心理科学进展 ›› 2022, Vol. 30 ›› Issue (7): 1496-1510.doi: 10.3724/SP.J.1042.2022.01496
郝鑫1,2(), 袁忠萍1,2, 林淑婷1,2, 沈婷1,2
收稿日期:
2021-10-18
出版日期:
2022-07-15
发布日期:
2022-05-17
通讯作者:
郝鑫
E-mail:psyhaoxin@ccnu.edu.cn
基金资助:
HAO Xin1,2(), YUAN Zhongping1,2, LIN Shuting1,2, SHEN Ting1,2
Received:
2021-10-18
Online:
2022-07-15
Published:
2022-05-17
Contact:
HAO Xin
E-mail:psyhaoxin@ccnu.edu.cn
摘要:
边界是指在人的视野中占据较大比例,且具有立体拓展平面的障碍物,对于人类和动物的空间导航行为具有极大的促进作用。相比于路标等其他环境线索,边界对于空间导航的促进具有优势效应,那么边界感知的发展动态过程有着怎样的异质性,以及潜在的神经基础是什么呢?本文首次对近十年的相关研究进行了系统性地回顾和梳理,并提出了该领域未来发展的研究方向。首先,我们总结出边界感知的发展过程,具体表现为儿童早期(1岁半~2岁)可以通过加工边界的空间几何结构实现物体定位,并且随着年龄的发展逐渐学会利用边界的高度信息(3.1岁~4.7岁)、长度信息(4~5岁)、视觉阻碍性信息(5岁)等完成空间导航。其次,基于这些认知过程,神经影像学研究主要以成人为研究被试,发现大脑中的内侧颞叶和顶叶脑区在边界加工中有着不同的功能作用。具体而言,边界的空间几何结构及构成要素(高度、长度和角度)由大脑中的旁海马位置区(parahippocampal place area, PPA)和压后皮层联合区(retrosplenial complex, RSC)负责表征,其中PPA和RSC均可以表征边界的空间几何及其高度,但边界的长度及边界间的构成角度仅由PPA表征;与边界绑定的物体位置的学习和提取则由海马负责,当海马的结构损害时,基于边界的学习也伴随着一定的受损。除此之外,本研究首次将边界所具有的导航可供性(affordance)这一研究热点区分为物理可供性和视觉可供性。边界的物理可供性由枕叶位置区负责表征(occipital parietal area, OPA,也被叫做 transverse occipital sulcus, TOS),并且OPA很可能主要负责表征以自我为参照的空间导航信息。而现有研究并未探讨边界视觉可供性的神经基础,但它为视觉引导的空间导航研究提供新的视角。总之,以往研究对基于边界的导航进行了初步的探索,丰富了我们对该领域的认识和理解。但是仍存在一些研究问题值得未来深入探讨。第一,拓展探索边界促进空间导航的认知过程中潜在的影响因素及其发展规律。未来应考虑构建一个综合的认知网络或者计算模型,以探明各个认知过程在基于边界导航中所发挥的作用。第二,深入挖掘边界促进空间导航中广泛涉及的脑功能基础(尤其是脑区间的功能协作),及关注儿童的大脑发育变化。第三,密切关注大脑对场地边界与场地中心编码的心理或神经表征的区别和联系。第四,全面而深入地探究携带易感基因以及临床前期的阿尔兹海默症群体中基于边界导航能力的特定受损情况。最后,将边界的概念延伸长时记忆、时间知觉、视觉空间、社交网络等领域,明晰边界在时间和空间中影响机制的异同。
中图分类号:
郝鑫, 袁忠萍, 林淑婷, 沈婷. (2022). 边界促进空间导航的认知神经机制. 心理科学进展 , 30(7), 1496-1510.
HAO Xin, YUAN Zhongping, LIN Shuting, SHEN Ting. (2022). Cognitive neural mechanism of boundary processing in spatial navigation. Advances in Psychological Science, 30(7), 1496-1510.
