao, J., Li, Y., ... Duan, X. (2021). Attenuated link between the medial prefrontal cortex and the amygdala in children with autism spectrum disorder: Evidence from effective connectivity within the “social brain”. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 111, 110147. |
[90] | Li, X., Dvornek, N. C., Zhuang, J., Ventola, P., & Duncan, J. S. (2018, September). Brain biomarker interpretation in ASD using deep learning and fMRI. Medical Image Computing and Computer Assisted Intervention-MICCAI 2018: 21st International Conference, Granada, Spain. |
[91] | Li, X., Zhou, Y., Dvornek, N., Zhang, M., Gao, S., Zhuang, J., ... Duncan, J. S. (2021). Braingnn: Interpretable brain graph neural network for fmri analysis. Medical Image Analysis, 74, 102233. |
[92] | Li, X., Zhou, Y., Dvornek, N. C., Zhang, M., Zhuang, J., Ventola, P., & Duncan, J. S. (2020, October). Pooling regularized graph neural network for fmri biomarker analysis. Medical Image Computing and Computer Assisted Intervention-MICCAI 2020: 23rd International Conference, Lima, Peru. |
[93] |
Li, Y., Zhu, Y., Nguchu, B. A., Wang, Y., Wang, H., Qiu, B., & Wang, X. (2020). Dynamic functional connectivity reveals abnormal variability and hyper-connected pattern in autism spectrum disorder. Autism Research, 13(2), 230-243.
doi: 10.1002/aur.2212 pmid: 31614075 |
[94] |
Libero, L. E., DeRamus, T. P., Lahti, A. C., Deshpande, G., & Kana, R. K. (2015). Multimodal neuroimaging based classification of autism spectrum disorder using anatomical, neurochemical, and white matter correlates. Cortex, 66, 46-59.
doi: 10.1016/j.cortex.2015.02.008 pmid: 25797658 |
[95] |
Liem, F., Varoquaux, G., Kynast, J., Beyer, F., Masouleh, S. K., Huntenburg, J. M., ... Margulies, D. S. (2017). Predicting brain-age from multimodal imaging data captures cognitive impairment. Neuroimage, 148, 179-188.
doi: S1053-8119(16)30610-3 pmid: 27890805 |
[96] | Liu, J., Yao, L., Zhang, W., Xiao, Y., Liu, L., Gao, X., ... Lui, S. (2017). Gray matter abnormalities in pediatric autism spectrum disorder: A meta-analysis with signed differential mapping. European Child & Adolescent Psychiatry, 26(8), 933-945. |
[97] |
Liu, S., Cai, W., Liu, S., Zhang, F., Fulham, M., Feng, D., ... Kikinis, R. (2015). Multimodal neuroimaging computing: A review of the applications in neuropsychiatric disorders. Brain Informatics, 2(3), 167-180.
doi: 10.1007/s40708-015-0019-x pmid: 27747507 |
[98] | Livingston, L. A., & Happé, F. (2017). Conceptualising compensation in neurodevelopmental disorders: Reflections from autism spectrum disorder. Neuroscience & Biobehavioral Reviews, 80, 729-742. |
[99] |
Ma, L., Liu, M., Xue, K., Ye, C., Man, W., Cheng, M., ... Wang, J. (2022). Abnormal regional spontaneous brain activities in white matter in patients with autism spectrum disorder. Neuroscience, 490, 1-10.
doi: 10.1016/j.neuroscience.2022.02.022 pmid: 35218886 |
[100] |
Maenner, M. J., Warren, Z., Williams, A. R., Amoakohene, E., Bakian, A. V., Bilder, D. A., ... Shaw, K. A. (2023). Prevalence and characteristics of autism spectrum disorder among children aged 8 years - autism and developmental disabilities monitoring network, 11 sites, united states, 2020. MMWR Surveill Summ, 72(2), 1-14.
doi: 10.15585/mmwr.ss7202a1 pmid: 36952288 |
[101] | Martins, D., Dipasquale, O., Veronese, M., Turkheimer, F., Loggia, M. L., McMahon, S., ... Williams, S. C. (2022). Transcriptional and cellular signatures of cortical morphometric remodelling in chronic pain. Pain, 163(6), e759. |
[102] |
Masi, A., DeMayo, M. M., Glozier, N., & Guastella, A. J. (2017). An overview of autism spectrum disorder, heterogeneity and treatment options. Neuroscience Bulletin, 33(2), 183-193.
