心理科学进展 ›› 2023, Vol. 31 ›› Issue (11): 2129-2141.doi: 10.3724/SP.J.1042.2023.02129
张伟霞1, 席敏2(), 阴甜甜1, 王成1, 司书宾3,4
收稿日期:
2022-10-26
出版日期:
2023-11-15
发布日期:
2023-08-28
通讯作者:
席敏, E-mail: ximin86269@nwpu.edu.cn
基金资助:
ZHANG Weixia1, XI Min2(), YIN Tiantian1, WANG Cheng1, SI Shubin3,4
Received:
2022-10-26
Online:
2023-11-15
Published:
2023-08-28
摘要:
抑郁症是现代社会亟需解决的公共健康问题, 预防是应对该问题最有效的方式之一。有效预防的关键在于准确识别潜在抑郁症患者, 捕捉抑郁状态发生变化的预警信号, 及时采取预防措施。抑郁是由多种症状相互作用而成的网络系统, 该网络的结构特征和动力特征能为抑郁症发生与演变的预测提供新的理论视角和可测量的指标。以如何预测抑郁症发生与演化的关键问题为切入点, 从理论的角度论述症状网络与抑郁的关系, 进一步考察抑郁症状网络的拓扑结构特征、临界现象相关指标在预测抑郁发作及突变中的表现力。为增加早期预警信号在抑郁状态预测方面的准确性, 未来研究应当构建更系统、全面的网络, 通过使用综合的或基于机器学习的预警指标, 优化抑郁状态确定方法。
中图分类号:
张伟霞, 席敏, 阴甜甜, 王成, 司书宾. (2023). 基于网络分析的抑郁症产生与演变预测. 心理科学进展 , 31(11), 2129-2141.
ZHANG Weixia, XI Min, YIN Tiantian, WANG Cheng, SI Shubin. (2023). Prediction of depression onset and development based on network analysis. Advances in Psychological Science, 31(11), 2129-2141.
图2 网络去稳定性和转变模型示意图 注:该图中的每一个节点以及节点之间的连线的意义与图1相同。(A)右边抑郁状态网络中节点连接更密切, 展示了抑制变化发生的固化过程, 左边积极的网络节点连接明显减少; (B)治疗能够改变抑郁症状网络的稳定性, 促进建设性的心理加工; (C)接受治疗以后, 右侧抑郁网络被削弱。左侧积极网络的激活与运行能促进积极功能的螺旋上升。图中蓝色小球及其左右箭头代表状态, 灰色闪电标识代表干预介入。[资料来源:Hayes & Andrews, 2020]
[1] |
蔡玉清, 董书阳, 袁帅, 胡传鹏. (2020). 变量间的网络分析模型及其应用. 心理科学进展, 28(1), 178-190.
doi: 10.3724/SP.J.1042.2020.00178 |
[2] |
陈琛, 王力, 曹成琦, 李根. (2021). 心理病理学网络理论, 方法与挑战. 心理科学进展, 29(10), 1724-1739.
doi: 10.3724/SP.J.1042.2021.01724 |
[3] |
Aalbers, G., McNally, R. J., Heeren, A., De Wit, S., & Fried, E. I. (2019). Social media and depression symptoms: A network perspective. Journal of Experimental Psychology: General, 148(8), 1454-1462.
doi: 10.1037/xge0000528 URL |
[4] |
Armbrecht, E., Shah, A., Schepman, P., Shah, R., Pappadopulos, E., Chambers, R., ... McIntyre, R. S. (2020). Economic and humanistic burden associated with noncommunicable diseases among adults with depression and anxiety in the United States. Journal of Medical Economics, 23(9), 1032-1042.
doi: 10.1080/13696998.2020.1776297 pmid: 32468879 |
[5] |
Bastiaansen, J. A., Kunkels, Y. K., Blaauw, F. J., Boker, S. M., Ceulemans, E., Chen, M., ... Bringmann, L. F. (2020). Time to get personal? The impact of researchers choices on the selection of treatment targets using the experience sampling methodology. Journal of Psychosomatic Research, 137, 110211.
