心理科学进展 ›› 2024, Vol. 32 ›› Issue (1): 162-176.doi: 10.3724/SP.J.1042.2024.00162
收稿日期:
2023-03-28
出版日期:
2024-01-15
发布日期:
2023-10-25
通讯作者:
尹萌
E-mail:yinmeng1231@qq.com
基金资助:
Received:
2023-03-28
Online:
2024-01-15
Published:
2023-10-25
Contact:
YIN Meng
E-mail:yinmeng1231@qq.com
摘要:
AI−员工协作是一个以高效完成任务为目标, 由“AI−人−组织”构成的交互系统。促进AI−员工协作对于推动AI与实体经济的深度融合, 以及员工在数字化时代的心理健康与职业发展至关重要。AI与员工的交互关系错综复杂, 现有研究呈现碎片化特点, 缺乏对AI−员工协作的整体认识。因此, 有必要在厘清相关概念的基础上, 对AI−员工协作的相关研究进行系统地梳理。通过对相关研究的系统性回顾, 本文厘清了AI和AI−员工协作的内涵, 梳理了AI−员工协作系统的构成要素, 分析了构成要素的作用和影响, 并进一步基于系统化的视角构建了一个研究框架。最后, 基于AI−员工协作的研究框架提出未来研究展望。
中图分类号:
尹萌, 牛雄鹰. (2024). 与AI“共舞”:系统化视角下的AI−员工协作. 心理科学进展 , 32(1), 162-176.
YIN Meng, NIU Xiongying. (2024). Dancing with AI: AI-employee collaboration in the systemic view. Advances in Psychological Science, 32(1), 162-176.
要点 | 详情 |
---|---|
最后检索时间 | 2023年5月15日 |
数据来源 | (1)Web of Science核心合集SSCI数据库 (2)中国知网CSSCI数据库 |
检索语句 | TS = (Artificial intelligence OR Human-AI collaboration OR Human-AI interaction OR Human-robot collaboration), 中文检索词一致 |
筛选依据 | (1)将研究方向限定为商业(business)、管理(management)、应用心理学(applied psychology)的相关方向; (2)由于初筛获得了超过两千条结果, 本文进一步筛查了管理学、人力资源管理与组织行为学、应用心理学、管理信息系统领域的重点期刊, 共38本; (3)逐个阅读检索文章的标题、摘要, 进一步剔除重复和不相关的文献; (4)采用“滚雪球”的检索方法, 仔细查阅已筛选出来的文献, 对引用的重要研究进行整理, 收集遗漏文献作为补充 |
筛选结果 | 合计109篇相关文献 |
表1 检索流程和规则
要点 | 详情 |
---|---|
最后检索时间 | 2023年5月15日 |
数据来源 | (1)Web of Science核心合集SSCI数据库 (2)中国知网CSSCI数据库 |
检索语句 | TS = (Artificial intelligence OR Human-AI collaboration OR Human-AI interaction OR Human-robot collaboration), 中文检索词一致 |
筛选依据 | (1)将研究方向限定为商业(business)、管理(management)、应用心理学(applied psychology)的相关方向; (2)由于初筛获得了超过两千条结果, 本文进一步筛查了管理学、人力资源管理与组织行为学、应用心理学、管理信息系统领域的重点期刊, 共38本; (3)逐个阅读检索文章的标题、摘要, 进一步剔除重复和不相关的文献; (4)采用“滚雪球”的检索方法, 仔细查阅已筛选出来的文献, 对引用的重要研究进行整理, 收集遗漏文献作为补充 |
筛选结果 | 合计109篇相关文献 |
[1] | 龚群. (2023). 论弱人工智能体的道德性考察. 哲学研究, (3), 37-45. |
[2] | 李燕萍, 陶娜娜. (2022). 员工人工智能技术采纳多层动态影响模型: 一个文献综述. 中国人力资源开发, 39(1), 35-56. |
[3] | 吕兴洋, 杨玉帆, 许双玉, 刘小燕. (2021). 以情补智: 人工智能共情回复的补救效果研究. 旅游学刊, 36(8), 86-100. |
[4] | 裴嘉良, 刘善仕, 钟楚燕, 谌一璠. (2021). AI算法决策能提高员工的程序公平感知吗? 外国经济与管理, 43(11), 41-55. |
[5] | 王才, 周文斌, 赵素芳. (2019). 机器人规模应用与工作不安全感——基于员工职业能力调节的研究. 经济管理, 41(4), 111-126. |
[6] | 王林辉, 胡晟明, 董直庆. (2022). 人工智能技术、任务属性与职业可替代风险: 来自微观层面的经验证据. 管理世界, (7), 60-78. |
[7] | 王振源, 姚明辉. (2022). 工作场所人机协作对员工影响的研究述评. 外国经济与管理, 44(9), 86-102. |
[8] | 谢小云, 左玉涵, 胡琼晶. (2021). 数字化时代的人力资源管理: 基于人与技术交互的视角. 管理世界, (1), 200-216. |
[9] | 张仪, 王永贵. (2022). 服务机器人拟人化对消费者使用意愿的影响机理研究——社会阶层的调节作用. 外国经济与管理, 44(3), 3-18. |