doi: 10.1007/s12264-017-0100-y pmid: 28213805 |
[103] |
McElhanon, B. O., McCracken, C., Karpen, S., & Sharp, W. G. (2014). Gastrointestinal symptoms in autism spectrum disorder: A meta-analysis. Pediatrics, 133(5), 872-883.
doi: 10.1542/peds.2013-3995 pmid: 24777214 |
[104] |
Memon, A. M. (2021). Transcranial magnetic stimulation in treatment of adolescent attention deficit/hyperactivity disorder: A narrative review of literature. Innovations in Clinical Neuroscience, 18(1-3), 43-46.
pmid: 34150364 |
[105] |
Meng, X., Jiang, R., Lin, D., Bustillo, J., Jones, T., Chen, J., ... Sui, J. (2017). Predicting individualized clinical measures by a generalized prediction framework and multimodal fusion of MRI data. Neuroimage, 145, 218-229.
doi: S1053-8119(16)30146-X pmid: 27177764 |
[106] | Meng, Y., Yang, S., Xiao, J., Lu, Y., Li, J., Chen, H., & Liao, W. (2022). Cortical gradient of a human functional similarity network captured by the geometry of cytoarchitectonic organization. Communications Biology, 5(1), 1152. |
[107] |
Menon, V. (2011). Large-scale brain networks and psychopathology: A unifying triple network model. Trends in Cognitive Sciences, 15(10), 483-506.
doi: 10.1016/j.tics.2011.08.003 pmid: 21908230 |
[108] |
Misra, V. (2014). The social brain network and autism. Annals of Neurosciences, 21(2), 69-73.
doi: 10.5214/ans.0972.7531.210208 pmid: 25206065 |
[109] | Montembeault, M., Rouleau, I., Provost, J.-S., & Brambati, S. M. (2016). Altered gray matter structural covariance networks in early stages of Alzheimer's disease. Cerebral Cortex, 26(6), 2650-2662. |
[110] | Mostafa, S., Yin, W., & Wu, F.-X. (2020, November). Autoencoder based methods for diagnosis of autism spectrum disorder. Computational Advances in Bio and Medical Sciences:9th International Conference, Miami, USA. |
[111] | Nickl-Jockschat, T., Rottschy, C., Thommes, J., Schneider, F., Laird, A. R., Fox, P. T., & Eickhoff, S. B. (2015). Neural networks related to dysfunctional face processing in autism spectrum disorder. Brain Structure and Function, 220, 2355-2371. |
[112] |
Nielsen, J. A., Zielinski, B. A., Fletcher, P. T., Alexander, A. L., Lange, N., Bigler, E. D., ... Anderson, J. S. (2013). Multisite functional connectivity MRI classification of autism: ABIDE results. Frontiers in Human Neuroscience, 7, 599.
doi: 10.3389/fnhum.2013.00599 pmid: 24093016 |
[113] |
Nomi, J. S., & Uddin, L. Q. (2015). Face processing in autism spectrum disorders: From brain regions to brain networks. Neuropsychologia, 71, 201-216.
doi: 10.1016/j.neuropsychologia.2015.03.029 pmid: 25829246 |
[114] |
Noriega, D. B., & Savelkoul, H. F. (2014). Immune dysregulation in autism spectrum disorder. European Journal of Pediatrics, 173(1), 33-43.
doi: 10.1007/s00431-013-2183-4 pmid: 24297668 |
[115] |
Oldehinkel, M., Mennes, M., Marquand, A., Charman, T., Tillmann, J., Ecker, C., ... Zwiers, M. P. (2019). Altered connectivity between cerebellum, visual, and sensory- motor networks in autism spectrum disorder: Results from the eu-aims longitudinal european autism project. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 4(3), 260-270.
doi: S2451-9022(18)30306-9 pmid: 30711508 |
[116] |
Padmanabhan, A., Lynch, C. J., Schaer, M., & Menon, V. (2017). The default mode network in autism. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2(6), 476-486.
doi: 10.1016/j.bpsc.2017.04.004 pmid: 29034353 |
[117] |
Pardini, M., Garaci, F., Bonzano, L., Roccatagliata, L., Palmieri, M., Pompili, E., ... Emberti Gialloreti, L. (2009). White matter reduced streamline coherence in young men with autism and mental retardation. European Journal of Neurology, 16(11), 1185-1190.
doi: 10.1111/j.1468-1331.2009.02699.x pmid: 19538216 |
[118] | Park, B. Y., Hong, S. J., Valk, S. L., Paquola, C., Benkarim, O., Bethlehem, R. A. I., ... Bernhardt, B. C. (2021). Differences in subcortico-cortical interactions identified from connectome and microcircuit models in autism. Nature Communications, 12(1), 2225. |
[119] |
Peer, M., Nitzan, M., Bick, A. S., Levin, N., & Arzy, S. (2017). Evidence for functional networks within the human brain's white matter. Journal of Neuroscience, 37(27), 6394-6407.
doi: 10.1523/JNEUROSCI.3872-16.2017 pmid: 28546311 |
[120] |
Pierce, K., & Redcay, E. (2008). Fusiform function in children with an autism spectrum disorder is a matter of “who”. Biological Psychiatry, 64(7), 552-560.
doi: 10.1016/j.biopsych.2008.05.013 pmid: 18621359 |
[121] |
Pinaya, W. H., Mechelli, A., & Sato, J. R. (2019). Using deep autoencoders to identify abnormal brain structural patterns in neuropsychiatric disorders: A large-scale multi-sample study. Human Brain Mapping, 40(3), 944-954.
doi: 10.1002/hbm.24423 pmid: 30311316 |
[122] | Prasad, K., Rubin, J., Mitra, A., Lewis, M., Theis, N., Muldoon, B., ... Cape, J. (2022). Structural covariance networks in schizophrenia: A systematic review part i. Schizophrenia Research, 240, 1-21. |
[123] |
Premika, S.W. Boedhoe, Daan, van Rooij, Martine, Hoogman, Jos, W.R. Twisk, Lianne, Schmaal, Yoshinari, Abe,...van den Heuvel, O. A. (2020). Subcortical brain volume, regional cortical thickness, and cortical surface area across disorders: Findings from the ENIGMA ADHD, ASD, and OCD working groups. American Journal of Psychiatry, 177(9), 834-843.
doi: 10.1176/appi.ajp.2020.19030331 pmid: 32539527 |
[124] |
Preti, M. G., Bolton, T. A., & Van De Ville, D. (2017). The dynamic functional connectome: State-of-the-art and perspectives. Neuroimage, 160, 41-54.
doi: S1053-8119(16)30788-1 pmid: 28034766 |
[125] |
Qi, S., Calhoun, V. D., van Erp, T. G. M., Bustillo, J., Damaraju, E., Turner, J. A., ... Sui, J. (2018). Multimodal fusion with reference: Searching for joint neuromarkers of working memory deficits in schizophrenia. IEEE Transactions on Medical Imaging, 37(1), 93-105.
doi: 10.1109/TMI.2017.2725306 pmid: 28708547 |
[126] | Qi, S., Morris, R., Turner, J. A., Fu, Z., Jiang, R., Deramus, T. P., ... Sui, J. (2020). Common and unique multimodal covarying patterns in autism spectrum disorder subtypes. Molecular Autism, 11(1), 90. |
[127] |
Qi, S., Schumann, G., Bustillo, J., Turner, J. A., Jiang, R., Zhi, D., ... Whelan, R. (2021). Reward processing in novelty seekers: A transdiagnostic psychiatric imaging biomarker. Biological Psychiatry, 90(8), 529-539.
doi: 10.1016/j.biopsych.2021.01.011 pmid: 33875230 |
[128] |
Qi, S., Sui, J., Chen, J., Liu, J., Jiang, R., Silva, R., ... Calhoun, V. D. (2019). Parallel group ica+ica: Joint estimation of linked functional network variability and structural covariation with application to schizophrenia. Human Brain Mapping, 40(13), 3795-3809.
doi: 10.1002/hbm.24632 pmid: 31099151 |
[129] |
Qin, B., Wang, L., Zhang, Y., Cai, J., Chen, J., & Li, T. (2018). Enhanced topological network efficiency in preschool autism spectrum disorder: A diffusion tensor imaging study. Frontiers in Psychiatry, 9, 278.
doi: 10.3389/fpsyt.2018.00278 pmid: 29997534 |
[130] |
Quesnel-Vallieres, M., Weatheritt, R. J., Cordes, S. P., & Blencowe, B. J. (2019). Autism spectrum disorder: Insights into convergent mechanisms from transcriptomics. Nature Reviews Genetics, 20(1), 51-63.