doi: 10.1016/j.jpsychores.2020.110211 URL |
[6] | Boeing, G. (2016). Visual analysis of nonlinear dynamical systems: Chaos, fractals, self-similarity and the limits of prediction. Systems, 4(4), 37. |
[7] | Boettner, C., & Boers, N. (2022). Critical slowing down in dynamical systems driven by nonstationary correlated noise. Physical Review Research, 4(1), 013230. |
[8] |
Borsboom, D. (2008). Psychometric perspectives on diagnostic systems. Journal of Clinical Psychology, 64(9), 1089-1108.
doi: 10.1002/jclp.20503 pmid: 18683856 |
[9] |
Borsboom, D. (2017). A network theory of mental disorders. World Psychiatry, 16(1), 5-13.
doi: 10.1002/wps.v16.1 URL |
[10] | Borsboom, D., Cramer, A. O., & Kalis, A. (2019). Brain disorders? Not really: Why network structures block reductionism in psychopathology research. Behavioral and Brain Sciences, 42, e2, 1-63. |
[11] |
Bos, F. M., Fried, E. I., Hollon, S. D., Bringmann, L. F., Dimidjian, S., DeRubeis, R. J., & Bockting, C. L. (2018). Cross-sectional networks of depressive symptoms before and after antidepressant medication treatment. Social Psychiatry and Psychiatric Epidemiology, 53(6), 617-627.
doi: 10.1007/s00127-018-1506-1 pmid: 29627898 |
[12] |
Bos, F. M., Schreuder, M. J., George, S. V., Doornbos, B., Bruggeman, R., van der Krieke, L., ... Snippe, E. (2022). Anticipating manic and depressive transitions in patients with bipolar disorder using early warning signals. International Journal of Bipolar Disorders, 10(1), 1-14.
doi: 10.1186/s40345-021-00248-y |
[13] |
Boschloo, L., van Borkulo, C. D., Borsboom, D., & Schoevers, R. A. (2016). A prospective study on how symptoms in a network predict the onset of depression. Psychotherapy and Psychosomatics, 85(3), 183-184.
doi: 10.1159/000442001 pmid: 27043457 |
[14] |
Bringmann, L. F., Albers, C., Bockting, C., Borsboom, D., Ceulemans, E., Cramer, A., ... Wichers, M. (2022). Psychopathological networks: Theory, methods and practice. Behaviour Research and Therapy, 149, 104011.
doi: 10.1016/j.brat.2021.104011 URL |
[15] | Bringmann, L. F., Vissers, N., Wichers, M., Geschwind, N., Kuppens, P., Peeters, F., ... Tuerlinckx, F. (2013). A network approach to psychopathology: New insights into clinical longitudinal data. PLoS ONE, 8(4), e60188. |
[16] | Bury, T. M., Sujith, R., Pavithran, I., Scheffer, M., Lenton, T. M., Anand, M., & Bauch, C. T. (2021). Deep learning for early warning signals of tipping points. Proceedings of the National Academy of Sciences, 118(39), e2106140118. |
[17] |
Clements, C. F., McCarthy, M. A., & Blanchard, J. L. (2019). Early warning signals of recovery in complex systems. Nature Communications, 10(1), 1-9.
doi: 10.1038/s41467-018-07882-8 |
[18] | Cramer, A. O., Van Borkulo, C. D., Giltay, E. J., Van Der Maas, H. L., Kendler, K. S., Scheffer, M., & Borsboom, D. (2016). Major depression as a complex dynamic system. PLoS ONE, 11(12), e0167490. |
[19] |
Curtiss, J. E., Mischoulon, D., Fisher, L. B., Cusin, C., Fedor, S., Picard, R. W., & Pedrelli, P. (2023). Rising early warning signals in affect associated with future changes in depression: A dynamical systems approach. Psychological Medicine, 53(7), 3124-3132.
doi: 10.1017/S0033291721005183 URL |
[20] | Dablander, F., Pichler, A., Cika, A., & Bacilieri, A. (2023). Anticipating critical transitions in psychological systems using early warning signals: Theoretical and practical considerations. Psychological Methods, 28(4), 765-790. doi: 10.1037/met0000450 |
[21] |
Dai, P., Xiong, T., Zhou, X., Ou, Y., Li, Y., Kui, X., ... Huang, Z. (2022). The alterations of brain functional connectivity networks in major depressive disorder detected by machine learning through multisite rs-fMRI data. Behavioural Brain Research, 435, 114058.