中文全称 | 英文全称 | 简称 | |
---|---|---|---|
脑区 | 旁海马位置区 | parahippocampal place area | PPA |
压后皮层联合区 | retrosplenial complex | RSC | |
枕叶位置区 | occipital parietal area | OPA | |
横枕沟 | transverse occipital sulcus | TOS | |
方法 | 功能性磁共振成像 | functional magnetic resonance imaging | fMRI |
支持向量机 | support vector machine | SVM | |
经颅磁刺激 | transcranial magnetic stimulation | TMS |
表1 专有名词全称和简称对应列表
中文全称 | 英文全称 | 简称 | |
---|---|---|---|
脑区 | 旁海马位置区 | parahippocampal place area | PPA |
压后皮层联合区 | retrosplenial complex | RSC | |
枕叶位置区 | occipital parietal area | OPA | |
横枕沟 | transverse occipital sulcus | TOS | |
方法 | 功能性磁共振成像 | functional magnetic resonance imaging | fMRI |
支持向量机 | support vector machine | SVM | |
经颅磁刺激 | transcranial magnetic stimulation | TMS |
[1] | 费广洪, 潘晓敏. (2013). 儿童空间再定向能力发展的理论之争. 心理科学进展, 21(2), 252-262. |
[2] | 邵意如, 周楚. (2019). 事件切割: 我们如何知觉并记忆日常事件? 心理科学进展, 27(9), 1564-1573. |
[3] | 张家鑫, 海拉干, 李会杰. (2019). 空间导航的测量及其在认知老化中的应用. 心理科学进展, 27(12), 2019-2033. |
[4] |
Alexander, A. S., Carstensen, L. C., Hinman, J. R., Raudies, F., Chapman, G. W., & Hasselmo, M. E. (2020). Egocentric boundary vector tuning of the retrosplenial cortex. Science Advances, 6(8), eaaz2322
doi: 10.1126/sciadv.aaz2322 URL |
[5] | Alexander, A. S., Robinson, J. C., Dannenberg, H., Kinsky, N. R., Levy, S. J., Mau, W., … Hasselmo, M. E. (2020). Neurophysiological coding of space and time in the hippocampus, entorhinal cortex, and retrosplenial cortex. Brain and Neuroscience Advances, 4, 2398212820972871. |
[6] |
Andersson, S. O., Moser, E. I., & Moser, M. B. (2021). Visual stimulus features that elicit activity in object-vector cells. Communications Biology, 4(1), 1-13.
doi: 10.1038/s42003-020-01566-0 URL |
[7] |
Bar, M., & Aminoff, E. (2003). Cortical analysis of visual context. Neuron, 38(2), 347-358.
doi: 10.1016/S0896-6273(03)00167-3 URL |
[8] | Barry, C., Lever, C., Hayman, R., Hartley, T., Burton, S., O'Keefe, J., … Burgess, Ν. (2006). The boundary vector cell model of place cell firing and spatial memory. Reviews in the Neurosciences, 17(12), 71-98. |
[9] |
Bicanski, A., & Burgess, N. (2020). Neuronal vector coding in spatial cognition. Nature Reviews. Neuroscience, 21(9), 453-470.
doi: 10.1038/s41583-020-0336-9 pmid: 32764728 |
[10] |
Bird, C. M., Capponi, C., King, J. A., Doeller, C. F., & Burgess, N. (2010). Establishing the boundaries: The hippocampal contribution to imagining scenes. Journal of Neuroscience, 30(35), 11688-11695.
doi: 10.1523/JNEUROSCI.0723-10.2010 URL |
[11] |
Bonner, M. F., & Epstein, R. A. (2017). Coding of navigational affordances in the human visual system. Proceedings of the National Academy of Sciences, 114(18), 4793-4798.
doi: 10.1073/pnas.1618228114 URL |
[12] |
Brunec, I. K., Moscovitch, M., & Barense, M. D. (2018). Boundaries shape cognitive representations of spaces and events. Trends in Cognitive Sciences, 22(7), 637-650.
doi: S1364-6613(18)30087-1 pmid: 29706557 |
[13] |
Brunec, I. K., Ozubko, J. D., Ander, T., Guo, R., Moscovitch, M., & Barense, M. D. (2020). Turns during navigation act as boundaries that enhance spatial memory and expand time estimation. Neuropsychologia, 141, 107437.