[10] | 赵宜萱, 赵曙明, 栾佳锐. (2020). 基于人工智能的人力资源管理: 理论模型与研究展望. 南京社会科学, 2, 36-43. |
[11] | 朱晓妹, 王森, 何勤. (2021). 人工智能嵌入视域下岗位技能要求对员工工作旺盛感的影响研究. 外国经济与管理, 43(11), 15-25. |
[12] |
Alabed, A., Javornik, A., & Gregory-Smith, D. (2022). AI anthropomorphism and its effect on users’ self-congruence and self-AI integration: A theoretical framework and research agenda. Technological Forecasting and Social Change, 182, 121786.
doi: 10.1016/j.techfore.2022.121786 URL |
[13] |
Amershi, S., Cakmak, M., Knox, W. B., & Kulesza, T. (2014). Power to the people: The role of humans in interactive machine learning. AI Magazine, 35(4), 105-120.
doi: 10.1609/aimag.v35i4.2513 URL |
[14] | Anthony, C., Bechky, B. A., & Fayard, A. L. (2023). “Collaborating” with AI: Taking a system view to explore the future of work. Organization Science, Advance online publication. https://doi.org/10.1287/orsc.2022.1651 |
[15] | Basu, S., Majumdar, B., Mukherjee, K., Munjal, S., & Palaksha, C. (2023). Artificial intelligence-HRM interactions and outcomes: A systematic review and causal configurational explanation. Human Resource Management Review, 33(1), Article 100893. |
[16] |
Bechky, B. A. (2003). Sharing meaning across occupational communities: The transformation of understanding on a production floor. Organization Science, 14(3), 312-330.
doi: 10.1287/orsc.14.3.312.15162 URL |
[17] | Belanche, D., Casaló, L. V., Flavián, C., & Schepers, J. (2021). Examining the effects of robots’ physical appearance, warmth, and competence in frontline services: The humanness-value-loyalty model. Psychology and Marketing, 38(12), 1024-1052. |
[18] |
Borau, S., Otterbring, T., Laporte, S., & Wamba, S. F. (2021). The most human bot: Female gendering increases humanness perceptions of bots and acceptance of AI. Psychology & Marketing, 38(7), 1052-1068.
doi: 10.1002/mar.v38.7 URL |
[19] | Brougham, D., & Haar, J. (2018). Smart technology, artificial intelligence, robotics, and algorithms (STARA): Employees’ perceptions of our future workplace. Journal of Management & Organization, 24(2), 239-257. |
[20] |
Canhoto, A. I., & Clear, F. (2020). Artificial intelligence and machine learning as business tools: A framework for diagnosing value destruction potential. Business Horizons, 63(2), 183-193.
doi: 10.1016/j.bushor.2019.11.003 URL |
[21] |
Charlwood, A., & Guenole, N. (2022). Can HR adapt to the paradoxes of artificial intelligence? Human Resource Management Journal, 32(4), 729-742.
doi: 10.1111/hrmj.v32.4 URL |
[22] | Chi, O. H., Chi, C. G., Gursoy, D., & Nunkoo, R. (2023). Customers’ acceptance of artificially intelligent service robots: The influence of trust and culture. International Journal of Information Management, 70, Article 102623. |
[23] | Chuah, H. W., & Yu, J. (2021). The future of service: The power of emotion in human-robot interaction. Journal of Retailing and Consumer Services, 61(3), Article 102551. |
[24] | Davenport, T. H., & Kirby, J. (2016). Only humans need apply: Winners and losers in the age of smart machines. New York: Harper Business. |
[25] |
Delcourt, C., Gremler, D. D., de Zanet, F., & van Riel, A. C. (2017). An analysis of the interaction effect between employee technical and emotional competencies in emotionally charged service encounters. Journal of Service Management, 28(1), 85-106.
doi: 10.1108/JOSM-12-2015-0407 URL |
[26] | Desai, M., Kaniarasu, P., Medvedev, M., Steinfeld, A., & Yanco, H. (2013, March). Impact of robot failures and feedback on real-time trust. 8th ACM/IEEE International Conference on Human-Robot Interaction, Tokyo, Japan. |
[27] |
Desideri, L., Ottaviani, C., Malavasi, M., di Marzio, R., & Bonifacci, P. (2019). Emotional processes in human-robot interaction during brief cognitive testing. Computers in Human Behavior, 90, 331-342.
doi: 10.1016/j.chb.2018.08.013 |
[28] |
Ding, L. (2021). Employees’ challenge-hindrance appraisals toward STARA awareness and competitive productivity: A micro-level case. International Journal of Contemporary Hospitality Management, 33(9), 2950-2969.
doi: 10.1108/IJCHM-09-2020-1038 URL |
[29] | Dutta, D., Mishra, S. K., & Tyagi, D. (2022). Augmented employee voice and employee engagement using artificial intelligence-enabled chatbots: A field study. International Journal of Human Resource Management, 34(12), 2451-2480. |
[30] |
El Zaatari, S., Marei, M., Li, W., & Usman, Z. (2019). Cobot programming for collaborative industrial tasks: An overview. Robotics and Autonomous Systems, 116, 162-180.
doi: 10.1016/j.robot.2019.03.003 |
[31] | Esterwood, C., & Robert, L. P. (2023). Three Strikes and you are out!: The impacts of multiple human-robot trust violations and repairs on robot trustworthiness. Computers in Human behavior, 142, Article 107658. |
[32] |
Ferràs-Hernández, X. (2018). The future of management in a world of electronic brains. Journal of Management Inquiry, 27(2), 260-263.
doi: 10.1177/1056492617724973 URL |
[33] |
Filieri, R., Lin, Z. B., Lu, X. Q., & Yang, X. W. (2022). Customer emotions in service robot encounters: A hybrid machine-human intelligence approach. Journal of Service Research, 25(4), 614-629.
doi: 10.1177/10946705221103937 URL |
[34] | Fountaine, T., McCarthy, B., & Saleh, T. (2019). Building the AI-powered organization. Harvard Business Review, (7-8), 62-73. |
[35] |
Gelbrich, K., Hagel, J., & Orsingher, C. (2021). Emotional support from a digital assistant in technology-mediated services: Effects on customer satisfaction and behavioral persistence. International Journal of Research in Marketing, 38(1), 176-193.
doi: 10.1016/j.ijresmar.2020.06.004 URL |
[36] |
Giroux, M., Kim, J., Lee, J. C., & Park, J. (2022). Artificial intelligence and declined guilt: Retailing morality comparison between human and AI. Journal of Business Ethics, 178(4), 1027-1041.
doi: 10.1007/s10551-022-05056-7 |
[37] |
Glikson, E., & Woolley, A. W. (2020). Human trust in artificial intelligence: Review of empirical research. Academy of Management Annals, 14(2), 627-660.
