ISSN 1671-3710
CN 11-4766/R
主办:中国科学院心理研究所
出版:科学出版社

心理科学进展 ›› 2022, Vol. 30 ›› Issue (7): 1496-1510.doi: 10.3724/SP.J.1042.2022.01496

• 研究前沿 • 上一篇    下一篇

边界促进空间导航的认知神经机制

郝鑫1,2(), 袁忠萍1,2, 林淑婷1,2, 沈婷1,2   

  1. 1青少年网络心理与行为教育部重点实验室
    2华中师范大学心理学院, 武汉 430079
  • 收稿日期:2021-10-18 出版日期:2022-07-15 发布日期:2022-05-17
  • 通讯作者: 郝鑫 E-mail:psyhaoxin@ccnu.edu.cn
  • 基金资助:
    湖北省自然科学基金(2020CFB363);教育部人文社会科学研究青年项目基金(21YJC190005);青少年网络心理与行为教育部重点实验室(开放课题 2019A01);中央高校基本科研业务费专项资金(2021XZZX006)

Cognitive neural mechanism of boundary processing in spatial navigation

HAO Xin1,2(), YUAN Zhongping1,2, LIN Shuting1,2, SHEN Ting1,2   

  1. 1Key Laboratory of Adolescent Cyberpsychology and Behavior (Central China Normal University), Ministry of Education
    2School of Psychology, Central China Normal University, Wuhan 430079, China
  • Received:2021-10-18 Online:2022-07-15 Published:2022-05-17
  • Contact: HAO Xin E-mail:psyhaoxin@ccnu.edu.cn

摘要:

边界是指在人的视野中占据较大比例,且具有立体拓展平面的障碍物,对于人类和动物的空间导航行为具有极大的促进作用。相比于路标等其他环境线索,边界对于空间导航的促进具有优势效应,那么边界感知的发展动态过程有着怎样的异质性,以及潜在的神经基础是什么呢?本文首次对近十年的相关研究进行了系统性地回顾和梳理,并提出了该领域未来发展的研究方向。首先,我们总结出边界感知的发展过程,具体表现为儿童早期(1岁半~2岁)可以通过加工边界的空间几何结构实现物体定位,并且随着年龄的发展逐渐学会利用边界的高度信息(3.1岁~4.7岁)、长度信息(4~5岁)、视觉阻碍性信息(5岁)等完成空间导航。其次,基于这些认知过程,神经影像学研究主要以成人为研究被试,发现大脑中的内侧颞叶和顶叶脑区在边界加工中有着不同的功能作用。具体而言,边界的空间几何结构及构成要素(高度、长度和角度)由大脑中的旁海马位置区(parahippocampal place area, PPA)和压后皮层联合区(retrosplenial complex, RSC)负责表征,其中PPA和RSC均可以表征边界的空间几何及其高度,但边界的长度及边界间的构成角度仅由PPA表征;与边界绑定的物体位置的学习和提取则由海马负责,当海马的结构损害时,基于边界的学习也伴随着一定的受损。除此之外,本研究首次将边界所具有的导航可供性(affordance)这一研究热点区分为物理可供性和视觉可供性。边界的物理可供性由枕叶位置区负责表征(occipital parietal area, OPA,也被叫做 transverse occipital sulcus, TOS),并且OPA很可能主要负责表征以自我为参照的空间导航信息。而现有研究并未探讨边界视觉可供性的神经基础,但它为视觉引导的空间导航研究提供新的视角。总之,以往研究对基于边界的导航进行了初步的探索,丰富了我们对该领域的认识和理解。但是仍存在一些研究问题值得未来深入探讨。第一,拓展探索边界促进空间导航的认知过程中潜在的影响因素及其发展规律。未来应考虑构建一个综合的认知网络或者计算模型,以探明各个认知过程在基于边界导航中所发挥的作用。第二,深入挖掘边界促进空间导航中广泛涉及的脑功能基础(尤其是脑区间的功能协作),及关注儿童的大脑发育变化。第三,密切关注大脑对场地边界与场地中心编码的心理或神经表征的区别和联系。第四,全面而深入地探究携带易感基因以及临床前期的阿尔兹海默症群体中基于边界导航能力的特定受损情况。最后,将边界的概念延伸长时记忆、时间知觉、视觉空间、社交网络等领域,明晰边界在时间和空间中影响机制的异同。

关键词: 边界, 空间导航, 认知发展, 功能基础, 内侧颞叶

Abstract:

Boundaries are obstacles with extended surfaces in the spatial environment and significantly contribute to the spatial navigation of humans and animals. Extensive behavioral literature has revealed that boundary cues contribute more than landmark cues to spatial navigation, in multiple species, which is considered as the superior boundary effect. However, the dynamic developmental process of boundary perception and its underlying neural mechanisms in spatial navigation remain unclear. Therefore, this study reviewed the last decade of research systematically and put forward several possible future directions for boundary-based navigation. On the one hand, we summarized the cognitive developmental mechanisms of boundary-based navigation. Specifically, most reorientation studies have reported that children could reorient successfully by using the geometry of the boundary after they disoriented at 1.5~2 years old, and gradually using the vertical information until they were 3.1~4.7 years old, length information until the age of 4~5, and visual opaqueness information until the age of 5 years old in navigation. On the other hand, a body of neuroimaging studies in adults found that the medial temporal lobe and parietal lobe play different roles in boundary processing. First, the geometry of the boundary and its constituent elements (i.e., vertical structure, length, and angle) are represented in the parahippocampal place area (PPA) and the retrosplenial complex (RSC). Furthermore, although both PPA and RSC could represent the geometry and vertical structure of the boundary, only the PPA was sensitive to changes in boundary length and angle between boundaries. Second, the encoding and retrieval of the boundary-based object’s location were associated with the hippocampus. When the structure of the hippocampus was damaged, boundary-based learning was accompanied by impairments. Third, research on the cognitive neural mechanism of navigational affordance is. The present study first distinguished navigational affordance, the hot topic in spatial navigation, into physical affordance and visual affordance. Recently, functional magnetic resonance imaging studies have shown that the physical affordance for boundaries is represented in the occipital parietal area (OPA) or transverse occipital sulcus (TOS), and the OPA may be mainly responsible for egocentric information representation in spatial navigation. Howver, it’s not yet explored the neural basis of visual affordance for boundaries, which would provide new insights into visual-guided navigation. Together, previous studies preliminarily examined the behavioral and neural basis of boundary-based navigation, which enriched our knowledge and understanding of spatial navigation. However, several issues are unaddressed that should be investigated in future. First, future studies should explore the comprehensive cognitive processes of boundary-based navigation and its development trajectory. A vast cognitive network or computational model to investigate the role of each cognitive function in boundary-based navigation should be considered. Second, further research could explore the functional interaction between the medial temporal lobe and the posterior parietal cortex in boundary-based navigation and its neural developmental changes in children. Third, we could pay attention to the distinctions and associations between the cognitive neural mechanisms of the boundary and geometry center encoding. Forth, further study could investigate specific behavioral and neural impairment of boundary-based navigation in individuals at genetic risk and preclinical Alzheimer’s disease. Finally, we could concern about the boundary influence mechanisms in long-term memory, time estimation, visual space, and social networks.

Key words: boundary, spatial navigation, cognitive development, functional basis, medial temporal lobe

中图分类号: