心理科学进展 ›› 2026, Vol. 34 ›› Issue (2): 313-330.doi: 10.3724/SP.J.1042.2026.0313 cstr: 32111.14.2026.0313
收稿日期:2025-07-24
出版日期:2026-02-15
发布日期:2025-12-15
通讯作者:
苗程菓, E-mail: miaochengguo9215@163.com;张阳, E-mail: yzhangpsy@suda.edu.cn作者简介:共同一作:邢炼淄, 陈玉洁
基金资助:
XING Lianzi, CHEN Yujie, MIAO Chengguo(
), ZHANG Yang(
)
Received:2025-07-24
Online:2026-02-15
Published:2025-12-15
摘要:
蓝斑−去甲肾上腺素系统(locus coeruleus-norepinephrine system, LC-NE)是大脑重要的神经调节系统, 在注意调节过程中发挥着关键作用。本文系统综述了LC-NE在注意中的作用机制, 包含:1) LC-NE在注意过程中的放电模式及活动规律; 2) LC-NE活动的有效行为和神经电生理指标; 3) LC-NE在注意警觉、定向和执行控制三个注意子系统中的作用机制; 4) LC-NE与多种注意加工相关功能障碍的关联机制。未来研究亟需融合瞳孔测量、事件相关电位、颅内脑电、高精度脑成像以及神经调控等技术, 通过高时空精度追踪与因果干预研究, 进一步阐明LC-NE在注意加工过程中的动态调控机制, 进而为注意障碍的干预提供理论支撑。
中图分类号:
邢炼淄, 陈玉洁, 苗程菓, 张阳. (2026). 蓝斑−去甲肾上腺素系统在注意中的作用机制. 心理科学进展 , 34(2), 313-330.
XING Lianzi, CHEN Yujie, MIAO Chengguo, ZHANG Yang. (2026). The mechanisms of locus coeruleus-norepinephrine system in attention. Advances in Psychological Science, 34(2), 313-330.
| 理论 | 核心观点 | 机制 |
|---|---|---|
| 自适应增益理论 | LC-NE系统通过调节神经元的信号增益, 实现“效用驱动行为”与“环境探索行为”之间的动态平衡 | 相位放电增强对目标信息的加工效率; 持续放电调节整体警觉状态; 遵循“倒U型”调节模式 |
| 网络重置理论 | 突发的显著刺激诱发相位放电触发“网络重置”, 促使注意转换, 快速实现注意重定向 | 相位放电触发大脑网络范围的功能重组, 改变不同脑区间的功能连接; 协同持续放电调节注意系统灵活性 |
| LC-P3理论 | P3反映了LC神经元释放NE所引发的皮层神经响应的相位性增强 | 相位放电增强任务相关神经元的反应性, 进一步提高目标神经元信噪比 |
表1 自适应增益理论、网络重置理论与LC-P3理论的对比概括
| 理论 | 核心观点 | 机制 |
|---|---|---|
| 自适应增益理论 | LC-NE系统通过调节神经元的信号增益, 实现“效用驱动行为”与“环境探索行为”之间的动态平衡 | 相位放电增强对目标信息的加工效率; 持续放电调节整体警觉状态; 遵循“倒U型”调节模式 |
| 网络重置理论 | 突发的显著刺激诱发相位放电触发“网络重置”, 促使注意转换, 快速实现注意重定向 | 相位放电触发大脑网络范围的功能重组, 改变不同脑区间的功能连接; 协同持续放电调节注意系统灵活性 |
| LC-P3理论 | P3反映了LC神经元释放NE所引发的皮层神经响应的相位性增强 | 相位放电增强任务相关神经元的反应性, 进一步提高目标神经元信噪比 |
| 注意子系统 | 调节目标 | LC-NE作用机制 |
|---|---|---|
| 注意警觉 | 提高对刺激的敏感性与反应准备 | 通过调节NE释放水平, 影响整体唤醒水平和皮层基线状态, 从而形成广泛的神经投射网络, 参与警觉性调控; 相位放电增强目标刺激加工, 持续放电促进注意转移 |
| 注意定向 | 将注意从当前焦点转移至目标刺激 | LC神经元的相位放电触发“网络重置”, 促使注意从DAN切换至VAN, 实现快速重定向; 放电模式影响外源性注意定向加工 |
| 注意控制 | 冲突监控与反应抑制 | 通过广泛NE投射调节PFC及认知控制网络, 实现冲突监控和抑制无关反应; 相位放电对应最佳注意控制, NE水平“倒U型” 调节注意控制效率 |
表2 LC-NE系统在注意子系统中的作用机制的差异总结
| 注意子系统 | 调节目标 | LC-NE作用机制 |
|---|---|---|
| 注意警觉 | 提高对刺激的敏感性与反应准备 | 通过调节NE释放水平, 影响整体唤醒水平和皮层基线状态, 从而形成广泛的神经投射网络, 参与警觉性调控; 相位放电增强目标刺激加工, 持续放电促进注意转移 |
| 注意定向 | 将注意从当前焦点转移至目标刺激 | LC神经元的相位放电触发“网络重置”, 促使注意从DAN切换至VAN, 实现快速重定向; 放电模式影响外源性注意定向加工 |
| 注意控制 | 冲突监控与反应抑制 | 通过广泛NE投射调节PFC及认知控制网络, 实现冲突监控和抑制无关反应; 相位放电对应最佳注意控制, NE水平“倒U型” 调节注意控制效率 |
| [1] | 王志静, 李富洪. (2024). 认知控制的瞳孔反应及脑机制. 心理科学, 47(1), 2-10. https://doi.org/10.16719/j.cnki.1671-6981.20240101 |
| [2] |
Anderson B. A. (2021). Relating value-driven attention to psychopathology. Current Opinion in Psychology, 39, 48-54. https://doi.org/10.1016/j.copsyc.2020.07.010
doi: 10.1016/j.copsyc.2020.07.010 URL pmid: 32818794 |
| [3] |
Anderson C. J., & Colombo J. (2009). Larger tonic pupil size in young children with autism spectrum disorder. Developmental Psychobiology, 51(2), 207-211. https://doi.org/10.1002/dev.20352
doi: 10.1002/dev.20352 URL pmid: 18988196 |
| [4] |
Angyal N., Horvath E. Z., Tarnok Z., Richman M. J., Bognar E., Lakatos K.,... Nemoda Z. (2018). Association analysis of norepinephrine transporter polymorphisms and methylphenidate response in ADHD patients. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 84, 122-128. https://doi.org/10.1016/j.pnpbp.2018.01.013
doi: 10.1016/j.pnpbp.2018.01.013 URL |
| [5] |
Arnsten A. F. (2009). Stress signalling pathways that impair prefrontal cortex structure and function. Nature Reviews Neuroscience, 10(6), 410-422. https://doi.org/10.1038/nrn2648
doi: 10.1038/nrn2648 URL pmid: 19455173 |
| [6] |
Arnsten A. F., Scahill L., & Findling R. L. (2007). Alpha-2 adrenergic receptor agonists for the treatment of attention- deficit/hyperactivity disorder: Emerging concepts from new data. Journal of Child and Adolescent Psychopharmacology, 17(4), 393-406. https://doi.org/10.1089/cap.2006.0098
doi: 10.1089/cap.2006.0098 URL pmid: 17822336 |
| [7] |
Aston-Jones G., Chiang C., & Alexinsky T. (1991). Discharge of noradrenergic locus coeruleus neurons in behaving rats and monkeys suggests a role in vigilance. Progress in Brain Research, 88, 501-520. https://doi.org/10.1016/S0079-6123(08)63830-3
URL pmid: 1813931 |
| [8] |
Aston-Jones G., & Cohen J. D. (2005). An integrative theory of locus coeruleus-norepinephrine function: Adaptive gain and optimal performance. Annual Review of Neuroscience, 28(1), 403-450. https://doi.org/10.1146/annurev.neuro.28.061604.135709
doi: 10.1146/neuro.2005.28.issue-1 URL |
| [9] |
Aston-Jones G., Rajkowski J., & Cohen J. (1999). Role of locus coeruleus in attention and behavioral flexibility. Biological Psychiatry, 46(9), 1309-1320. https://doi.org/10.1016/S0006-3223(99)00140-7
URL pmid: 10560036 |
| [10] | Atzori M., Cuevas-Olguin R., Esquivel-Rendon E., Garcia- Oscos F., Salgado-Delgado R. C., Saderi N.,... Salgado H. (2016). Locus ceruleus norepinephrine release: A central regulator of CNS spatio-temporal activation? Frontiers in Synaptic Neuroscience, 8, 25. https://doi.org/10.3389/fnsyn.2016.00025 |
| [11] |
Bang D., Luo Y., Barbosa L. S., Batten S. R., Hadj-Amar B., Twomey T.,... Montague P. R. (2023). Noradrenaline tracks emotional modulation of attention in human amygdala. Current Biology, 33(22), 5003-5010. https://doi.org/10.1016/j.cub.2023.09.074
doi: 10.1016/j.cub.2023.09.074 URL |
| [12] |
Bari A., Xu S., Pignatelli M., Takeuchi D., Feng J., Li Y., & Tonegawa S. (2020). Differential attentional control mechanisms by two distinct noradrenergic coeruleo- frontal cortical pathways. Proceedings of the National Academy of Sciences, 117(46), 29080-29089. https://doi.org/10.1073/pnas.2015635117
doi: 10.1073/pnas.2015635117 URL |
| [13] |
Bast N., Poustka L., & Freitag C. M. (2018). The locus coeruleus-norepinephrine system as pacemaker of attention — A developmental mechanism of derailed attentional function in autism spectrum disorder. European Journal of Neuroscience, 47(2), 115-125. https://doi.org/10.1111/ejn.13795