doi: 10.1016/j.neuropsychologia.2020.107437 URL |
[14] |
Buckley, M. G., Smith, A. D., & Haselgrove, M. (2015). Learned predictiveness training modulates biases towards using boundary or landmark cues during navigation. The Quarterly Journal of Experimental Psychology, 68(6), 1183-1202.
doi: 10.1080/17470218.2014.977925 URL |
[15] |
Bullens, J., Nardini, M., Doeller, C. F., Braddick, O., Postma, A., & Burgess, N. (2010). The role of landmarks and boundaries in the development of spatial memory. Development Science, 13(1), 170-180.
doi: 10.1111/j.1467-7687.2009.00870.x URL |
[16] |
Cheng, K., Huttenlocher, J., & Newcombe, N. S. (2013). 25 years of research on the use of geometry in spatial reorientation: A current theoretical perspective. Psychonomic Bulletin & Review, 20(6), 1033-1054.
doi: 10.3758/s13423-013-0416-1 URL |
[17] |
Cheng, K. J. C. (1986). A purely geometric module in the rat's spatial representation. Cognition, 23(2), 149-178.
pmid: 3742991 |
[18] |
Chen, X., McNamara, T. P., Kelly, J. W., & Wolbers, T. (2017). Cue combination in human spatial navigation. Cognitive Psychology, 95, 105-144.
doi: 10.1016/j.cogpsych.2017.04.003 URL |
[19] |
Coughlan, G., Coutrot, A., Khondoker, M., Minihane, A. M., Spiers, H., & Hornberger, M. (2019). Toward personalized cognitive diagnostics of at-genetic-risk Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America, 116(19), 9285-9292.
doi: 10.1073/pnas.1901600116 pmid: 31015296 |
[20] |
Coughlan, G., Laczó, J., Hort, J., Minihane, A. M., & Hornberger, M. (2018). Spatial navigation deficits - overlooked cognitive marker for preclinical Alzheimer disease? Nature Reviews Neurology, 14(8), 496-506.
doi: 10.1038/s41582-018-0031-x pmid: 29980763 |
[21] |
Coughlan, G., Puthusseryppady, V., Lowry, E., Gillings, R., Spiers, H., Minihane, A. M., & Hornberger, M. (2020). Test-retest reliability of spatial navigation in adults at-risk of Alzheimer's disease. Plos One, 15(9), e0239077.
doi: 10.1371/journal.pone.0239077 URL |
[22] |
Dahmani, L., Patel, R. M., Yang, Y., Chakravarty, M. M., Fellows, L. K., & Bohbot, V. D. (2018). An intrinsic association between olfactory identification and spatial memory in humans. Nature Communications, 9(1), 1-12.
doi: 10.1038/s41467-017-02088-w URL |
[23] |
Deshmukh, S. S., & Knierim, J. J. (2013). Influence of local objects on hippocampal representations: Landmark vectors and memory. Hippocampus, 23(4), 253-267.
doi: 10.1002/hipo.22101 pmid: 23447419 |
[24] |
Dilks, D. D., Julian, J. B., Paunov, A. M., & Kanwisher, N. (2013). The occipital place area is causally and selectively involved in scene perception. Journal of Neuroscience, 33(4), 1331-1336.
doi: 10.1523/JNEUROSCI.4081-12.2013 URL |
[25] |
Dillon, M. R., Persichetti, A. S., Spelke, E. S., & Dilks, D. D. (2018). Places in the brain: Bridging layout and object geometry in scene-selective cortex. Cerebral Cortex, 28(7), 2365-2374.
doi: 10.1093/cercor/bhx139 URL |
[26] | Doeller, C. F., & Burgess, N. (2008). Distinct error- correcting and incidental learning of location relative to landmarks and boundaries. Proceedings of the National Academy of Sciences of the United States of America, 105(15), 5909-5914. |
[27] | Doeller, C. F., King, J. A., & Burgess, N. (2008). Parallel striatal and hippocampal systems for landmarks and boundaries in spatial memory. Proceedings of the National Academy of Sciences of the United States of America, 105(15), 5915-5920. |
[28] |
Epstein, R. A. (2008). Parahippocampal and retrosplenial contributions to human spatial navigation. Trends in Cognitive Sciences, 12(10), 388-396.