doi: 10.1016/j.bbr.2022.114058 URL |
[22] |
De Beurs, D., Bockting, C., Kerkhof, A., Scheepers, F., O’Connor, R., Penninx, B., & van de Leemput, I. (2021). A network perspective on suicidal behavior: Understanding suicidality as a complex system. Suicide and Life‐ Threatening Behavior, 51(1), 115-126.
doi: 10.1111/sltb.v51.1 URL |
[23] |
de Felice, G., Giuliani, A., Pincus, D., Scozzari, A., Berardi, V., Kratzer, L., ... Schiepek, G. (2022). Stability and flexibility in psychotherapy process predict outcome. Acta Psychologica, 227, 103604.
doi: 10.1016/j.actpsy.2022.103604 URL |
[24] |
de Vries, Y. A., Roest, A. M., Bos, E. H., Burgerhof, J. G., Van Loo, H. M., & de Jonge, P. (2019). Predicting antidepressant response by monitoring early improvement of individual symptoms of depression: Individual patient data meta-analysis. The British Journal of Psychiatry, 214(1), 4-10.
doi: 10.1192/bjp.2018.122 URL |
[25] |
Dejonckheere, E., Mestdagh, M., Houben, M., Rutten, I., Sels, L., Kuppens, P., & Tuerlinckx, F. (2019). Complex affect dynamics add limited information to the prediction of psychological well-being. Nature Human Behaviour, 3(5), 478-491.
doi: 10.1038/s41562-019-0555-0 pmid: 30988484 |
[26] |
DeYoung, C. G., & Krueger, R. F. (2018). Understanding psychopathology: Cybernetics and psychology on the boundary between order and chaos. Psychological Inquiry, 29(3), 165-174.
doi: 10.1080/1047840X.2018.1513690 URL |
[27] |
Drake, J. M., & Griffen, B. D. (2010). Early warning signals of extinction in deteriorating environments. Nature, 467(7314), 456-459.
doi: 10.1038/nature09389 |
[28] |
Eisele, G., Lafit, G., Vachon, H., Kuppens, P., Houben, M., Myin-Germeys, I., & Viechtbauer, W. (2021). Affective structure, measurement invariance, and reliability across different experience sampling protocols. Journal of Research in Personality, 92, 104094.
doi: 10.1016/j.jrp.2021.104094 URL |
[29] | Fisher, A., Soyster, P., & Ashlock, L. (2021). Machine learning algorithms for generating early warning signals in real time. Biological Psychiatry, 89(9), S58-S59. |
[30] | Fried, E. I., & Nesse, R. M. (2015). Depression sum-scores don’t add up: Why analyzing specific depression symptoms is essential. BMC Medicine, 13(1), 72. |
[31] | Fried, E. I., Rieble, C., & Proppert, R. K. (2022). Building an early warning system for depression: Rationale, objectives, and methods of the WARN-D study. PsyArXiv. doi: 10.31234/osf.io/9qcvs |
[32] |
Fried, E. I., van Borkulo, C. D., Cramer, A. O., Boschloo, L., Schoevers, R. A., & Borsboom, D. (2017). Mental disorders as networks of problems: A review of recent insights. Social Psychiatry and Psychiatric Epidemiology, 52(1), 1-10.
doi: 10.1007/s00127-016-1319-z pmid: 27921134 |
[33] |
Fried, E. I., van Borkulo, C. D., Epskamp, S., Schoevers, R. A., Tuerlinckx, F., & Borsboom, D. (2016). Measuring depression over time... Or not? Lack of unidimensionality and longitudinal measurement invariance in four common rating scales of depression. Psychological Assessment, 28(11), 1354-1367.
pmid: 26821198 |
[34] |
Gao, J., Barzel, B., & Barabási, A.-L. (2016). Universal resilience patterns in complex networks. Nature, 530(7590), 307-312.
doi: 10.1038/nature16948 |
[35] |
Gao, T. T., & Yan, G. (2022). Autonomous inference of complex network dynamics from incomplete and noisy data. Nature Computational Science, 2(3), 160-168.
doi: 10.1038/s43588-022-00217-0 |
[36] |
Gijzel, S. M., Rector, J., van Meulen, F. B., van Der Loeff, R. S., van de Leemput, I. A., Scheffer, M., ... Melis, R. J. (2020). Measurement of dynamical resilience indicators improves the prediction of recovery following hospitalization in older adults. Journal of the American Medical Directors Association, 21(4), 525-530.