doi: 10.5465/annals.2018.0057 URL |
[38] | Gray, H. M., Gray, K., & Wegner, D. M. (2007). Dimensions of mind perception. Science, 315(5812), 619. |
[39] |
Groth, M., Wu, Y., Nguyen, H., & Johnson, A. (2019). The moment of truth: A review, synthesis, and research agenda for the customer service experience. Annual Review of Organizational Psychology and Organizational Behavior, 6, 89-113.
doi: 10.1146/orgpsych.2019.6.issue-1 URL |
[40] |
Grijalva, E., Maynes, T. D., Badura, K. L., & Whiting, S. W. (2020). Examining the “I” in team: A longitudinal investigation of the influence of team narcissism composition on team outcomes in the NBA. Academy of Management Journal, 63(1), 7-33.
doi: 10.5465/amj.2017.0218 URL |
[41] |
Guha, A., Bressgott, T., Grewal, D., Mahr, D., Wetzels, M., & Schweiger, E. (2023). How artificiality and intelligence affect voice assistant evaluations. Journal of the Academy of Marketing Science, 51, 843-886.
doi: 10.1007/s11747-022-00874-7 |
[42] |
Gursoy, D., Chi, O. H., Lu, L., & Nunkoo, R. (2019). Consumers acceptance of artificially intelligent (AI) device use in service delivery. International Journal of Information Management, 49, 157-169.
doi: 10.1016/j.ijinfomgt.2019.03.008 URL |
[43] | Han, E., Yin, D., & Zhang, H. (2022). Bots with feelings: Should AI agents express positive emotion in customer service?. Information Systems Research, Advance online publication. https://doi.org/10.1287/isre.2022.1179 |
[44] |
Holthöwer, J., & van Doorn, J. (2023). Robots do not judge: Service robots can alleviate embarrassment in service encounters. Journal of the Academy of Marketing Science, 51, 767-784.
doi: 10.1007/s11747-022-00862-x |
[45] | Hossain, M. A., Standing, C., & Chan, C. (2017). The development and validation of a two-staged adoption model of RFID technology in livestock businesses. Information Technology & People, 30(4), 785-808. |
[46] |
Huang, H. H., Hsu, J. S. C., & Ku, C. Y. (2012). Understanding the role of computer-mediated counter-argument in countering confirmation bias. Decision Support Systems, 53(3), 438-447.
doi: 10.1016/j.dss.2012.03.009 URL |
[47] |
Huang, M., & Rust, R. T. (2018). Artificial intelligence in service. Journal of Service Research, 21(2), 155-172.
doi: 10.1177/1094670517752459 URL |
[48] | Huang, M. H., Rust, R., & Maksimovic, V. (2019). The feeling economy: Managing in the next generation of artificial intelligence (AI). California Management Review, 61(4), 43-65. |
[49] |
Hunter, G. K. (2019). On conceptualizing, measuring, and managing augmented technology use in business-to- business sales contexts. Journal of Business Research, 105, 201-213.
doi: 10.1016/j.jbusres.2019.08.010 |
[50] | IFR. (2022). Topics and definitions. https://ifr.org/ |
[51] |
Ilgen, D. R., Hollenbeck, J. R., Johnson, M., & Jundt, D. (2005). Teams in organizations: From input-process-output models to IMOI models. Annual Review of Psychology, 56, 517-543.
pmid: 15709945 |
[52] |
Jackson, J. C., Castelo, N., & Gray, K. (2020). Could a rising robot workforce make humans less prejudiced? American Psychologist, 75(7), 969-982.
doi: 10.1037/amp0000582 URL |
[53] | Jaiswal, A., Arun, C. J., & Varm, A. (2021). Rebooting employees: Upskilling for artificial intelligence in multinational corporations. International Journal of Human Resource Management, 33(6), 1179-1208. |
[54] |
Jarrahi, M. H. (2018). Artificial intelligence and the future of work: Human-AI symbiosis in organizational decision making. Business Horizons, 61(4), 577-586.
doi: 10.1016/j.bushor.2018.03.007 URL |
[55] | Jia, N., Luo, X. M., Fang, Z., & Liao, C. C. (2023). When and how artificial intelligence augments employee creativity. Academy of Management Journal, Advance online publication. https://doi.org/10.5465/amj.2022.0426 |
[56] |
Johnson, A., Dey, S., Nguyen, H., Groth, M., Joyce, S., Tan, L., … Harvey, S. B. (2020). A review and agenda for examining how technology-driven changes at work will impact workplace mental health and employee well-being. Australian Journal of Management, 45(3), 402-424.