doi: 10.1016/j.tics.2008.07.004 URL |
[29] |
Epstein, R. A., & Baker, C. I. (2019). Scene perception in the human brain. Annual Review of Vision Science, 5, 373-397.
doi: 10.1146/annurev-vision-091718-014809 URL |
[30] |
Epstein, R. A., Harris, A., Stanley, D., & Kanwisher, N. (1999). The parahippocampal place area: Recognition, navigation, or encoding? Neuron, 23(1), 115-125.
pmid: 10402198 |
[31] |
Epstein, R. A., & Kanwisher, N. (1998). A cortical representation of the local visual environment. Nature, 392(6676), 598-601.
doi: 10.1038/33402 URL |
[32] |
Ferrara, K., Landau, B., & Park, S. (2019). Impaired behavioral and neural representation of scenes in Williams syndrome. Cortex, 121, 264-276.
doi: 10.1016/j.cortex.2019.09.001 URL |
[33] |
Ferrara, K., & Park, S. (2016). Neural representation of scene boundaries. Neuropsychologia, 89, 180-190.
doi: 10.1016/j.neuropsychologia.2016.05.012 URL |
[34] |
Freedman, D. J., & Ibos, G. (2018). An integrative framework for sensory, motor, and cognitive functions of the posterior parietal cortex. Neuron, 97(6), 1219-1234.
doi: S0896-6273(18)30069-2 pmid: 29566792 |
[35] | Gallistel, C. R. (1990). The organization of learning. Cambridge, MA: MIT Press. |
[36] |
Gianni, E., de Zorzi, L., & Lee, S. A. (2018). The developing role of transparent surfaces in children's spatial representation. Cognitive Psychology, 105, 39-52.
doi: 10.1016/j.cogpsych.2018.05.003 URL |
[37] | Gianni, E., & Lee, S. A. (2017). Defining spatial boundaries: A developmental study. In International Conference on Spatial Information Theory (pp. 49-55). Springer, Cham. |
[38] |
Glöckner, F., Schuck, N. W., & Li, S. C. (2021). Differential prioritization of intramaze cue and boundary information during spatial navigation across the human lifespan. Scientific Reports, 11(1), 1-16.
doi: 10.1038/s41598-020-79139-8 URL |
[39] |
Gofman, X., Tocker, G., Weiss, S., Boccara, C. N., Lu, L., Moser, M. B., … Derdikman, D. (2019). Dissociation between postrhinal cortex and downstream parahippocampal regions in the representation of egocentric boundaries. Current Biology, 29(16), 2751-2757.e4.
doi: S0960-9822(19)30852-8 pmid: 31378610 |
[40] | Gori, M., Cappagli, G., Baud-Bovy, G., & Finocchietti, S. (2017). Shape perception and navigation in blind adults. Frontiers in Psychology, 8, 10. |
[41] |
Grill-Spector, K. (2003). The neural basis of object perception. Current Opinion in Neurobiology, 13(2), 159-166.
pmid: 12744968 |
[42] |
Guderian, S., Dzieciol, A. M., Gadian, D. G., Jentschke, S., Doeller, C. F., Burgess, N., … Vargha-Khadem. (2015). Hippocampal volume reduction in humans predicts impaired allocentric spatial memory in virtual-reality navigation. The Journal of Neuroscience, 35(42), 14123-14131.
doi: 10.1523/JNEUROSCI.0801-15.2015 URL |
[43] |
Hägglund, M., Mørreaunet, M., Moser, M. B., & Moser, E. I. (2019). Grid-cell distortion along geometric borders. Current Biology, 29(6), 1047-1054. e3.