doi: 10.1038/s41576-018-0066-2 pmid: 30390048 |
[131] | Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, G. L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences, 98(2), 676-682. |
[132] | Rakić, M., Cabezas, M., Kushibar, K., Oliver, A., & Lladó, X. (2020). Improving the detection of autism spectrum disorder by combining structural and functional MRI information. NeuroImage: Clinical, 25, 102181. |
[133] |
Reiter, M. A., Mash, L. E., Linke, A. C., Fong, C. H., Fishman, I., & Müller, R.-A. (2019). Distinct patterns of atypical functional connectivity in lower-functioning autism. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 4(3), 251-259.
doi: S2451-9022(18)30233-7 pmid: 30343132 |
[134] | Richetto, J., Chesters, R., Cattaneo, A., Labouesse, M. A., Gutierrez, A. M. C., Wood, T. C., ... Riva, M. A. (2017). Genome-wide transcriptional profiling and structural magnetic resonance imaging in the maternal immune activation model of neurodevelopmental disorders. Cerebral Cortex, 27(6), 3397-3413. |
[135] | Rudie, J. D., Brown, J., Beck-Pancer, D., Hernandez, L., Dennis, E., Thompson, P., ... Dapretto, M. (2013). Altered functional and structural brain network organization in autism. NeuroImage: Clinical, 2, 79-94. |
[136] |
Sato, W., Kochiyama, T., Uono, S., Yoshimura, S., Kubota, Y., Sawada, R., ... Toichi, M. (2017). Reduced gray matter volume in the social brain network in adults with autism spectrum disorder. Frontiers in Human Neuroscience, 11, 395.
doi: 10.3389/fnhum.2017.00395 pmid: 28824399 |
[137] |
Sato, W., & Uono, S. (2019). The atypical social brain network in autism: Advances in structural and functional MRI studies. Current Opinion in Neurology, 32(4), 617-621.
doi: 10.1097/WCO.0000000000000713 pmid: 31135458 |
[138] |
Seidlitz, J., Váša, F., Shinn, M., Romero-Garcia, R., Whitaker, K. J., Vértes, P. E., ... Bullmore E. T. (2018). Morphometric similarity networks detect microscale cortical organization and predict inter-individual cognitive variation. Neuron, 97(1), 231-247. e237.
doi: S0896-6273(17)31092-9 pmid: 29276055 |
[139] |
Sha, Z., Van Rooij, D., Anagnostou, E., Arango, C., Auzias, G., Behrmann, M., ... Francks, C. (2022). Subtly altered topological asymmetry of brain structural covariance networks in autism spectrum disorder across 43 datasets from the ENIGMA consortium. Molecular Psychiatry, 27(4), 2114-2125.
doi: 10.1038/s41380-022-01452-7 pmid: 35136228 |
[140] | Sheline, Y. I., Barch, D. M., Price, J. L., Rundle, M. M., Vaishnavi, S. N., Snyder, A. Z., ... Raichle, M. E. (2009). The default mode network and self-referential processes in depression. Proceedings of the National Academy of Sciences, 106(6), 1942-1947. |
[141] |
Shine, J. M., & Poldrack, R. A. (2018). Principles of dynamic network reconfiguration across diverse brain states. Neuroimage, 180, 396-405.
doi: S1053-8119(17)30657-2 pmid: 28782684 |
[142] |
Stefanik, L., Erdman, L., Ameis, S. H., Foussias, G., Mulsant, B. H., Behdinan, T., ... Voineskos, A. N. (2018). Brain-behavior participant similarity networks among youth and emerging adults with schizophrenia spectrum, autism spectrum, or bipolar disorder and matched controls. Neuropsychopharmacology, 43(5), 1180-1188.
doi: 10.1038/npp.2017.274 pmid: 29105664 |
[143] |
Sui, J., Adali, T., Yu, Q., Chen, J., & Calhoun, V. D. (2012). A review of multivariate methods for multimodal fusion of brain imaging data. Journal of Neuroscience Methods, 204(1), 68-81.
doi: S0165-0270(11)00682-0 pmid: 22108139 |
[144] |
Sui, J., Yu, Q., He, H., Pearlson, G. D., & Calhoun, V. D. (2012). A selective review of multimodal fusion methods in schizophrenia. Frontiers in Human Neuroscience, 6, 27.