doi: 10.1177/0312896220922292 URL |
[57] |
Kim, H., So, K. K. F., & Wirtz, J. (2022). Service robots: Applying social exchange theory to better understand human-robot interactions. Tourism Management, 92, 104537.
doi: 10.1016/j.tourman.2022.104537 URL |
[58] |
Kim, S. (2022). Working with robots: Human resource development considerations in human-robot interaction. Human Resource Development Review, 21(1), 48-74.
doi: 10.1177/15344843211068810 URL |
[59] |
Kong, H. Y., Yuan, Y., Baruch, Y., Bu, N., Jiang, X., & Wang, K. (2021). Influences of artificial intelligence (AI) awareness on career competency and job burnout. International Journal of Contemporary Hospitality Management, 33(2), 717-734.
doi: 10.1108/IJCHM-07-2020-0789 URL |
[60] | Lanz, L., Briker, R., & Gerpott, F. H. (2023). Employees adhere more to unethical instructions from human than ai supervisors: Complementing experimental evidence with machine learning. Journal of Business Ethics, Advance online publication. https://doi.org/10.1007/s10551-023-05393-1 |
[61] |
Lee, C. T., Pan, L.Y., & Hsieh, S. H. (2022). Artificial intelligent chatbots as brand promoters: A two-stage structural equation modeling artificial neural network approach. Internet Research, 32(4), 1329-1356.
doi: 10.1108/INTR-01-2021-0030 URL |
[62] | Lee, M. K. (2018). Understanding perception of algorithmic decisions: Fairness, trust, and emotion in response to algorithmic management. Big Data & Society, 5(1), 1-16. |
[63] |
Li, J., Bonn, M. A., & Ye, B. H. (2019). Hotel employee’s artificial intelligence and robotics awareness and its impact on turnover intention: The moderating roles of perceived organizational support and competitive psychological climate. Tourism Management, 73, 172-181.
doi: 10.1016/j.tourman.2019.02.006 URL |
[64] | Liang, X., Guo, G., Shu, L., Gong, Q., & Luo, P. (2022). Investigating the double-edged sword effect of AI awareness on employee’s service innovative behavior. Tourism Management, 92, Article 104564. |
[65] |
Lim, E. A. C., Lee, Y. H., & Foo, M. D. (2017). Frontline employees’ nonverbal cues in service encounters: A double-edged sword. Journal of the Academy of Marketing Science, 45(5), 657-676.
doi: 10.1007/s11747-016-0479-4 URL |
[66] | Lingmont, D. N. J., & Alexiou, A. (2020). The contingent effect of job automating technology awareness on perceived job insecurity: Exploring the moderating role of organizational culture. Technological Forecasting and Social Change, 161, Article 120302. |
[67] | Lv, X. Y., Yang, Y. F., Qin, D. Z., Cao, X. P., & Xu, H. (2022). Artificial intelligence service recovery: The role of empathic response in hospitality customers’ continuous usage intention. Computers in Human Behavior, 126, Article 106993. |
[68] |
Makarius, E. E., Mukherjee, D., Fox, J. D., & Fox, A. K. (2020). Rising with the machines: A sociotechnical framework for bringing artificial intelligence into the organization. Journal of Business Research, 120, 262-273.
doi: 10.1016/j.jbusres.2020.07.045 URL |
[69] | Malik, A., Budhwar, P., Patel, C., & Srikanth, N. R. (2020). May the bots be with you! Delivering HR cost-effectiveness and individualised employee experiences in an MNE. International Journal of Human Resource Management, 33(6), 1148-1178. |
[70] |
Marks, M. A., Mathieu, J. E., & Zaccaro, S. J. (2001). A temporally based framework and taxonomy of team processes. Academy of Management Review, 26(3), 356-376.