doi: S0960-9822(19)30133-2 pmid: 30853431 |
[44] |
Hao, X., Huang, Y., Song, Y., Kong, X., & Liu, J. (2017). Experience with the cardinal coordinate system contributes to the precision of cognitive maps. Frontiers in Psychology, 8, 1166.
doi: 10.3389/fpsyg.2017.01166 URL |
[45] |
Hao, X., Huang, T., Song, Y., Kong, X., & Liu, J. (2021). Development of navigation network revealed by resting- state and task-state functional connectivity. NeuroImage, 243, 118515.
doi: 10.1016/j.neuroimage.2021.118515 URL |
[46] | Hao, X., Wang, X., Song, Y., Kong, X., & Liu, J. (2018). Dual roles of the hippocampus and intraparietal sulcus in network integration and segregation support scene recognition. Brain Structure and Function, 223(3), 1473-1485. |
[47] |
Harel, A., Kravitz, D. J., & Baker, C. I. (2013). Deconstructing visual scenes in cortex: Gradients of object and spatial layout information. Cerebral Cortex, 23(4), 947-957.
doi: 10.1093/cercor/bhs091 URL |
[48] |
He, Q., & Brown, T. I. (2019). Environmental barriers disrupt grid-like representations in humans during navigation. Current Biology, 29(16), 2718-2722. e3.
doi: 10.1016/j.cub.2019.06.072 URL |
[49] |
Hermer, L., & Spelke, E. S. (1994). A geometric process for spatial reorientation in young children. Nature, 370(6484), 57-59.
doi: 10.1038/370057a0 URL |
[50] |
Hermer, L., & Spelke, E. S. (1996). Modularity and development: The case of spatial reorientation. Cognition, 61(3), 195-232.
pmid: 8990972 |
[51] |
Hinman, J. R., Chapman, G. W., & Hasselmo, M. E. (2019). Neuronal representation of environmental boundaries in egocentric coordinates. Nature Communications, 10(1), 2772.
doi: 10.1038/s41467-019-10722-y pmid: 31235693 |
[52] | Honbolygó, F., Babik, A., & Török, Á. (2014, November). Location learning in virtual environments: The effect of saliency of landmarks and boundaries. In 2014 5th IEEE Conference on Cognitive Infocommunications (pp. 595-598). Vietri sul Mare, Italy |
[53] |
Horner, A. J., Bisby, J. A., Wang, A., Bogus, K., & Burgess, N. (2016). The role of spatial boundaries in shaping long-term event representations. Cognition, 154, 151-164.
doi: S0010-0277(16)30128-7 pmid: 27295330 |
[54] |
Høydal, Ø. A., Skytøen, E. R., Andersson, S. O., Moser, M. B., & Moser, E. I. (2019). Object-vector coding in the medial entorhinal cortex. Nature, 568(7752), 400-404.
doi: 10.1038/s41586-019-1077-7 URL |
[55] |
Jacobs, J., Kahana, M. J., Ekstrom, A. D., Mollison, M. V., & Fried, I. (2010). A sense of direction in human entorhinal cortex. Proceedings of the National Academy of Sciences, 107(14), 6487-6492.
doi: 10.1073/pnas.0911213107 URL |
[56] |
Jeunehomme, O., & D’Argembeau, A. (2020). Event segmentation and the temporal compression of experience in episodic memory. Psychological Research, 84(2), 481-490.
doi: 10.1007/s00426-018-1047-y pmid: 29982966 |
[57] | Julian, J. B., Kamps, F. S., Epstein, R. A., & Dilks, D. D. (2019). Dissociable spatial memory systems revealed by typical and atypical human development. Developmental Science, 22(2), e12737. |
[58] |
Julian, J. B., Keinath, A. T., Frazzetta, G., & Epstein, R. A. (2018). Human entorhinal cortex represents visual space using a boundary-anchored grid. Nature Neuroscience, 21(2), 191-194.
doi: 10.1038/s41593-017-0049-1 URL |
[59] |
Julian, J. B., Keinath, A. T., Marchette, S. A., & Epstein, R. A. (2018). The neurocognitive basis of spatial reorientation. Current Biology, 28(17), R1059-R1073.
doi: 10.1016/j.cub.2018.04.057 URL |
[60] |
Julian, J. B., Ryan, J., Hamilton, R. H., & Epstein, R. A. (2016). The occipital place area is causally involved in representing environmental boundaries during navigation. Current Biology, 26(8), 1104-1109.
doi: 10.1016/j.cub.2016.02.066 URL |
[61] |
Kamps, F. S., Julian, J. B., Kubilius, J., Kanwisher, N., & Dilks, D. D. (2016). The occipital place area represents the local elements of scenes. NeuroImage, 132, 417-424.
doi: 10.1016/j.neuroimage.2016.02.062 URL |
[62] |
Kamps, F. S., Lall, V., & Dilks, D. D. (2016). The occipital place area represents first-person perspective motion information through scenes. Cortex, 83, 17-26.
doi: 10.1016/j.cortex.2016.06.022 URL |
[63] |
Keinath, A. T., Julian, J. B., Epstein, R. A., & Muzzio, I. A. (2017). Environmental geometry aligns the hippocampal map during spatial reorientation. Current Biology, 27(3), 309-317.
doi: S0960-9822(16)31400-2 pmid: 28089516 |
[64] |
Kravitz, D. J., Saleem, K. S., Baker, C. I., & Mishkin, M. (2011). A new neural framework for visuospatial processing. Nature Reviews Neuroscience, 12(4), 217.
doi: 10.1038/nrn3008 pmid: 21415848 |
[65] |
Krupic, J., Bauza, M., Burton, S., Barry, C., & O’Keefe, J. (2015). Grid cell symmetry is shaped by environmental geometry. Nature, 518(7538), 232-235.
doi: 10.1038/nature14153 URL |
[66] |
Kunz, L., Brandt, A., Reinacher, P. C., Staresina, B. P., Reifenstein, E. T., Weidemann, C. T., … Jacobs, J. (2021). A neural code for egocentric spatial maps in the human medial temporal lobe. Neuron, 109(17), 2781-2796.
doi: 10.1016/j.neuron.2021.06.019 URL |
[67] | LaChance, P. A., Todd, T. P., & Taube, J. S. (2019). A sense of space in postrhinal cortex. Science, 365(6449). |
[68] |
Lee, S. A. (2017). The boundary-based view of spatial cognition: A synthesis. Current Opinion in Behavioral Sciences, 16, 58-65.
doi: 10.1016/j.cobeha.2017.03.006 URL |
[69] |
Lee, S. A., Austen, J. M., Sovrano, V. A., Vallortigara, G., McGregor, A., & Lever, C. (2020). Distinct and combined responses to environmental geometry and features in a working-memory reorientation task in rats and chicks. Scientific Reports, 10(1), 7508.
doi: 10.1038/s41598-020-64366-w URL |
[70] |
Lee, S. A., Miller, J. F., Watrous, A. J., Sperling, M. R., Sharan, A., Worrell, G. A., Berry, B. M., … Jacobs, J. (2018). Electrophysiological signatures of spatial boundaries in the human subiculum. The Journal of Neuroscience, 38(13), 3265-3272.
doi: 10.1523/JNEUROSCI.3216-17.2018 URL |
[71] |
Lee, S. A., Sovrano, V. A., & Spelke, E. S. (2012). Navigation as a source of geometric knowledge: Young children's use of length, angle, distance, and direction in a reorientation task. Cognition, 123(1), 144-161.
doi: 10.1016/j.cognition.2011.12.015 URL |
[72] |
Lee, S. A., & Spelke, E. S. (2008). Children's use of geometry for reorientation. Developmental Science, 11(5), 743-749.
doi: 10.1111/j.1467-7687.2008.00724.x URL |
[73] |
Lee, S. A., & Spelke, E. S. (2010). A modular geometric mechanism for reorientation in children. Cognitive Psychology, 61(2), 152-176.
doi: 10.1016/j.cogpsych.2010.04.002 URL |
[74] |
Lee, S. A., & Spelke, E. S. (2011). Young children reorient by computing layout geometry, not by matching images of the environment. Psychonomic Bulletin & Review, 18(1), 192-198.
doi: 10.3758/s13423-010-0035-z URL |
[75] |
Lee, S. A., Winkler-Rhoades, N., & Spelke, E. S. (2012). Spontaneous reorientation is guided by perceived surface distance, not by image matching or comparison. Plos One, 7(12), e51373.
doi: 10.1371/journal.pone.0051373 URL |
[76] | Lever, C., Burton, S., Jeewajee, A., O'Keefe, J., & Burgess, N. (2009). Boundary vector cells in the subiculum of the hippocampal formation. The Journal of Neuroscience: An Official Journal of Society for Neuroscience, 29(31), 9771-9777. |
[77] |
Lew, A. R. (2011). Looking beyond the boundaries: Time to put landmarks back on the cognitive map? Psychological Bulletin, 137(3), 484-507.
doi: 10.1037/a0022315 URL |
[78] |
Logie, M. R., & Donaldson, D. I. (2021). Do doorways really matter: Investigating memory benefits of event segmentation in a virtual learning environment. Cognition, 209, 104578.
doi: 10.1016/j.cognition.2020.104578 URL |
[79] |
Mao, D., Avila, E., Caziot, B., Laurens, J., Dickman, J. D., & Angelaki, D. E. (2021). Spatial modulation of hippocampal activity in freely moving macaques. Neuron, 109(21), 3521-3534.
doi: 10.1016/j.neuron.2021.09.032 URL |
[80] |
Meyer-Lindenberg, A., Mervis, C. B., Sarpal, D., Koch, P., Steele, S., Kohn, P., … Berman, K. F. (2005). Functional, structural, and metabolic abnormalities of the hippocampal formation in Williams syndrome. The Journal of Clinical Investigation, 115(7), 1888-1895.
doi: 10.1172/JCI24892 URL |
[81] |
Mou, W., & Zhou, R. (2013). Defining a boundary in goal localization: Infinite number of points or extended surfaces. Journal of Experimental Psychology: Learning, Memory, and Cognition, 39(4), 1115-1127.
doi: 10.1037/a0030535 URL |
[82] | Negen, J., Sandri, A., Lee, S. A., & Nardini, M. (2019). Boundaries in spatial cognition: Looking like a boundary is more important than being a boundary. Journal of Experimental Psychology: Learning Memory and Cognition, 46(6). |
[83] | Newcombe, N. S., Ratliff, K. R., Plumert, J. M., & Spencer, J. P. (2007). Explaining the development of spatial reorientation: Modularity-plus-language versus the emergence of adaptive combination. The Emerging Spatial Mind, 53-76. |
[84] |
Park, J., & Park, S. (2020). Coding of navigational distance and functional constraint of boundaries in the human scene-selective cortex. The Journal of Neuroscience, 40(18), 3621-3630.
doi: 10.1523/JNEUROSCI.1991-19.2020 URL |
[85] |
Pellencin, E., Paladino, M. P., Herbelin, B., & Serino, A. (2018). Social perception of others shapes one's own multisensory peripersonal space. Cortex, 104, 163-179.
doi: S0010-9452(17)30290-3 pmid: 28965705 |
[86] |
Persichetti, A. S., & Dilks, D. D. (2016). Perceived egocentric distance sensitivity and invariance across scene-selective cortex. Cortex, 77, 155-163.
doi: S0010-9452(16)30008-9 pmid: 26963085 |
[87] |
Pitcher, D., & Ungerleider, L. G. (2021). Evidence for a third visual pathway specialized for social perception. Trends in Cognitive Sciences, 25(2), 100-110.
doi: 10.1016/j.tics.2020.11.006 pmid: 33334693 |
[88] |
Savelli, F., Yoganarasimha, D., & Knierim, J. J. (2008). Influence of boundary removal on the spatial representations of the medial entorhinal cortex. Hippocampus, 18(12), 1270-1282.
doi: 10.1002/hipo.20511 URL |
[89] |
Schuck, N. W., Doeller, C. F., Polk, T. A., Lindenberger, U., & Li, S.-C. (2015). Human aging alters the neural computation and representation of space. NeuroImage, 117, 141-150.