doi: 10.3389/fnhum.2012.00027 pmid: 22375114 |
[145] | Sundaram, S. K., Kumar, A., Makki, M. I., Behen, M. E., Chugani, H. T., & Chugani, D. C. (2008). Diffusion tensor imaging of frontal lobe in autism spectrum disorder. Cerebral Cortex, 18(11), 2659-2665. |
[146] |
Tang, S., Sun, N., Floris, D. L., Zhang, X., Di Martino, A., & Yeo, B. T. T. (2020). Reconciling dimensional and categorical models of autism heterogeneity: A brain connectomics and behavioral study. Biological Psychiatry, 87(12), 1071-1082.
doi: S0006-3223(19)31859-1 pmid: 31955916 |
[147] |
Tanigawa, J., Kagitani-Shimono, K., Matsuzaki, J., Ogawa, R., Hanaie, R., Yamamoto, T., ... Ozono, K. (2018). Atypical auditory language processing in adolescents with autism spectrum disorder. Clinical Neurophysiology, 129(9), 2029-2037.
doi: S1388-2457(18)31098-8 pmid: 29934264 |
[148] |
Temur, H. O., Yurtsever, I., Yesil, G., Sharifov, R., Yilmaz, F. T., Dundar, T. T., & Alkan, A. (2019). Correlation between DTI findings and volume of corpus callosum in children with autism. Current Medical Imaging, 15(9), 895-899.
doi: 10.2174/1573405614666181005114315 pmid: 32008536 |
[149] |
Uddin, L. Q., Menon, V., Young, C. B., Ryali, S., Chen, T., Khouzam, A., ... Hardan, A. Y. (2011). Multivariate searchlight classification of structural magnetic resonance imaging in children and adolescents with autism. Biological Psychiatry, 70(9), 833-841.
doi: 10.1016/j.biopsych.2011.07.014 pmid: 21890111 |
[150] |
Uddin, L. Q., Supekar, K., & Menon, V. (2013). Reconceptualizing functional brain connectivity in autism from a developmental perspective. Frontiers in Human Neuroscience, 7, 458.
doi: 10.3389/fnhum.2013.00458 pmid: 23966925 |
[151] |
Valenti, M., Pino, M. C., Mazza, M., Panzarino, G., Di Paolantonio, C., & Verrotti, A. (2020). Abnormal structural and functional connectivity of the corpus callosum in autism spectrum disorders: A review. Review Journal of Autism and Developmental Disorders, 7, 46-62.
doi: 10.1007/s40489-019-00176-9 |
[152] |
van Rooij, D., Anagnostou, E., Arango, C., Auzias, G., Behrmann, M., Busatto, G. F., ... Buitelaar, J. K. (2018). Cortical and subcortical brain morphometry differences between patients with autism spectrum disorder and healthy individuals across the lifespan: Results from the ENIGMA ASD working group. American Journal of Psychiatry, 175(4), 359-369.
doi: 10.1176/appi.ajp.2017.17010100 pmid: 29145754 |
[153] | Vázquez-Rodríguez, B., Suárez, L. E., Markello, R. D., Shafiei, G., Paquola, C., Hagmann, P., ... Misic, B. (2019). Gradients of structure-function tethering across neocortex. Proceedings of the National Academy of Sciences, 116(42), 21219-21227. |
[154] | von dem Hagen, E. A. H., Stoyanova, R. S., Rowe, J. B., Baron-Cohen, S., & Calder, A. J. (2013). Direct gaze elicits atypical activation of the theory-of-mind network in autism spectrum conditions. Cerebral Cortex, 24(6), 1485-1492. |
[155] |
Vuong, H. E., & Hsiao, E. Y. (2017). Emerging roles for the gut microbiome in autism spectrum disorder. Biological Psychiatry, 81(5), 411-423.
doi: S0006-3223(16)32724-X pmid: 27773355 |
[156] | Wang, C., Xiao, Z., Wang, B., & Wu, J. (2019). Identification of autism based on SVM-RFE and stacked sparse auto- encoder. IEEE Access, 7, 118030-118036. |
[157] |
Wang, F. (2022). Disentangling the heterogeneity of autism spectrum disorder using normative modeling. Biological Psychiatry, 91(11), 920-921.