doi: 10.1111/ejn.2018.47.issue-2 URL |
| [14] |
Beatty J. (1982). Phasic not tonic pupillary responses vary with auditory vigilance performance. Psychophysiology, 19(2), 167-172. https://doi.org/10.1111/j.1469-8986.1982.tb02540.x
URL pmid: 7071295 |
| [15] | Berger A., Koshmanova E., Beckers E., Sharifpour R., Paparella I., Campbell I.,... Vandewalle G. (2023). MRI-assessed locus coeruleus contrast and functional response are not associated in young and late middle-aged individuals. bioRxiv. https://doi.org/10.1101/2023.01.16.524213 |
| [16] |
Berridge C. W., Schmeichel B. E., & España R. A. (2012). Noradrenergic modulation of wakefulness/arousal. Sleep Medicine Reviews, 16(2), 187-197. https://doi.org/10.1016/j.smrv.2011.12.003
doi: 10.1016/j.smrv.2011.12.003 URL pmid: 22296742 |
| [17] |
Berridge C. W., & Waterhouse B. D. (2003). The locus coeruleus-noradrenergic system: Modulation of behavioral state and state-dependent cognitive processes. Brain Research Reviews, 42(1), 33-84. https://doi.org/10.1016/S0165-0173(03)00143-7
doi: 10.1016/S0165-0173(03)00143-7 URL |
| [18] |
Birnbaum S., Gobeske K. T., Auerbach J., Taylor J. R., & Arnsten A. F. (1999). A role for norepinephrine in stress- induced cognitive deficits: α-1-adrenoceptor mediation in the prefrontal cortex. Biological Psychiatry, 46(9), 1266-1274. https://doi.org/10.1016/S0006-3223(99)00138-9
URL pmid: 10560032 |
| [19] |
Bouret S., & Richmond B. J. (2015). Sensitivity of locus ceruleus neurons to reward value for goal-directed actions. Journal of Neuroscience, 35(9), 4005-4014. https://doi.org/10.1523/JNEUROSCI.4553-14.2015
doi: 10.1523/JNEUROSCI.4553-14.2015 URL pmid: 25740528 |
| [20] |
Bouret S., & Sara S. J. (2005). Network reset: A simplified overarching theory of locus coeruleus noradrenaline function. Trends in Neurosciences, 28(11), 574-582. https://doi.org/10.1016/j.tins.2005.09.002
URL pmid: 16165227 |
| [21] |
Boyle N., Betts S., & Lu H. (2024). Monoaminergic modulation of learning and cognitive function in the prefrontal cortex. Brain Sciences, 14(9), 902. https://doi.org/10.3390/brainsci14090902
doi: 10.3390/brainsci14090902 URL |
| [22] |
Cazettes F., Reato D., Morais J. P., Renart A., & Mainen Z. F. (2021). Phasic activation of dorsal raphe serotonergic neurons increases pupil size. Current Biology, 31(1), 192-197. https://doi.org/10.1016/j.cub.2020.09.090
doi: 10.1016/j.cub.2020.09.090 URL |
| [23] |
Chamberlain S. R., Hampshire A., Müller U., Rubia K., del Campo N., Craig K.,... Sahakian B. J. (2009). Atomoxetine modulates right inferior frontal activation during inhibitory control: A pharmacological functional magnetic resonance imaging study. Biological Psychiatry, 65(7), 550-555. https://doi.org/10.1016/j.biopsych.2008.10.014
doi: 10.1016/j.biopsych.2008.10.014 URL pmid: 19026407 |
| [24] |
Chamberlain S. R., Müller U., Blackwell A. D., Clark L., Robbins T. W., & Sahakian B. J. (2006). Neurochemical modulation of response inhibition and probabilistic learning in humans. Science, 311(5762), 861-863. https://doi.org/10.1126/science.1121218
doi: 10.1126/science.1121218 URL pmid: 16469930 |
| [25] |
Chamberlain S. R., & Robbins T. W. (2013). Noradrenergic modulation of cognition: Therapeutic implications. Journal of Psychopharmacology, 27(8), 694-718. https://doi.org/10.1177/0269881113480988
doi: 10.1177/0269881113480988 URL pmid: 23518815 |
| [26] |
Chandler D. J., Gao W. J., & Waterhouse B. D. (2014). Heterogeneous organization of the locus coeruleus projections to prefrontal and motor cortices. Proceedings of the National Academy of Sciences, 111(18), 6816-6821. https://doi.org/10.1073/pnas.1320827111
doi: 10.1073/pnas.1320827111 URL |
| [27] | Chandler D. J., Waterhouse B. D., & Gao W. J. (2014). New perspectives on catecholaminergic regulation of executive circuits: Evidence for independent modulation of prefrontal functions by midbrain dopaminergic and noradrenergic neurons. Frontiers in Neural Circuits, 8, 53. https://doi.org/10.3389/fncir.2014.00053 |
| [28] |
Chica A. B., Bartolomeo P., & Lupiáñez J. (2013). Two cognitive and neural systems for endogenous and exogenous spatial attention. Behavioural Brain Research, 237, 107-123. https://doi.org/10.1016/j.bbr.2012.09.027
doi: 10.1016/j.bbr.2012.09.027 URL pmid: 23000534 |
| [29] |
Chmielewski W. X., Mückschel M., Ziemssen T., & Beste C. (2016). The norepinephrine system affects specific neurophysiological subprocesses in the modulation of inhibitory control by working memory demands. Human Brain Mapping, 38(1), 68-81. https://doi.org/10.1002/hbm.23344
doi: 10.1002/hbm.v38.1 URL |
| [30] | Cohen J. D., Aston-Jones G., & Gilzenrat M. S. (2004). A systems-level perspective on attention and cognitive control:Guided activation, adaptive gating, conflict monitoring, and exploitation versus exploration. In M. I.Posner (Ed.), Cognitive neuroscience of attention (pp. 71-90). The Guilford Press. |
| [31] |
Corbetta M., Kincade J. M., Ollinger J. M., McAvoy M. P., & Shulman G. L. (2000). Voluntary orienting is dissociated from target detection in human posterior parietal cortex. Nature Neuroscience, 3(3), 292-297. https://doi.org/10.1038/73009
doi: 10.1038/73009 URL pmid: 10700263 |
| [32] |
Corbetta M., Patel G., & Shulman G. L. (2008). The reorienting system of the human brain: From environment to theory of mind. Neuron, 58(3), 306-324. https://doi.org/10.1016/j.neuron.2008.04.017
doi: 10.1016/j.neuron.2008.04.017 URL pmid: 18466742 |
| [33] |
Corbetta M., & Shulman G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3(3), 201-215. https://doi.org/10.1038/nrn755
doi: 10.1038/nrn755 URL pmid: 11994752 |
| [34] |