doi: 10.2307/259182 URL |
[71] | Mori, M. (2012). The uncanny valley (Translated by Karl MacDorman and Norri Kageki). IEEE Robotics & Automation Magazine, 19(2), 98-100. |
[72] |
Moussawi, S., Koufaris, M., & Benbunan-Fich, R. (2020). How perceptions of intelligence and anthropomorphism affect adoption of personal intelligent agents. Electronic Markets, 31(2), 343-364.
doi: 10.1007/s12525-020-00411-w |
[73] |
Nelson, A. J., & Irwin, J. (2014). “Defining what we do-all over again”: Occupational identity, technological change, and the librarian/Internet-search relationship. Academy of Management Journal, 57(3), 892-928.
doi: 10.5465/amj.2012.0201 URL |
[74] | Nilsson, N. J. (1971). Problem-solving methods in artificial intelligence. New York: McGraw-Hill. |
[75] | Oksanen, A., Savela, N., Latikka, R., & Koivula, A. (2020). Trust toward robots and artificial intelligence: An experimental approach to human-technology interactions Online. Frontiers in Psychology, 11, Article 568256. |
[76] |
Pantano, E., & Scarpi, D. (2022). I, robot, you, consumer: Measuring artificial intelligence types and their effect on consumers emotions in service. Journal of Service Research, 25(4), 583-600.
doi: 10.1177/10946705221103538 URL |
[77] |
Parker, S. K., & Grote, G. (2022). Automation, algorithms, and beyond: Why work design matters more than ever in a digital world. Applied Psychology, 71(4), 1171-1204.
doi: 10.1111/apps.v71.4 URL |
[78] |
Paul, J., Ueno, A., & Dennis, C. (2023). ChatGPT and consumers: Benefits, pitfalls and future research agenda. International Journal of Consumer Studies, 47(4), 1213-1225.
doi: 10.1111/ijcs.v47.4 URL |
[79] |
Pillai, R., & Sivathanu, B. (2020). Adoption of artificial intelligence (AI) for talent acquisition in IT/ITeS organizations. Benchmarking: An International Journal, 27(9), 2599-2629.
doi: 10.1108/BIJ-04-2020-0186 URL |
[80] |
Pitardi, V., Wirtz, J., Paluch, S., & Kunz, W. H. (2022). Service robots, agency and embarrassing service encounters. Journal of Service Management, 33(2), 389-414.
doi: 10.1108/JOSM-12-2020-0435 URL |
[81] | Prikshat, V., Malik, A., & Budhwar, P. (2021). AI-augmented HRM: Antecedents, assimilation and multilevel consequences. Human Resource Management Review, 33(1), Article 100860. |
[82] |
Rafaeli, A., Altman, D., Gremler, D. D., Huang, M. H., Grewal, D., Iyer, B., … de Ruyter, K. (2017). The future of frontline research: Invited commentaries. Journal of Service Research, 20(1), 91-99.
doi: 10.1177/1094670516679275 URL |
[83] |
Raisch, S., & Krakowski, S. (2021). Artificial intelligence and management: The automation-augmentation paradox. Academy of Management Review, 46(1), 192-210.
doi: 10.5465/amr.2018.0072 URL |
[84] |
Robinette, P., Howard, A. M., & Wagner, A. R. (2017). Effect of robot performance on human-robot trust in time- critical situations. IEEE Transactions on Human Machine Systems, 47(4), 425-436.
doi: 10.1109/THMS.2017.2648849 URL |
[85] |
Robinson, S., Orsingher, C., Alkire, L., de Keyser, A., Giebelhausen, M., Papamichail, K. N., … Temerak, M. S. (2020). Frontline encounters of the AI kind: An evolved service encounter framework. Journal of Business Research, 116, 366-376.