doi: 10.1016/j.biopsych.2022.03.005 pmid: 35589313 |
[158] | Wang, J., Barstein, J., Ethridge, L. E., Mosconi, M. W., Takarae, Y., & Sweeney, J. A. (2013). Resting state EEG abnormalities in autism spectrum disorders. Journal of Neurodevelopmental Disorders, 5(1), 1-14. |
[159] |
Wang, J., Fu, K., Chen, L., Duan, X., Guo, X., Chen, H., ... Chen, H. (2017). Increased gray matter volume and resting-state functional connectivity in somatosensory cortex and their relationship with autistic symptoms in young boys with autism spectrum disorder. Frontiers in Physiology, 8, 588.
doi: 10.3389/fphys.2017.00588 pmid: 28861001 |
[160] | Wang, P., Kong, R., Kong, X., Liégeois, R., Orban, C., Deco, G., ... Thomas Yeo, B. T. (2019). Inversion of a large-scale circuit model reveals a cortical hierarchy in the dynamic resting human brain. Science Advances, 5(1), 7854. |
[161] | Wang, Q., Hoi, S. P., Wang, Y., Lam, C. M., Fang, F., & Yi, L. (2020). Gaze response to others’ gaze following in children with and without autism. Journal of Abnormal Psychology, 129(3), 320-329. |
[162] |
Wang, Q., Hu, K., Wang, M., Zhao, Y., Liu, Y., Fan, L., & Liu, B. (2021). Predicting brain age during typical and atypical development based on structural and functional neuroimaging. Human Brain Mapping, 42(18), 5943-5955.
doi: 10.1002/hbm.25660 pmid: 34520078 |
[163] |
Wang, Q., Li, H.-Y., Li, Y.-D., Lv, Y.-T., Ma, H.-B., Xiang, A.-F., ... Liu, D.-Q. (2021). Resting-state abnormalities in functional connectivity of the default mode network in autism spectrum disorder: A meta-analysis. Brain Imaging and Behavior, 15(5), 2583-2592.
doi: 10.1007/s11682-021-00460-5 pmid: 33683528 |
[164] |
Washington, S. D., Gordon, E. M., Brar, J., Warburton, S., Sawyer, A. T., Wolfe, A., ... VanMeter, J. W. (2014). Dysmaturation of the default mode network in autism. Human Brain Mapping, 35(4), 1284-1296.
doi: 10.1002/hbm.22252 pmid: 23334984 |
[165] | Weng, Y., Lariviere, S., Caciagli, L., Vos de Wael, R., Rodriguez-Cruces, R., Royer, J., ... Bernhardt, B. C. (2020). Macroscale and microcircuit dissociation of focal and generalized human epilepsies. Communications Biology, 3(1), 244. |
[166] |
Won, H., Mah, W., & Kim, E. (2013). Autism spectrum disorder causes, mechanisms, and treatments: Focus on neuronal synapses. Frontiers in Molecular Neuroscience, 6, 19.
doi: 10.3389/fnmol.2013.00019 pmid: 23935565 |
[167] | Xiao, Y., Wen, T. H., Kupis, L., Eyler, L. T., Taluja, V., Troxel, J., ... Courchesne, E. (2023). Atypical functional connectivity of temporal cortex with precuneus and visual regions may be an early-age signature of ASD. Molecular Autism, 14(1), 11. |
[168] | Xiao, Z., Wang, C., Jia, N., & Wu, J. (2018). SAE-based classification of school-aged children with autism spectrum disorders using functional magnetic resonance imaging. Multimedia Tools and Applications, 77, 22809-22820. |
[169] | Xue, K., Guo, L., Zhu, W., Liang, S., Xu, Q., Ma, L., ... Liu, F. (2023). Transcriptional signatures of the cortical morphometric similarity network gradient in first-episode, treatment-naive major depressive disorder. Neuropsychopharmacology, 48(3), 518-528. |
[170] |
Yamasaki, S., Yamasue, H., Abe, O., Suga, M., Yamada, H., Inoue, H., ... Kasai, K. (2010). Reduced gray matter volume of pars opercularis is associated with impaired social communication in high-functioning autism spectrum disorders. Biological Psychiatry, 68(12), 1141-1147.