Coull J. T., Büchel C., Friston K. J., & Frith C. D. (1999). Noradrenergically mediated plasticity in a human attentional neuronal network. NeuroImage, 10(6), 705-715. https://doi.org/10.1006/nimg.1999.0513
URL pmid: 10600416 |
| [35] |
Coull J. T., Frith C. D., Frackowiak R. S. J., & Grasby P. M. (1996). A fronto-parietal network for rapid visual information processing: A PET study of sustained attention and working memory. Neuropsychologia, 34(11), 1085-1095. https://doi.org/10.1016/0028-3932(96)00029-2
URL pmid: 8904746 |
| [36] |
Dahl M. J., Mather M., Sander M. C., & Werkle-Bergner M. (2020). Noradrenergic responsiveness supports selective attention across the adult lifespan. Journal of Neuroscience, 40(22), 4372-4390. https://doi.org/10.1523/JNEUROSCI.0398-19.2020
doi: 10.1523/JNEUROSCI.0398-19.2020 URL pmid: 32317388 |
| [37] |
Dahl M. J., Mather M., & Werkle-Bergner M. (2022). Noradrenergic modulation of rhythmic neural activity shapes selective attention. Trends in Cognitive Sciences, 26(1), 38-52. https://doi.org/10.1016/j.tics.2021.10.009
doi: 10.1016/j.tics.2021.10.009 URL |
| [38] |
Dawson G., Bernier R., & Ring R. H. (2012). Social attention: A possible early indicator of efficacy in autism clinical trials. Journal of Neurodevelopmental Disorders, 4(1), 11. https://doi.org/10.1186/1866-1955-4-11
doi: 10.1186/1866-1955-4-11 URL |
| [39] |
Ding Y. S., Wang J., Rusinek H., & Babb J. (2021). In vivo imaging of LC‐NE Integrity: Mechanism for racial/ethnic disparity in preclinical AD. Alzheimer's & Dementia, 17(Suppl.1), e050955. https://doi.org/10.1002/alz.050955
doi: 10.1002/alz.v17.S1 URL |
| [40] |
Dragone A., Lasaponara S., Pinto M., Rotondaro F., De Luca M., & Doricchi F. (2018). Expectancy modulates pupil size during endogenous orienting of spatial attention. Cortex, 102, 57-66. https://doi.org/10.1016/j.cortex.2017.09.011
doi: S0010-9452(17)30317-9 URL pmid: 29079341 |
| [41] |
Ehlers C. L., & Chaplin R. I. (1992). Long latency event related potentials in rats: The effects of changes in stimulus parameters and neurochemical lesions. Journal of Neural Transmission, 88(1), 61-75. https://doi.org/10.1007/BF01245037
doi: 10.1007/BF01245037 URL |
| [42] |
Euler H. V., Euler U. S. V., & Hevesy G. (1946). The effect of excitation on nerve permeability. Acta Physiologica Scandinavica, 12(2-3), 261-267. https://doi.org/10.1111/j.1748-1716.1946.tb00386.x
doi: 10.1111/apha.1946.12.issue-2-3 URL |
| [43] |
Eysenck M. W., Derakshan N., Santos R., & Calvo M. G. (2007). Anxiety and cognitive performance: Attentional control theory. Emotion, 7(2), 336-353. https://doi.org/10.1037/1528-3542.7.2.336
doi: 10.1037/1528-3542.7.2.336 URL pmid: 17516812 |
| [44] |
Falkenstein M., Hoormann J., & Hohnsbein J. (1999). ERP components in Go/Nogo tasks and their relation to inhibition. Acta Psychologica, 101(2-3), 267-291. https://doi.org/10.1016/S0001-6918(99)00008-6
doi: 10.1016/s0001-6918(99)00008-6 URL pmid: 10344188 |
| [45] |
Fan J., McCandliss B. D., Sommer T., Raz A., & Posner M. I. (2002). Testing the efficiency and independence of attentional networks. Journal of Cognitive Neuroscience, 14(3), 340-347. https://doi.org/10.1162/089892902317361886
doi: 10.1162/089892902317361886 URL pmid: 11970796 |
| [46] |
Fan J., McCandliss B., Fossella J., Flombaum J., & Posner M. I. (2005). The activation of attentional networks. NeuroImage, 26(2), 471-479. https://doi.org/10.1016/j.neuroimage.2005.02.004
doi: 10.1016/j.neuroimage.2005.02.004 URL pmid: 15907304 |
| [47] |
Fernandez-Duque D., & Posner M. I. (1997). Relating the mechanisms of orienting and alerting. Neuropsychologia, 35(4), 477-486. https://doi.org/10.1016/S0028-3932(96)00103-0
URL pmid: 9106276 |
| [48] |
Fong M. C.-M., Hui N. Y., Fung E. S. W., Chu P. C. K., & Wang W. S. Y. (2018). Conflict monitoring in multi-sensory flanker tasks: Effects of cross-modal distractors on the N2 component. Neuroscience Letters, 670, 31-35. https://doi.org/10.1016/j.neulet.2018.01.037
doi: 10.1016/j.neulet.2018.01.037 URL |
| [49] |
Foote S. L., Aston-Jones G., & Bloom F. E. (1980). Impulse activity of locus coeruleus neurons in awake rats and monkeys is a function of sensory stimulation and arousal. Proceedings of the National Academy of Sciences, 77(5), 3033-3037. https://doi.org/10.1073/pnas.77.5.3033
doi: 10.1073/pnas.77.5.3033 URL |
| [50] |
Foote S. L., Bloom F. E., & Aston-Jones G. (1983). Nucleus locus ceruleus: New evidence of anatomical and physiological specificity. Physiological Reviews, 63(3), 844-914. https://doi.org/10.1152/physrev.1983.63.3.844
doi: 10.1152/physrev.1983.63.3.844 URL pmid: 6308694 |
| [51] |
Fried M., Tsitsiashvili E., Bonneh Y. S., Sterkin A., Wygnanski-Jaffe T., Epstein T., & Polat U. (2014). ADHD subjects fail to suppress eye blinks and microsaccades while anticipating visual stimuli but recover with medication. Vision Research, 101, 62-72. https://doi.org/10.1016/j.visres.2014.05.004
doi: 10.1016/j.visres.2014.05.004 URL pmid: 24863585 |
| [52] |
Friedman N. P., & Miyake A. (2004). The relations among inhibition and interference control functions: A latent- variable analysis. Journal of Experimental Psychology: General, 133(1), 101-135. https://doi.org/10.1037/0096-3445.133.1.101
doi: 10.1037/0096-3445.133.1.101 URL |
| [53] |
Gabay S., Chica A., Charras P., Funes M. J., & Henik A. (2011). Cue and target processing modulate the onset of inhibition of return. Journal of Experimental Psychology: Human Perception and Performance, 38(1), 42-52. https://doi.org/10.1037/a0023675
doi: 10.1037/a0023675 URL |
| [54] |
Gabay S., & Henik A. (2010). Temporal expectancy modulates inhibition of return in a discrimination task. Psychonomic Bulletin & Review, 17(1), 47-51. https://doi.org/10.3758/PBR.17.1.47
doi: 10.3758/PBR.17.1.47 URL |
| [55] |