doi: S1525-8610(19)30751-0 pmid: 31836428 |
[37] |
Gillan, C. M., & Rutledge, R. B. (2021). Smartphones and the neuroscience of mental health. Annual Review of Neuroscience, 44, 129-151.
doi: 10.1146/annurev-neuro-101220-014053 pmid: 33556250 |
[38] |
Hakulinen, C., Fried, E. I., Pulkki-Råback, L., Virtanen, M., Suvisaari, J., & Elovainio, M. (2020). Network structure of depression symptomology in participants with and without depressive disorder: The population-based Health 2000-2011 study. Social Psychiatry and Psychiatric Epidemiology, 55(10), 1273-1282.
doi: 10.1007/s00127-020-01843-7 |
[39] | Hayes, A. M., & Andrews, L. A. (2020). A complex systems approach to the study of change in psychotherapy. BMC Medicine, 18(1), 197. |
[40] |
Hayes, A. M., Feldman, G. C., Beevers, C. G., Laurenceau, J.-P., Cardaciotto, L., & Lewis-Smith, J. (2007). Discontinuities and cognitive changes in an exposure- based cognitive therapy for depression. Journal of Consulting and Clinical Psychology, 75(3), 409-421.
doi: 10.1037/0022-006X.75.3.409 URL |
[41] |
Hayes, A. M., Yasinski, C., Barnes, J. B., & Bockting, C. L. (2015). Network destabilization and transition in depression: New methods for studying the dynamics of therapeutic change. Clinical Psychology Review, 41, 27-39.
doi: 10.1016/j.cpr.2015.06.007 pmid: 26197726 |
[42] |
Heeren, A., & McNally, R. J. (2018). Social anxiety disorder as a densely interconnected network of fear and avoidance for social situations. Cognitive Therapy and Research, 42(1), 103-113.
doi: 10.1007/s10608-017-9876-3 URL |
[43] | Helmich, M. A., Smit, A. C., Bringmann, L. F., Schreuder, M., Oldehinkel, A., Wichers, M., & Snippe, E. (2022). Detecting impending symptom transitions using early warning signals in individuals receiving treatment for depression. Clinical Psychological Science, 21677026221137006. |
[44] |
Helmich, M. A., Wichers, M., Olthof, M., Strunk, G., Aas, B., Aichhorn, W., ... Snippe, E. (2020). Sudden gains in day-to-day change: Revealing nonlinear patterns of individual improvement in depression. Journal of Consulting and Clinical Psychology, 88(2), 119-127.
doi: 10.1037/ccp0000469 pmid: 31894994 |
[45] |
Hofmann, S. G., Curtiss, J., & McNally, R. J. (2016). A complex network perspective on clinical science. Perspectives on Psychological Science, 11(5), 597-605.
pmid: 27694457 |
[46] | Hosenfeld, B., Bos, E. H., Wardenaar, K. J., Conradi, H. J., van der Maas, H. L., Visser, I., & de Jonge, P. (2015). Major depressive disorder as a nonlinear dynamic system: Bimodality in the frequency distribution of depressive symptoms over time. BMC Psychiatry, 15(1), 222. |
[47] |
Isvoranu, A.-M., Guloksuz, S., Epskamp, S., van Os, J., Borsboom, D., & Investigators, G. (2020). Toward incorporating genetic risk scores into symptom networks of psychosis. Psychological Medicine, 50(4), 636-643.
doi: 10.1017/S003329171900045X URL |
[48] | Keshavarz, K., Hedayati, A., Rezaei, M., Goudarzi, Z., Moghimi, E., Rezaee, M., & Lotfi, F. (2022). Economic burden of major depressive disorder: A case study in Southern Iran. BMC Psychiatry, 22(1), 577. |
[49] |
Kim, N. S., & Ahn, W.-k. (2002). Clinical psychologists' theory-based representations of mental disorders predict their diagnostic reasoning and memory. Journal of Experimental Psychology: General, 131(4), 451-476.