doi: 10.1016/j.jbusres.2019.08.038 URL |
[86] | Savela, N., Kaakinen, M., Ellonen, N., & Oksanen, A. (2021). Sharing a work team with robots: The negative effect of robot co-workers on in-group identification with the work team. Computers in Human Behavior, 115, Article 106585. |
[87] | Seeber, I., Bittner, E., Briggs, R. O., de Vreede, T., de Vreede, G., Elkins, A., … Söllner, M. (2020). Machines as teammates: A research agenda on AI in team collaboration. Information & Management, 57(2), Article 103174. |
[88] | Song, X., Xu, B., & Zhao, Z. Z. (2022). Can people experience romantic love for artificial intelligence? An empirical study of intelligent assistants. Information & Management, 59, Article 103595. |
[89] | Suseno, Y., Chang, C. C., Hudik, M., & Fang, E. S. (2021). Beliefs, anxiety and change readiness for artificial intelligence adoption among human resource managers: The moderating role of high-performance work systems. International Journal of Human Resource Management, 33(6), 1209-1236. |
[90] |
Spatola, N., & Normand, A. (2020). Human vs. machine: The psychological and behavioral consequences of being compared to an outperforming artificial agent. Psychological Research, 85(3), 915-925.
doi: 10.1007/s00426-020-01317-0 |
[91] | Stein, J. P., Appel, M., Jost, A., & Ohler, P. (2020). Matter over mind? How the acceptance of digital entities depends on their appearance, mental prowess, and the interaction between both. International Journal of Human-Computer Studies, 142, Article 102463. |
[92] |
Sullivan, Y. W., & Wamba, S. F. (2022). Moral judgments in the age of artificial intelligence. Journal of Business Ethics, 178(4), 917-943.
doi: 10.1007/s10551-022-05053-w |
[93] | Sundararajan, M., & Najmi, A. (2020, July). The many Shapley values for model explanation. ICML’20: Proceedings of the 37th International Conference on Machine Learning, Vienna, Austria. |
[94] |
Tang, P. M., Koopman, J., McClean, S. T., Zhang, J. H., Li, C. H., de Cremer, D., … Ng, C. T. S. (2022). When conscientious employees meet intelligent machines: An integrative approach inspired by complementarity theory and role theory. Academy of Management Journal, 65(3), 1019-1054.
doi: 10.5465/amj.2020.1516 URL |
[95] | Tang, P. M., Koopman, J., Yam, K. C., de Cremer, D., Zhang, J. H., & Reynders, P. (2022). The self-regulatory consequences of dependence on intelligent machines at work: Evidence from field and experimental studies. Human Resource Management, Advance online publication. https://doi.org/10.1002/hrm.22154 |
[96] |
Tong, S., Jia, N., Luo, X., & Fang, Z. (2021). The Janus face of artificial intelligence feedback: Deployment versus disclosure effects on employee performance. Strategic Management Journal, 42(9), 1600-1631.
doi: 10.1002/smj.v42.9 URL |
[97] | Tsai, C. Y., Marshall, J. D., Choudhury, A., Serban, A., Hou, Y. T. Y., Jung, M. F., … Yammarino, F. J. (2022). Human-robot collaboration: A multilevel and integrated leadership framework. Leadership Quarterly, 33(1), Article 101594. |
[98] |
van de Weerd, I., Mangula, I. S., & Brinkkemper, S. (2016). Adoption of software as a service in Indonesia: Examining the influence of organizational factors. Information & Management, 53(7), 915-928.
doi: 10.1016/j.im.2016.05.008 URL |
[99] |
Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. Management Information Systems Quarterly, 27(3), 425-478.
doi: 10.2307/30036540 URL |
[100] | Vrontis, D., Christofi, M., Pereira, V., Tarba, S., Makrides, A., & Trichina, E. (2022). Artificial intelligence, robotics, advanced technologies and human resource management: A systematic review. International Journal of Human Resource Management, 33(6), 1237-1266. |
[101] |
Wang, B., Liu, Y., & Parker, S. K. (2020). How does the use of information communication technology affect individuals? A work design perspective. Academy of Management Annals, 14(2), 695-725.
doi: 10.5465/annals.2018.0127 URL |
[102] | Wang, J. W., Omar, A. H., Alotaibi, F. M., Daradkeh, Y. I., & Althubiti, S. A. (2022). Business intelligence ability to enhance organizational performance and performance evaluation capabilities by improving data mining systems for competitive advantage. Information Processing & Management, 59(6), Article 103075. |
[103] |
Webber, S. S., Detjen, J., MacLean, T. L., & Thomas, D. (2019). Team challenges: Is artificial intelligence the solution? Business Horizons, 62(6), 741-750.