Gabay S., Pertzov Y., & Henik A. (2011). Orienting of attention, pupil size, and the norepinephrine system. Attention, Perception, & Psychophysics, 73(1), 123-129. https://doi.org/10.3758/s13414-010-0015-4
doi: 10.3758/s13414-010-0015-4 URL |
| [56] |
Gajewski P. D., & Falkenstein M. (2013). Effects of task complexity on ERP components in Go/Nogo tasks. International Journal of Psychophysiology, 87(3), 273-278. https://doi.org/10.1016/j.ijpsycho.2012.08.007
doi: 10.1016/j.ijpsycho.2012.08.007 URL pmid: 22906814 |
| [57] | Gawrilow C., Kühnhausen J., Schmid J., & Stadler G. (2014). Hyperactivity and motoric activity in ADHD: Characterization, assessment, and intervention. Frontiers in Psychiatry, 5, 171. https://doi.org/10.3389/fpsyt.2014.00171 |
| [58] | Geva R., Zivan M., Warsha A., & Olchik D. (2013). Alerting, orienting or executive attention networks: Differential patters of pupil dilations. Frontiers in Behavioral Neuroscience, 7, 145. https://doi.org/10.3389/fnbeh.2013.00145 |
| [59] |
Ghosh S., & Maunsell J. H. R. (2024). Locus coeruleus norepinephrine contributes to visual-spatial attention by selectively enhancing perceptual sensitivity. Neuron, 112(13), 2231-2240. https://doi.org/10.1016/j.neuron.2024.04.001
doi: 10.1016/j.neuron.2024.04.001 URL pmid: 38701788 |
| [60] | Green S. A., Hernandez L., Bookheimer S. Y., & Dapretto M. (2016). Salience network connectivity in autism is related to brain and behavioral markers of sensory overresponsivity. Journal of the American Academy of Child & Adolescent Psychiatry, 55(7), 618-626. https://doi.org/10.1016/j.jaac.2016.04.013 |
| [61] |
Grueschow M., Kleim B., & Ruff C. C. (2020). Role of the locus coeruleus arousal system in cognitive control. Journal of Neuroendocrinology, 32(12), e12890. https://doi.org/10.1111/jne.12890
doi: 10.1111/jne.v32.12 URL |
| [62] |
Grueschow M., Kleim B., & Ruff C. C. (2022). Functional coupling of the locus coeruleus is linked to successful cognitive control. Brain Sciences, 12(3), 305. https://doi.org/10.3390/brainsci12030305
doi: 10.3390/brainsci12030305 URL |
| [63] |
Halliday R., Naylor H., Brandeis D., Callaway E., Yano L., & Herzig K. (1994). The effect of D-amphetamine, clonidine, and yohimbine on human information processing. Psychophysiology, 31(4), 331-337. https://doi.org/10.1111/j.1469-8986.1994.tb02441.x
URL pmid: 10690913 |
| [64] |
Hames E. C., Rajmohan R., Fang D., Anderson R., Baker M., Richman D. M., & O’Boyle M. (2016). Attentional networks in adolescents with high-functioning autism: An fMRI investigation. The Open Neuroimaging Journal, 10, 102-110. https://doi.org/10.2174/1874440001610010102
URL pmid: 27843514 |
| [65] |
Hannestad J., Gallezot J.-D., Planeta-Wilson B., Lin S.-F., Williams W. A., van Dyck C. H.,... Ding Y.-S. (2010). Clinically relevant doses of methylphenidate significantly occupy norepinephrine transporters in humans in vivo. Biological Psychiatry, 68(9), 854-860. https://doi.org/10.1016/j.biopsych.2010.06.017
doi: 10.1016/j.biopsych.2010.06.017 URL pmid: 20691429 |
| [66] |
He H., Hong L., & Sajda P. (2023). Pupillary response is associated with the reset and switching of functional brain networks during salience processing. PLOS Computational Biology, 19(5), e1011081. https://doi.org/10.1371/journal.pcbi.1011081
doi: 10.1371/journal.pcbi.1011081 URL |
| [67] |
Hofmeister J., & Sterpenich V. (2015). A role for the locus ceruleus in reward processing: Encoding behavioral energy required for goal-directed actions. Journal of Neuroscience, 35(29), 10387-10389. https://doi.org/10.1523/JNEUROSCI.1734-15.2015
doi: 10.1523/JNEUROSCI.1734-15.2015 URL pmid: 26203134 |
| [68] |
Hong L., Walz J. M., & Sajda P. (2014). Your eyes give you away: Prestimulus changes in pupil diameter correlate with poststimulus task-related EEG dynamics. PLOS ONE, 9(3), e91321. https://doi.org/10.1371/journal.pone.0091321
doi: 10.1371/journal.pone.0091321 URL |
| [69] |
Hou R. H., Freeman C., Langley R. W., Szabadi E., & Bradshaw C. M. (2005). Does modafinil activate the locus coeruleus in man? Comparison of modafinil and clonidine on arousal and autonomic functions in human volunteers. Psychopharmacology, 181(3), 537-549. https://doi.org/10.1007/s00213-005-0013-8
URL pmid: 15983798 |
| [70] |
Hou W., Zhao W., & Li J. (2024). Intact gesture cueing of attention but attenuated sensitivity to peripheral social targets in autistic children: An eye-tracking and pupillometric study. Biological Psychology, 191, 108822. https://doi.org/10.1016/j.biopsycho.2024.108822
doi: 10.1016/j.biopsycho.2024.108822 URL |
| [71] |
Huang J., Mauche N., Rullmann M., Ulke C., Becker G. A., Patt M.,... Strauß M. (2022). Association between individual norepinephrine transporter (NET) availability and response to pharmacological therapy in adults with attention-deficit/hyperactivity disorder (ADHD). Brain Sciences, 12(8), 965. https://doi.org/10.3390/brainsci12080965
doi: 10.3390/brainsci12080965 URL |
| [72] |
Ikeda Y., Funayama T., Tateno A., Fukayama H., Okubo Y., & Suzuki H. (2017). Modafinil enhances alerting-related brain activity in attention networks. Psychopharmacology, 234(14), 2077-2089. https://doi.org/10.1007/s00213-017-4614-9
doi: 10.1007/s00213-017-4614-9 URL pmid: 28374089 |
| [73] | Janitzky K., Lippert M. T., Engelhorn A., Tegtmeier J., Goldschmidt J., Heinze H.-J., & Ohl F. W. (2015). Optogenetic silencing of locus coeruleus activity in mice impairs cognitive flexibility in an attentional set-shifting task. Frontiers in Behavioral Neuroscience, 9, 286. https://doi.org/10.3389/fnbeh.2015.00286 |
| [74] |
Jaworski J. L. B., & Eigsti I. M. (2017). Low-level visual attention and its relation to joint attention in autism spectrum disorder. Child Neuropsychology, 23(3), 316-331. https://doi.org/10.1080/09297049.2015.1104293