doi: 10.1037/0096-3445.131.4.451 URL |
[50] | Kunkels, Y. K., Riese, H., Knapen, S. E., Riemersma-van der Lek, R. F., George, S. V., van Roon, A. M., ... Wichers, M. (2021). Efficacy of early warning signals and spectral periodicity for predicting transitions in bipolar patients: An actigraphy study. Translational Psychiatry, 11(1), 350. |
[51] |
Kuranova, A., Booij, S. H., Menne-Lothmann, C., Decoster, J., van Winkel, R., Delespaul, P., ... Rutten, B. P. (2020). Measuring resilience prospectively as the speed of affect recovery in daily life: A complex systems perspective on mental health. BMC Medicine, 18(1), 1-11.
doi: 10.1186/s12916-019-1443-1 |
[52] |
Liu, X., Li, D., Ma, M., Szymanski, B. K., Stanley, H. E., & Gao, J. (2022). Network resilience. Physics Reports, 971, 1-108.
doi: 10.1016/j.physrep.2022.04.002 URL |
[53] |
Lu, J., Xu, X., Huang, Y., Li, T., Ma, C., Xu, G., ... Zhang, N. (2021). Prevalence of depressive disorders and treatment in China: A cross-sectional epidemiological study. The Lancet Psychiatry, 8(11), 981-990.
doi: 10.1016/S2215-0366(21)00251-0 URL |
[54] |
Madhoo, M., & Levine, S. Z. (2016). Network analysis of the Quick Inventory of Depressive Symptomatology: Reanalysis of the STAR* D clinical trial. European Neuropsychopharmacology, 26(11), 1768-1774.
doi: 10.1016/j.euroneuro.2016.09.368 URL |
[55] |
McLaughlin, K. A., Colich, N. L., Rodman, A. M., & Weissman, D. G. (2020). Mechanisms linking childhood trauma exposure and psychopathology: A transdiagnostic model of risk and resilience. BMC Medicine, 18(1), 1-11.
doi: 10.1186/s12916-019-1443-1 |
[56] |
Monk, N. J., McLeod, G. F., Mulder, R. T., Spittlehouse, J. K., & Boden, J. M. (2022). Expanding the system: A brief psychosocial complex systems model of internalising disorder. Journal of Affective Disorders, 303, 297-300.
doi: 10.1016/j.jad.2022.02.014 pmid: 35151677 |
[57] | Ni, Q., Tang, M., Liu, Y., & Lai, Y.-C. (2019). Machine learning dynamical phase transitions in complex networks. Physical Review E, 100(5), 052312. |
[58] |
Olthof, M., Hasselman, F., Strunk, G., Aas, B., Schiepek, G., & Lichtwarck-Aschoff, A. (2020). Destabilization in self-ratings of the psychotherapeutic process is associated with better treatment outcome in patients with mood disorders. Psychotherapy Research, 30(4), 520-531.
doi: 10.1080/10503307.2019.1633484 pmid: 31256713 |
[59] |
Olthof, M., Hasselman, F., Strunk, G., van Rooij, M., Aas, B., Helmich, M. A., ... Lichtwarck-Aschoff, A. (2020). Critical fluctuations as an early-warning signal for sudden gains and losses in patients receiving psychotherapy for mood disorders. Clinical Psychological Science, 8(1), 25-35.
doi: 10.1177/2167702619865969 URL |
[60] |
Pe, M. L., Kircanski, K., Thompson, R. J., Bringmann, L. F., Tuerlinckx, F., Mestdagh, M., ... Gotlib, I. H. (2015). Emotion-network density in major depressive disorder. Clinical Psychological Science, 3(2), 292-300.
doi: 10.1177/2167702614540645 pmid: 31754552 |
[61] |
Robinaugh, D. J., Hoekstra, R. H., Toner, E. R., & Borsboom, D. (2020). The network approach to psychopathology: A review of the literature 2008-2018 and an agenda for future research. Psychological Medicine, 50(3), 353-366.
doi: 10.1017/S0033291719003404 pmid: 31875792 |
[62] |
Roefs, A., Fried, E. I., Kindt, M., Martijn, C., Elzinga, B., Evers, A. W., ... Jansen, A. (2022). A new science of mental disorders: Using personalised, transdiagnostic, dynamical systems to understand, model, diagnose and treat psychopathology. Behaviour Research and Therapy, 153, 104096.