doi: 10.1016/j.bushor.2019.07.007 |
[104] | Webster, J., & Watson, R. T. (2002). Analyzing the past to prepare for the future: Writing a literature review. MIS Quarterly, 26(2), 9-20. |
[105] | Wilson, J., & Daugherty, P. (2018). Collaborative intelligence: Humans and AI are joining forces. Harvard Business Review, 96(4), 114-124. |
[106] |
Wirtz, J., Patterson, G. P., Kunz, H. W., Gruber, T., Lu, V. N., Paluch, S., & Martins, A. (2018). Brave new world: Service robots in the frontline. Journal of Service Management, 29(5), 907-931.
doi: 10.1108/JOSM-04-2018-0119 URL |
[107] |
Yam, K. C., Bigman, Y. E., Tang, P. M., Ilies, R., Cremer, D. D., Soh, H., & Gray, K. (2021). Robots at work: People prefer-and forgive-service robots with perceived feelings. Journal of Applied Psychology, 106(10), 1557-1572.
doi: 10.1037/apl0000834 pmid: 33030919 |
[108] | Yam, K. C., Goh, E. Y., Fehr, R., Lee, R., Soh, H., & Gray, K. (2022). When your boss is a robot: Workers are more spiteful to robot supervisors that seem more human. Journal of Experimental Social Psychology, 102, Article 104360. |
[109] |
Yam, K. C., Tang, P. M., Jackson, J. C., Su, R., & Gray, K. (2023). The rise of robots increases job insecurity and maladaptive workplace behaviors: Multimethod evidence. Journal of Applied Psychology, 108(5), 850-870.
doi: 10.1037/apl0001045 URL |
[110] |
Yoon, S. N., & Lee, D. (2019). Artificial intelligence and robots in healthcare: What are the success factors for technology-based service encounters? International Journal of Healthcare Management, 12(3), 218-225.
doi: 10.1080/20479700.2018.1498220 URL |
[1] | 吴波, 张傲杰, 曹菲. 专业设计、用户设计还是AI设计?设计源效应的心理机制[J]. 心理科学进展, 2024, 32(6): 995-1009. |
[2] | 侯悍超, 倪士光, 林书亚, 王蒲生. 当AI学习共情:心理学视角下共情计算的主题、场景与优化[J]. 心理科学进展, 2024, 32(5): 845-858. |
[3] | 舒丽芳, 王魁, 吴月燕, 陈斯允. 人工智能指导对消费者长期目标追求的多阶段影响机制[J]. 心理科学进展, 2024, 32(3): 451-464. |
[4] | 涂艳, 蒿坡, 龙立荣. 工作替代还是工作转型?技术型工作不安全感的内涵、影响后果及来源[J]. 心理科学进展, 2023, 31(8): 1359-1373. |
[5] | 蒋路远, 曹李梅, 秦昕, 谭玲, 陈晨, 彭小斐. 人工智能决策的公平感知[J]. 心理科学进展, 2022, 30(5): 1078-1092. |
[6] | 邓士昌, 许祺, 张晶晶, 李象千. 基于心灵知觉理论的AI服务用户接受机制及使用促进策略[J]. 心理科学进展, 2022, 30(4): 723-737. |
[7] | 袁玉琢, 骆方. 人工智能辅助的自闭症早期患者的筛查与诊断[J]. 心理科学进展, 2022, 30(10): 2303-2320. |
[8] | 姜力铭, 田雪涛, 任萍, 骆方. 人工智能辅助下的心理健康新型测评[J]. 心理科学进展, 2022, 30(1): 157-167. |
[9] | 徐艳. 视觉学习与注意力对心理影响[J]. 心理科学进展, 2017, 25(suppl.): 92-92. |
[10] | 陆欣欣;涂乙冬. 工作投入的短期波动[J]. 心理科学进展, 2015, 23(2): 268-279. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||