doi: 10.1080/09297049.2015.1104293 URL pmid: 26568142 |
| [75] |
Joshi S., & Gold J. I. (2020). Pupil size as a window on neural substrates of cognition. Trends in Cognitive Sciences, 24(6), 466-480. https://doi.org/10.1016/j.tics.2020.03.005
doi: S1364-6613(20)30080-2 URL pmid: 32331857 |
| [76] |
Joshi S., Li Y., Kalwani R. M., & Gold J. I. (2016). Relationships between pupil diameter and neuronal activity in the locus coeruleus, colliculi, and cingulate cortex. Neuron, 89(1), 221-234. https://doi.org/10.1016/j.neuron.2015.11.028
doi: 10.1016/j.neuron.2015.11.028 URL pmid: 26711118 |
| [77] |
Katsuki F., & Constantinidis C. (2012). Early involvement of prefrontal cortex in visual bottom up attention. Nature Neuroscience, 15(8), 1160-1166. https://doi.org/10.1038/nn.3164
doi: 10.1038/nn.3164 URL pmid: 22820465 |
| [78] |
Keehn B., Kadlaskar G., Bergmann S., McNally Keehn R., & Francis A. (2021). Attentional disengagement and the locus coeruleus-norepinephrine system in children with autism spectrum disorder. Frontiers in Integrative Neuroscience, 15, 716447. https://doi.org/10.3389/fnint.2021.716447
doi: 10.3389/fnint.2021.716447 URL |
| [79] |
Kerns J. G., Cohen J. D., MacDonald A. W., Cho R. Y., Stenger V. A., & Carter C. S. (2004). Anterior cingulate conflict monitoring and adjustments in control. Science, 303(5660), 1023-1026. https://doi.org/10.1126/science.1089910
doi: 10.1126/science.1089910 URL pmid: 14963333 |
| [80] |
Kim Y., Kadlaskar G., Keehn R. M., & Keehn B. (2022). Measures of tonic and phasic activity of the locus coeruleus-norepinephrine system in children with autism spectrum disorder: An event-related potential and pupillometry study. Autism Research, 15(12), 2250-2264. https://doi.org/10.1002/aur.2820
doi: 10.1002/aur.2820 URL pmid: 36164264 |
| [81] |
Köhler S., Bär K.-J., & Wagner G. (2016). Differential involvement of brainstem noradrenergic and midbrain dopaminergic nuclei in cognitive control. Human Brain Mapping, 37(6), 2305-2318. https://doi.org/10.1002/hbm.23173
doi: 10.1002/hbm.23173 URL pmid: 26970351 |
| [82] |
Kopp B., Mattler U., Goertz R., & Rist F. (1996). N2, P3 and the lateralized readiness potential in a nogo task involving selective response priming. Electroencephalography and Clinical Neurophysiology, 99(1), 19-27. https://doi.org/10.1016/0921-884X(96)95617-9
URL pmid: 8758967 |
| [83] |
Kopp B., Rist F., & Mattler U. (1996). N200 in the flanker task as a neurobehavioral tool for investigating executive control. Psychophysiology, 33(3), 282-294. https://doi.org/10.1111/j.1469-8986.1996.tb00425.x
doi: 10.1111/j.1469-8986.1996.tb00425.x URL pmid: 8936397 |
| [84] |
Koshmanova E., Berger A., Beckers E., Campbell I., Mortazavi N., Sharifpour R.,... Vandewalle G. (2023). Locus coeruleus activity while awake is associated with REM sleep quality in older individuals. JCI Insight, 8(20), e172008. https://doi.org/10.1172/jci.insight.172008
doi: 10.1172/jci.insight.172008 URL |
| [85] | Landry O., & Parker A. (2013). A meta-analysis of visual orienting in autism. Frontiers in Human Neuroscience, 7, 833. https://doi.org/10.3389/fnhum.2013.00833 |
| [86] |
Liao C., Laporte A. D., Spiegelman D., Akçimen F., Joober R., Dion P. A., & Rouleau G. A. (2019). Transcriptome-wide association study of attention deficit hyperactivity disorder identifies associated genes and phenotypes. Nature Communications, 10(1), 4450. https://doi.org/10.1038/s41467-019-12450-9
doi: 10.1038/s41467-019-12450-9 URL |
| [87] |
Liebe T., Kaufmann J., Li M., Skalej M., Wagner G., & Walter M. (2020). In vivo anatomical mapping of human locus coeruleus functional connectivity at 3T MRI. Human Brain Mapping, 41(8), 2136-2151. https://doi.org/10.1002/hbm.24935
doi: 10.1002/hbm.v41.8 URL |
| [88] |
London E. B. (2018). Neuromodulation and a reconceptualization of autism spectrum disorders: Using the locus coeruleus functioning as an exemplar. Frontiers in Neurology, 9, 1120. https://doi.org/10.3389/fneur.2018.01120
doi: 10.3389/fneur.2018.01120 URL |
| [89] |
Lupiáñez J., Milán E. G., Tornay F. J., Madrid E., & Tudela P. (1997). Does IOR occur in discrimination tasks? Yes, it does, but later. Perception & Psychophysics, 59(8), 1241-1254. https://doi.org/10.3758/BF03214211
doi: 10.3758/BF03214211 URL |
| [90] |
Ma H., Zhang H., Zuo Z., & Liu Y. (2023). Heterogeneous organization of locus coeruleus: An intrinsic mechanism for functional complexity. Physiology & Behavior, 268, 114231. https://doi.org/10.1016/j.physbeh.2023.114231
doi: 10.1016/j.physbeh.2023.114231 URL |
| [91] |
MacLeod J. W., Lawrence M. A., McConnell M. M., Eskes G. A., Klein R. M., & Shore D. I. (2010). Appraising the ANT: Psychometric and theoretical considerations of the Attention Network Test. Neuropsychology, 24(5), 637-651. https://doi.org/10.1037/a0019803
doi: 10.1037/a0019803 URL pmid: 20804252 |
| [92] |
Maness E. B., Burk J. A., McKenna J. T., Schiffino F. L., Strecker R. E., & McCoy J. G. (2022). Role of the locus coeruleus and basal forebrain in arousal and attention. Brain Research Bulletin, 188, 47-58. https://doi.org/10.1016/j.brainresbull.2022.07.014
doi: 10.1016/j.brainresbull.2022.07.014 URL pmid: 35878679 |
| [93] |
Manger P. R., & Eschenko O. (2021). The mammalian locus coeruleus complex—Consistencies and variances in nuclear organization. Brain Sciences, 11(11), 1486. https://doi.org/10.3390/brainsci11111486
doi: 10.3390/brainsci11111486 URL |
| [94] |
Marrocco R. T., Witte E. A., & Davidson M. C. (1994). Arousal systems. Current Opinion in Neurobiology, 4(2), 166-170. https://doi.org/10.1016/0959-4388(94)90067-1
URL pmid: 7913640 |
| [95] |
Mathôt S., Fabius J., Van Heusden E., & Van der Stigchel S. (2018). Safe and sensible preprocessing and baseline correction of pupil-size data. Behavior Research Methods, 50(1), 94-106. https://doi.org/10.3758/s13428-017-1007-2