doi: 10.1016/j.brat.2022.104096 URL |
[63] |
Scheffer, M., Bascompte, J., Brock, W. A., Brovkin, V., Carpenter, S. R., Dakos, V., ... Sugihara, G. (2009). Early-warning signals for critical transitions. Nature, 461(7260), 53-59.
doi: 10.1038/nature08227 |
[64] | Scheffer, M., Carpenter, S. R., Lenton, T. M., Bascompte, J., Brock, W., Dakos, V., ... Vandermeer, J. (2012). Anticipating critical transitions. Science, 338(6105), 344-348. |
[65] |
Schiepek, G., & Strunk, G. (2010). The identification of critical fluctuations and phase transitions in short term and coarse-grained time series—a method for the real-time monitoring of human change processes. Biological Cybernetics, 102(3), 197-207.
doi: 10.1007/s00422-009-0362-1 pmid: 20084517 |
[66] | Schmiedek, F., Lövdén, M., von Oertzen, T., & Lindenberger, U. (2020). Within-person structures of daily cognitive performance differ from between-person structures of cognitive abilities. PeerJ, 8, e9290. |
[67] |
Schreuder, M. J., Wigman, J. T., Groen, R. N., Weinans, E., Wichers, M., & Hartman, C. A. (2022). Anticipating the direction of symptom progression using critical slowing down: A proof-of-concept study. BMC Psychiatry, 22(1), 1-13.
doi: 10.1186/s12888-021-03663-8 |
[68] |
Schweren, L., Van Borkulo, C. D., Fried, E., & Goodyer, I. M. (2018). Assessment of symptom network density as a prognostic marker of treatment response in adolescent depression. JAMA Psychiatry, 75(1), 98-100.
doi: 10.1001/jamapsychiatry.2017.3561 pmid: 29188277 |
[69] |
Snippe, E., Viechtbauer, W., Geschwind, N., Klippel, A., de Jonge, P., & Wichers, M. (2017). The impact of treatments for depression on the dynamic network structure of mental states: Two randomized controlled trials. Scientific Reports, 7(1), 1-10.
doi: 10.1038/s41598-016-0028-x |
[70] |
van Borkulo, C., Boschloo, L., Borsboom, D., Penninx, B. W., Waldorp, L. J., & Schoevers, R. A. (2015). Association of symptom network structure with the course of depression. JAMA Psychiatry, 72(12), 1219-1226.
doi: 10.1001/jamapsychiatry.2015.2079 URL |
[71] |
van de Leemput, I. A., Wichers, M., Cramer, A. O., Borsboom, D., Tuerlinckx, F., Kuppens, P., ... Aggen, S. H. (2014). Critical slowing down as early warning for the onset and termination of depression. Proceedings of the National Academy of Sciences, 111(1), 87-92.
doi: 10.1073/pnas.1312114110 URL |
[72] |
van Rooijen, G., Isvoranu, A.-M., Kruijt, O. H., van Borkulo, C. D., Meijer, C. J., Wigman, J. T., ... de Haan, L. (2018). A state-independent network of depressive, negative and positive symptoms in male patients with schizophrenia spectrum disorders. Schizophrenia Research, 193, 232-239.
doi: S0920-9964(17)30446-2 pmid: 28844638 |
[73] |
Weinans, E., Quax, R., van Nes, E. H., & Leemput, I. A. (2021). Evaluating the performance of multivariate indicators of resilience loss. Scientific Reports, 11(1), 1-11.
doi: 10.1038/s41598-020-79139-8 |
[74] |
Wichers, M. (2014). The dynamic nature of depression: A new micro-level perspective of mental disorder that meets current challenges. Psychological Medicine, 44(7), 1349-1360.
doi: 10.1017/S0033291713001979 pmid: 23942140 |
[75] |
Wichers, M., Groot, P. C., Psychosystems, E., & Group, E. (2016). Critical slowing down as a personalized early warning signal for depression. Psychotherapy and Psychosomatics, 85(2), 114-116.
doi: 10.1159/000441458 pmid: 26821231 |
[76] |
Wichers, M., Smit, A. C., & Snippe, E. (2020). Early warning signals based on momentary affect dynamics can expose nearby transitions in depression: A confirmatory single-subject time-series study. Journal for Person- Oriented Research, 6(1), 1-15.