doi: 10.1016/j.biopsych.2010.07.012 pmid: 20801427 |
[171] | Yang, B., Wang, M., Zhou, W., Wang, X., Chen, S., Potenza, M. N., ... Dong, G.-H. (2023). Disrupted network integration and segregation involving the default mode network in autism spectrum disorder. Journal of Affective Disorders, 323, 309-319. |
[172] | Yang, H., Li, X., Wu, Y., Li, S., Lu, S., Duncan, J. S., ... Gu, S. (2019, October). Interpretable multimodality embedding of cerebral cortex using attention graph network for identifying bipolar disorder. Medical Image Computing and Computer Assisted Intervention-MICCAI 2019: 22nd International Conference, Shenzhen, China. |
[173] | Yang, S., Wagstyl, K., Meng, Y., Zhao, X., Li, J., Zhong, P., ... Liao, W. (2021). Cortical patterning of morphometric similarity gradient reveals diverged hierarchical organization in sensory-motor cortices. Cell Reports, 36(8), 109582. |
[174] | Yang, X., Si, T., Gong, Q., Qiu, L., Jia, Z., Zhou, M., ... Zhu, H. (2016). Brain gray matter alterations and associated demographic profiles in adults with autism spectrum disorder: A meta-analysis of voxel-based morphometry studies. Australian & New Zealand Journal of Psychiatry, 50(8), 741-753. |
[175] | Yeh, C.-H., Tseng, R.-Y., Ni, H.-C., Cocchi, L., Chang, J.-C., Hsu, M.-Y., ... Lin, H.-Y. (2022). White matter microstructural and morphometric alterations in autism: Implications for intellectual capabilities. Molecular Autism, 13(1), 21. |
[176] | Yin, W., Li, L., & Wu, F.-X. (2021, December). A graph attention neural network for diagnosing ASD with fMRI data. 2021 IEEE International Conference on Bioinformatics and Biomedicine, Houston, USA. |
[177] | Zabihi, M., Oldehinkel, M., Wolfers, T., Frouin, V., Goyard, D., Loth, E., ... Marquand, A. F. (2019). Dissecting the heterogeneous cortical anatomy of autism spectrum disorder using normative models. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 4(6), 567-578. |
[178] | Zhang, Z., Liao, W., Chen, H., Mantini, D., Ding, J.-R., Xu, Q., ... Lu, G. (2011). Altered functional-structural coupling of large-scale brain networks in idiopathic generalized epilepsy. Brain, 134(10), 2912-2928. |
[179] |
Zhao, C., Dong, C., Frah, M., Deng, Y., Marie, C., Zhang, F., ... Lu, Q. R. (2018). Dual requirement of chd8 for chromatin landscape establishment and histone methyltransferase recruitment to promote cns myelination and repair. Developmental Cell, 45(6), 753-768.e758.
doi: S1534-5807(18)30415-5 pmid: 29920279 |
[180] |
Zhao, X., Zhu, S., Cao, Y., Cheng, P., Lin, Y., Sun, Z., ... Du, Y. (2022). Abnormalities of gray matter volume and its correlation with clinical symptoms in adolescents with high-functioning autism spectrum disorder. Neuropsychiatric Disease and Treatment, 18, 717-730.
doi: 10.2147/NDT.S349247 pmid: 35401002 |
[181] | Zhao, Y., Yang, L., Gong, G., Cao, Q., & Liu, J. (2022). Identify aberrant white matter microstructure in ASD, ADHD and other neurodevelopmental disorders: A meta- analysis of diffusion tensor imaging studies. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 113, 110477. |
[182] | Zielinski, B. A., Gennatas, E. D., Zhou, J., & Seeley, W. W. (2010). Network-level structural covariance in the developing brain. Proceedings of the National Academy of Sciences, 107(42), 18191-18196. |
[183] | Zielinski, B. A., Prigge, M. B., Nielsen, J. A., Froehlich, A. L., Abildskov, T. J., Anderson, J. S., ... Lange, N. (2014). Longitudinal changes in cortical thickness in autism and typical development. Brain, 137(6), 1799-1812. |
[184] | Zong, X., Zhang, J., Li, L., Yao, T., Ma, S., Kang, L., ... Zheng, J. (2023). Virtual histology of morphometric similarity network after risperidone monotherapy and imaging-epigenetic biomarkers for treatment response in first-episode schizophrenia. Asian Journal of Psychiatry, 80, 103406. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 351
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 216
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||