doi: 10.3758/s13428-017-1007-2 URL pmid: 29330763 |
| [96] |
McBurney-Lin J., Lu J., Zuo Y., & Yang H. (2019). Locus coeruleus-norepinephrine modulation of sensory processing and perception: A focused review. Neuroscience and Biobehavioral Reviews, 105, 190-199. https://doi.org/10.1016/j.neubiorev.2019.06.009
doi: S0149-7634(18)30977-1 URL pmid: 31260703 |
| [97] |
McCall J. G., Al-Hasani R., Siuda E. R., Hong D. Y., Norris A. J., Ford C. P., & Bruchas M. R. (2015). CRH engagement of the locus coeruleus noradrenergic system mediates stress-induced anxiety. Neuron, 87(3), 605-620. https://doi.org/10.1016/j.neuron.2015.07.002
doi: 10.1016/j.neuron.2015.07.002 URL pmid: 26212712 |
| [98] |
McCall J. G., Siuda E. R., Bhatti D. L., Lawson L. A., McElligott Z. A., Stuber G. D., & Bruchas M. R. (2017). Locus coeruleus to basolateral amygdala noradrenergic projections promote anxiety-like behavior. eLife, 6, e18247. https://doi.org/10.7554/eLife.18247
doi: 10.7554/eLife.18247 URL |
| [99] |
McGaughy J., Ross R. S., & Eichenbaum H. (2008). Noradrenergic, but not cholinergic, deafferentation of prefrontal cortex impairs attentional set-shifting. Neuroscience, 153(1), 63-71. https://doi.org/10.1016/j.neuroscience.2008.01.064
doi: 10.1016/j.neuroscience.2008.01.064 URL pmid: 18355972 |
| [100] |
Megemont M., McBurney-Lin J., & Yang H. (2022). Pupil diameter is not an accurate real-time readout of locus coeruleus activity. eLife, 11, e70510. https://doi.org/10.7554/eLife.70510
doi: 10.7554/eLife.70510 URL |
| [101] |
Miyake A., Friedman N. P., Emerson M. J., Witzki A. H., Howerter A., & Wager T. D. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognitive Psychology, 41(1), 49-100. https://doi.org/10.1006/cogp.1999.0734
doi: 10.1006/cogp.1999.0734 URL pmid: 10945922 |
| [102] |
Mogg K., Salum G. A., Bradley B. P., Gadelha A., Pan P., Alvarenga P.,... Manfro G. G. (2015). Attention network functioning in children with anxiety disorders, attention-deficit/hyperactivity disorder and non-clinical anxiety. Psychological Medicine, 45(12), 2633-2646. https://doi.org/10.1017/S0033291715000586
doi: 10.1017/S0033291715000586 URL pmid: 26234806 |
| [103] | Montgomery S. A. (1997). Reboxetine: Additional benefits to the depressed patient. Journal of Psychopharmacology, 11(4 Suppl), S9-S15. |
| [104] |
Morad Y., Lemberg H., Yofe N., & Dagan Y. (2000). Pupillography as an objective indicator of fatigue. Current Eye Research, 21(1), 535-542. https://doi.org/10.1076/0271-3683(200007)2111-ZFT535
URL pmid: 11035533 |
| [105] | Morris L. S., McCall J. G., Charney D. S., & Murrough J. W. (2020). The role of the locus coeruleus in the generation of pathological anxiety. Brain and Neuroscience Advances, 4, 2398212820930321. https://doi.org/10.1177/2398212820930321 |
| [106] |
Murphy P. R., O’connell R. G., O’sullivan M., Robertson I. H., & Balsters J. H. (2014). Pupil diameter covaries with BOLD activity in human locus coeruleus. Human Brain Mapping, 35(8), 4140-4154. https://doi.org/10.1002/hbm.22466
doi: 10.1002/hbm.22466 URL pmid: 24510607 |
| [107] |
Murphy P. R., Robertson I. H., Balsters J. H., & O’connell R. G. (2011). Pupillometry and P3 index the locus coeruleus-noradrenergic arousal function in humans. Psychophysiology, 48(11), 1532-1543. https://doi.org/10.1111/j.1469-8986.2011.01226.x
doi: 10.1111/j.1469-8986.2011.01226.x URL pmid: 21762458 |
| [108] |
Mutreja R., Craig C., & O’Boyle M. W. (2016). Attentional network deficits in children with autism spectrum disorder. Developmental Neurorehabilitation, 19(6), 389-397. https://doi.org/10.3109/17518423.2015.1017663
URL pmid: 25837729 |
| [109] |
Nagashima M., Monden Y., Dan I., Dan H., Tsuzuki D., Mizutani T.,... Yamagata T. (2014). Acute neuropharmacological effects of atomoxetine on inhibitory control in ADHD children: A fNIRS study. NeuroImage: Clinical, 6, 192-201. https://doi.org/10.1016/j.nicl.2014.09.001
doi: 10.1016/j.nicl.2014.09.001 URL |
| [110] |
Nieuwenhuis S., Aston-Jones G., & Cohen J. D. (2005). Decision making, the P3, and the locus coeruleus- norepinephrine system. Psychological Bulletin, 131(4), 510-532. https://doi.org/10.1037/0033-2909.131.4.510
URL pmid: 16060800 |
| [111] | Nieuwenhuis S., Yeung N., van den Wildenberg W., & Ridderinkhof K. R. (2003). Electrophysiological correlates of anterior cingulate function in a go/no-go task: Effects of response conflict and trial type frequency. Cognitive, Affective, & Behavioral Neuroscience, 3(1), 17-26. https://doi.org/10.3758/CABN.3.1.17 |
| [112] |
Okon-Singer H., Henik A., & Gabay S. (2020). Increased inhibition following negative cues: A possible role for enhanced processing. Cortex, 122, 131-139. https://doi.org/10.1016/j.cortex.2018.12.008
doi: S0010-9452(18)30418-0 URL pmid: 30638583 |
| [113] | Orekhova E. V., & Stroganova T. A. (2014). Arousal and attention re-orienting in autism spectrum disorders: Evidence from auditory event-related potentials. Frontiers in Human Neuroscience, 8, 34. https://doi.org/10.3389/fnhum.2014.00034 |
| [114] |
Pacheco-Unguetti A. P., Acosta A., Marqués E., & Lupiáñez J. (2011). Alterations of the attentional networks in patients with anxiety disorders. Journal of Anxiety Disorders, 25(7), 888-895. https://doi.org/10.1016/j.janxdis.2011.04.010
doi: 10.1016/j.janxdis.2011.04.010 URL pmid: 21641180 |
| [115] |
Pajkossy P., Szőllősi Á., Demeter G., & Racsmány M. (2018). Physiological measures of dopaminergic and noradrenergic activity during attentional set shifting and reversal. Frontiers in Psychology, 9, 506. https://doi.org/10.3389/fpsyg.2018.00506
doi: 10.3389/fpsyg.2018.00506 URL |
| [116] |