doi: 10.17505/jpor.2020.22042 URL |
[77] |
Wittenborn, A., Rahmandad, H., Rick, J., & Hosseinichimeh, N. (2016). Depression as a systemic syndrome: Mapping the feedback loops of major depressive disorder. Psychological Medicine, 46(3), 551-562.
doi: 10.1017/S0033291715002044 pmid: 26621339 |
[78] |
Wright, A. G., & Woods, W. C. (2020). Personalized models of psychopathology. Annual Review of Clinical Psychology, 16, 49-74.
doi: 10.1146/annurev-clinpsy-102419-125032 pmid: 32070120 |
[79] |
Yasinski, C., Hayes, A. M., Ready, C. B., Abel, A., Görg, N., & Kuyken, W. (2020). Processes of change in cognitive behavioral therapy for treatment-resistant depression: Psychological flexibility, rumination, avoidance, and emotional processing. Psychotherapy Research, 30(8), 983-997.
doi: 10.1080/10503307.2019.1699972 pmid: 31822203 |
[80] |
Zhu, J., Jiang, C., Chen, J., Lin, X., Yu, R., Li, X., & Hu, B. (2022). EEG based depression recognition using improved graph convolutional neural network. Computers in Biology and Medicine, 148, 105815.
doi: 10.1016/j.compbiomed.2022.105815 URL |
[1] | 叶方, 邱惠林, 蒋柯, 李长瑾. 基于预测加工理论的角色交换解释模型[J]. 心理科学进展, 2023, 31(8): 1504-1516. |
[2] | 李雪玉, 高申春. 预测加工与认知边界:基于现象学的视角[J]. 心理科学进展, 2023, 31(7): 1186-1194. |
[3] | 陆静怡, 邱天, 陈宇琦, 方晴雯, 尚雪松. 人心难读:冲突中的预测偏差及其心理机制[J]. 心理科学进展, 2022, 30(7): 1439-1447. |
[4] | 蒋家丽, 李立言, 李子颖, 雷秀雅, 孟泽龙. 青少年非自杀性自伤行为持续和停止的预测性因素[J]. 心理科学进展, 2022, 30(7): 1536-1545. |
[5] | 刘笑晗, 陈明隆, 郭静. 机器学习在儿童创伤后应激障碍识别及转归预测中的应用[J]. 心理科学进展, 2022, 30(4): 851-862. |
[6] | 李琳, 赵赛男, 张俐娟, 王敬欣. 老年人汉语阅读中预测误差成本的产生机制[J]. 心理科学进展, 2022, 30(1): 1-14. |
[7] | 黄观澜, 周晓璐. 抑郁症患者的语言使用模式[J]. 心理科学进展, 2021, 29(5): 838-848. |
[8] | 苏悦, 刘明明, 赵楠, 刘晓倩, 朱廷劭. 基于社交媒体数据的心理指标识别建模: 机器学习的方法[J]. 心理科学进展, 2021, 29(4): 571-585. |
[9] | 黄骐, 陈春萍, 罗跃嘉, 伍海燕. 好奇心的机制及作用[J]. 心理科学进展, 2021, 29(4): 723-736. |
[10] | 陈琛, 王力, 曹成琦, 李根. 心理病理学网络理论、方法与挑战[J]. 心理科学进展, 2021, 29(10): 1724-1739. |
[11] | 何姣, 白宝玉, 夏勉. 心理治疗中的脱落[J]. 心理科学进展, 2020, 28(7): 1187-1198. |
[12] | 董健宇, 韦文棋, 吴珂, 妮娜, 王粲霏, 付莹, 彭歆. 机器学习在抑郁症领域的应用[J]. 心理科学进展, 2020, 28(2): 266-274. |
[13] | 孙琳, 段涛, 陈宁. 情绪预测偏差的成因及干预[J]. 心理科学进展, 2020, 28(12): 2018-2026. |
[14] | 张沥今, 魏夏琰, 陆嘉琦, 潘俊豪. Lasso回归:从解释到预测[J]. 心理科学进展, 2020, 28(10): 1777-1788. |
[15] | 蔡玉清, 董书阳, 袁帅, 胡传鹏. 变量间的网络分析模型及其应用[J]. 心理科学进展, 2020, 28(1): 178-190. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||