Patel S. H., & Azzam P. N. (2005). Characterization of N200 and P300: Selected studies of the event-related potential. International Journal of Medical Sciences, 2(4), 147-154. https://doi.org/10.7150/ijms.2.147
URL pmid: 16239953 |
| [117] |
Petersen S. E., & Posner M. I. (2012). The attention system of the human brain: 20 years after. Annual Review of Neuroscience, 35, 73-89. https://doi.org/10.1146/annurev-neuro-062111-150525
doi: 10.1146/annurev-neuro-062111-150525 URL pmid: 22524787 |
| [118] |
Phillips M. A., Szabadi E., & Bradshaw C. M. (2000). Comparison of the effects of clonidine and yohimbine on spontaneous pupillary fluctuations in healthy human volunteers. Psychopharmacology, 150(1), 85-89. https://doi.org/10.1007/s002130000398
URL pmid: 10867980 |
| [119] |
Pineda J., Foote S., & Neville H. (1989). Effects of locus coeruleus lesions on auditory, long-latency, event-related potentials in monkey. The Journal of Neuroscience, 9(1), 81-93. https://doi.org/10.1523/JNEUROSCI.09-01-00081.1989
doi: 10.1523/JNEUROSCI.09-01-00081.1989 URL |
| [120] |
Poe G. R., Foote S., Eschenko O., Johansen J. P., Bouret S., Aston-Jones G.,... Sara S. J. (2020). Locus coeruleus: A new look at the blue spot. Nature Reviews Neuroscience, 21(11), 644-659. https://doi.org/10.1038/s41583-020-0360-9
doi: 10.1038/s41583-020-0360-9 URL |
| [121] |
Polich J. (2007). Updating P300: An integrative theory of P3a and P3b. Clinical Neurophysiology, 118(10), 2128-2148. https://doi.org/10.1016/j.clinph.2007.04.019
doi: 10.1016/j.clinph.2007.04.019 URL pmid: 17573239 |
| [122] |
Posner M. I. (1980). Orienting of attention. Quarterly Journal of Experimental Psychology, 32(1), 3-25. https://doi.org/10.1080/00335558008248231
doi: 10.1080/00335558008248231 URL pmid: 7367577 |
| [123] | Posner M. I., & Cohen Y. (1984). Components of visual orienting. In H.Bouma & D. G.Bouwhuis (Attention and performance X: Control of language processes Eds.), (pp. 531-556). Erlbaum. |
| [124] |
Rajkowski J., Kubiak P., & Aston-Jones G. (1994). Locus coeruleus activity in monkey: Phasic and tonic changes are associated with altered vigilance. Brain Research Bulletin, 35(5), 607-616. https://doi.org/10.1016/0361-9230(94)90175-9
doi: 10.1016/0361-9230(94)90175-9 URL |
| [125] |
Rajkowski J., Majczynski H., Clayton E., & Aston-Jones G. (2004). Activation of monkey locus coeruleus neurons varies with difficulty and performance in a target detection task. Journal of Neurophysiology, 92(1), 361-371. https://doi.org/10.1152/jn.00673.2003
URL pmid: 15028743 |
| [126] | Ramos B. P., & Arnsten A. F. (2007). Adrenergic pharmacology and cognition: Focus on the prefrontal cortex. Pharmacology & Therapeutics, 113(3), 523-536. https://doi.org/10.1016/j.pharmthera.2006.11.006 |
| [127] |
Ramos B. P., Colgan L., Nou E., Ovadia S., Wilson S. R., & Arnsten A. F. (2005). The beta-1 adrenergic antagonist, betaxolol, improves working memory performance in rats and monkeys. Biological Psychiatry, 58(11), 894-900. https://doi.org/10.1016/j.biopsych.2005.05.022
URL pmid: 16043136 |
| [128] |
Reimer J., McGinley M. J., Liu Y., Rodenkirch C., Wang Q., McCormick D. A., & Tolias A. S. (2016). Pupil fluctuations track rapid changes in adrenergic and cholinergic activity in cortex. Nature Communications, 7(1), 13289. https://doi.org/10.1038/ncomms13289
doi: 10.1038/ncomms13289 URL |
| [129] | Robison M. K., Ralph K. J., Gondoli D. M., Torres A., Campbell S., Brewer G. A., & Gibson B. S. (2023). Testing locus coeruleus-norepinephrine accounts of working memory, attention control, and fluid intelligence. Cognitive, Affective, & Behavioral Neuroscience, 23(4), 1014-1058. https://doi.org/10.3758/s13415-023-01096-2 |
| [130] |
Rudich-Strassler A., Hertz-Palmor N., & Lazarov A. (2022). Looks interesting: Attention allocation in depression when using a news website—an eye tracking study. Journal of Affective Disorders, 304, 113-121. https://doi.org/10.1016/j.jad.2022.02.058
doi: 10.1016/j.jad.2022.02.058 URL |
| [131] | San Martín R. (2012). Event-related potential studies of outcome processing and feedback-guided learning. Frontiers in Human Neuroscience, 6, 304. https://doi.org/10.3389/fnhum.2012.00304 |
| [132] |
Sara S. J., & Bouret S. (2012). Orienting and reorienting: The locus coeruleus mediates cognition through arousal. Neuron, 76(1), 130-141. https://doi.org/10.1016/j.neuron.2012.09.011
doi: 10.1016/j.neuron.2012.09.011 URL pmid: 23040811 |
| [133] | Sarrias-Arrabal E., Izquierdo-Ayuso G., & Vázquez-Marrufo M. (2023). Attentional networks in neurodegenerative diseases:Anatomical and functional evidence from the Attention Network Test. Neurología (English Edition), 38(3), 206-217. https://doi.org/10.1016/j.nrleng.2020.05.022 |
| [134] |
Sigurdardottir H. L., Kranz G. S., Rami-Mark C., James G. M., Vanicek T., Gryglewski G.,... Lanzenberger R. (2021). Association of norepinephrine transporter methylation with in vivo NET expression and hyperactivity-impulsivity symptoms in ADHD measured with PET. Molecular Psychiatry, 26(3), 1009-1018. https://doi.org/10.1038/s41380-019-0461-x
doi: 10.1038/s41380-019-0461-x URL |
| [135] |
Slater C., Liu Y., Weiss E., Yu K., & Wang Q. (2022). The neuromodulatory role of the noradrenergic and cholinergic systems and their interplay in cognitive functions: A focused review. Brain Sciences, 12(7), 890. https://doi.org/10.3390/brainsci12070890
doi: 10.3390/brainsci12070890 URL |
| [136] | Sturm W., & Willmes K. (2001). On the functional neuroanatomy of intrinsic and phasic alertness. NeuroImage, 14(1), S76-S84. https://doi.org/10.1006/nimg.2001.0839 |
| [137] |
Swick D., Pineda J. A., & Foote S. L. (1994). Effects of systemic clonidine on auditory event-related potentials in squirrel monkeys. Brain Research Bulletin, 33(1), 79-86. https://doi.org/10.1016/0361-9230(94)90051-5
URL pmid: 8275327 |
| [138] |
Thiele A., & Bellgrove M. A. (2018). Neuromodulation of attention. Neuron, 97(4), 769-785. https://doi.org/10.1016/j.neuron.2018.01.008
doi: S0896-6273(18)30011-4 URL pmid: 29470969 |
| [139] |
Totah N. K., Logothetis N. K., & Eschenko O. (2021). Synchronous spiking associated with prefrontal high γ oscillations evokes a 5-Hz rhythmic modulation of spiking in locus coeruleus. Journal of Neurophysiology, 125(4), 1191-1201. https://doi.org/10.1152/jn.00677.2020
doi: 10.1152/jn.00677.2020 URL pmid: 33566743 |
| [140] | Unsworth N., & Robison M. K. (2016). Pupillary correlates of lapses of sustained attention. Cognitive, Affective, & Behavioral Neuroscience, 16(4), 601-615. https://doi.org/10.3758/s13415-016-0417-4 |
| [141] |
Unsworth N., & Robison M. K. (2017). A locus coeruleus- norepinephrine account of individual differences in working memory capacity and attention control. Psychonomic Bulletin & Review, 24(4), 1282-1311. https://doi.org/10.3758/s13423-016-1220-5
doi: 10.3758/s13423-016-1220-5 URL |
| [142] |
Usher M., Cohen J. D., Servan-Schreiber D., Rajkowski J., & Aston-Jones G. (1999). The role of locus coeruleus in the regulation of cognitive performance. Science, 283(5401), 549-554. https://doi.org/10.1126/science.283.5401.549
URL pmid: 9915705 |
| [143] |
Vanicek T., Spies M., Rami-Mark C., Savli M., Höflich A., Kranz G. S.,... Lanzenberger R. (2014). The norepinephrine transporter in attention-deficit/hyperactivity disorder investigated with positron emission tomography. JAMA Psychiatry, 71(12), 1340-1349. https://doi.org/10.1001/jamapsychiatry.2014.1226
doi: 10.1001/jamapsychiatry.2014.1226 URL pmid: 25338091 |
| [144] |
Varazzani C., San-Galli A., Gilardeau S., & Bouret S. (2015). Noradrenaline and dopamine neurons in the reward/effort trade-off: A direct electrophysiological comparison in behaving monkeys. Journal of Neuroscience, 35(20), 7866-7877. https://doi.org/10.1523/JNEUROSCI.0454-15.2015
doi: 10.1523/JNEUROSCI.0454-15.2015 URL pmid: 25995472 |
| [145] | Vazey E. M., Moorman D. E., & Aston-Jones G. (2018). Phasic locus coeruleus activity regulates cortical encoding of salience information. Proceedings of the National Academy of Sciences, 115(40), E9439-E9448. https://doi.org/10.1073/pnas.1803716115 |
| [146] |
Verguts T., & Notebaert W. (2009). Adaptation by binding: A learning account of cognitive control. Trends in Cognitive Sciences, 13(6), 252-257. https://doi.org/10.1016/j.tics.2009.02.007
doi: 10.1016/j.tics.2009.02.007 URL pmid: 19428288 |
| [147] |
Versiani M., Cassano G., Perugi G., Benedetti A., Mastalli L., Nardi A., & Savino M. (2002). Reboxetine, a selective norepinephrine reuptake inhibitor, is an effective and well-tolerated treatment for panic disorder. The Journal of Clinical Psychiatry, 63(1), 31-37. https://doi.org/10.4088/JCP.v63n0107
doi: 10.4088/jcp.v63n0107 URL pmid: 11838623 |
| [148] |
Walz J. M., Goldman R. I., Carapezza M., Muraskin J., Brown T. R., & Sajda P. (2013). Simultaneous EEG- fMRI reveals temporal evolution of coupling between supramodal cortical attention networks and the brainstem. The Journal of Neuroscience, 33(49), 19212-19222. https://doi.org/10.1523/JNEUROSCI.2649-13.2013
doi: 10.1523/JNEUROSCI.2649-13.2013 URL |
| [149] | Warren C. M., & Holroyd C. B. (2012). The impact of deliberative strategy dissociates ERP components related to conflict processing vs. reinforcement learning. Frontiers in Neuroscience, 6, 43. https://doi.org/10.3389/fnins.2012.00043 |
| [150] |
Warren C. M., Tanaka J. W., & Holroyd C. B. (2011). What can topology changes in the oddball N2 reveal about underlying processes? NeuroReport, 22(17), 870-874. https://doi.org/10.1097/WNR.0b013e32834bbe1f
doi: 10.1097/WNR.0b013e32834bbe1f URL pmid: 21968320 |
| [151] |
Woodward D. J., Moises H. C., Waterhouse B. D., Hoffer B. J., & Freedman R. (1979). Modulatory actions of norepinephrine in the central nervous system. Federation Proceedings, 38(7), 2109-2116.
pmid: 446766 |
| [152] |
Yerkes R. M., & Dodson J. D. (1908). The relation of strength of stimulus to rapidity of habit‐formation. Journal of Comparative Neurology and Psychology, 18(5), 459-482. https://doi.org/10.1002/cne.920180503
doi: 10.1002/cne.v18:5 URL |
| [153] |
Zhang Y., Chen Y., Xin Y., Peng B., & Liu S. (2023). Norepinephrine system at the interface of attention and reward. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 125, 110751. https://doi.org/10.1016/j.pnpbp.2023.110751
doi: 10.1016/j.pnpbp.2023.110751 URL |
| [1] | 孙逸梵, 贺琴, 张畅, 陈宁. 音乐聆听促进认知加工? 既往争议与注意网络理论视角的新解释[J]. 心理科学进展, 2026, 34(2): 283-298. |
| [2] | 庄滨源, 杨静. 自主语言转换中的双语控制机制[J]. 心理科学进展, 2026, 34(1): 97-107. |
| [3] | 陈艺林, 谭青松, 龚梦园. 基于特征关系的注意选择机制[J]. 心理科学进展, 2025, 33(9): 1592-1603. |
| [4] | 王一峰, 唐雨竹, 肖坤辰, 荆秀娟. 持续性注意低频波动的机制与干预[J]. 心理科学进展, 2025, 33(7): 1091-1103. |
| [5] | 尹华站, 肖春花. 时距认知与疼痛的双向关系及其思考[J]. 心理科学进展, 2025, 33(6): 1047-1056. |
| [6] | 贾云丞, 程刚, 丁芳媛, 陈加, 龙女, 陈玉荣, 林楠. 对中性婴儿面孔注意偏向与表情不确定性的关系[J]. 心理科学进展, 2024, 32(9): 1393-1407. |
| [7] | 吴佳桧, 傅海伦. 成就目标定向与学业成绩关系的元分析:自我效能感、学习投入的中介作用[J]. 心理科学进展, 2024, 32(7): 1104-1125. |
| [8] | 陈雁, 李晶. 人际同步对孤独症儿童合作行为的影响及干预促进[J]. 心理科学进展, 2024, 32(4): 639-653. |
| [9] | 刘一鸣, 罗浩诚, 傅世敏. 视觉意识是离散还是连续模式?基于注意瞬脱的整合性视角[J]. 心理科学进展, 2024, 32(2): 264-275. |
| [10] | 张湘一, 吴一琳. 视觉注意对决策的影响及其作用机制[J]. 心理科学进展, 2024, 32(11): 1829-1843. |
| [11] | 孙猛, 刘泽军, 贾茜, 尚晨阳, 张钦. 情绪T2对抗注意瞬脱:理解情绪优先加工的窗口[J]. 心理科学进展, 2024, 32(1): 58-74. |
| [12] | 张子霄, 何生, 张杰栋. 注意转移中的知觉抑制[J]. 心理科学进展, 2023, 31(suppl.): 18-18. |
| [13] | 周攀, 刘小燕, 李天添, 王玲. 与位置相关的价值统计学习对注意的影响[J]. 心理科学进展, 2023, 31(suppl.): 51-51. |
| [14] | 裴英名, 任衍具. 与工作记忆保持项目语义相关的干扰对搜索固定与变化目标的影响[J]. 心理科学进展, 2023, 31(suppl.): 75-75. |
| [15] | 邱余波, 潘嘉蔚, 吴静岚, 高在峰. 通过社会注意线索转移工作记忆中的注意焦点[J]. 心理科学进展, 2023, 31(suppl.): 76-76. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||