doi: 10.1016/j.neuroimage.2015.05.031 URL |
[90] |
Shine, J. P., Valdes-Herrera, J. P., Tempelmann, C., & Wolbers, T. (2019). Evidence for allocentric boundary and goal direction information in the human entorhinal cortex and subiculum. Nature Communications, 10(1), 1-10.
doi: 10.1038/s41467-018-07882-8 URL |
[91] |
Sjolund, L. A., Kelly, J. W., & McNamara, T. P. (2018). Optimal combination of environmental cues and path integration during navigation. Memory & Cognition, 46(1), 89-99.
doi: 10.3758/s13421-017-0747-7 URL |
[92] |
Solstad, T., Boccara, C. N., Kropff, E., Moser, M. B., & Moser, E. I. (2008). Representation of geometric borders in the entorhinal cortex. Science, 322(5909), 1865-1868.
doi: 10.1126/science.1166466 pmid: 19095945 |
[93] |
Sotelo, M. I., Alcalá, J. A., Bingman, V. P., & Muzio, R. N. (2020). On the transfer of spatial learning between geometrically different shaped environments in the terrestrial toad, Rhinella arenarum. Animal Cognition, 23(1), 55-70.
doi: 10.1007/s10071-019-01315-9 pmid: 31628550 |
[94] |
Spelke, E. S., & Lee, S. A. (2012). Core systems of geometry in animal minds. Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1603), 2784-2793.
doi: 10.1098/rstb.2012.0210 URL |
[95] |
Stangl, M., Topalovic, U., Inman, C. S., Hiller, S., Villaroman, D., Aghajan, Z. M., … Suthana, N. (2021). Boundary-anchored neural mechanisms of location- encoding for self and others. Nature, 589(7842), 420-425.
doi: 10.1038/s41586-020-03073-y URL |
[96] | Stewart, S., Jeewajee, A., Wills, T. J., Burgess, N., & Lever, C. (2014). Boundary coding in the rat subiculum. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 369(1635), 20120514. |
[97] | van Wijngaarden, J. B., Babl, S. S., & Ito, H. T. (2019). Representation of distance and direction of nearby boundaries in retrosplenial cortex. bioRxiv, 807453. |
[98] |
van Wijngaarden, J. B., Babl, S. S., & Ito, H. T. (2020). Entorhinal-retrosplenial circuits for allocentric-egocentric transformation of boundary coding. eLife, 9, e59816.
doi: 10.7554/eLife.59816 URL |
[99] |
Wang, C., Chen, X., Lee, H., Deshmukh, S. S., Yoganarasimha, D., Savelli, F., & Knierim, J. J. (2018). Egocentric coding of external items in the lateral entorhinal cortex. Science, 362(6417), 945-949.
doi: 10.1126/science.aau4940 |
[100] |
Wang, L., & Mou, W. (2020). Effect of room size on geometry and features cue preference during reorientation: Modulating encoding strength or cue weighting. Quarterly Journal of Experimental Psychology, 73(2), 225-238.
doi: 10.1177/1747021819872159 URL |
[101] |
Zhang, B., & Naya, Y. (2020). Medial prefrontal cortex represents the object-based cognitive map when remembering an egocentric target location. Cerebral Cortex, 30(10), 5356-5371.
doi: 10.1093/cercor/bhaa117 URL |
[102] |
Zhen, Z., Kong, X. Z., Huang, L., Yang, Z., Wang, X., Hao, X., … Liu, J. (2017). Quantifying the variability of scene- selective regions: Interindividual, interhemispheric, and sex differences. Human Brain Mapping, 38(4), 2260-2275.
doi: 10.1002/hbm.23519 URL |
[103] |
Zhou, R., & Mou, W. (2018). The limits of boundaries: Unpacking localization and cognitive mapping relative to a boundary. Psychological Research, 82(3), 617-633.
doi: 10.1007/s00426-016-0839-1 URL |
[104] |
Zhou, R., & Mou, W. (2019a). The effects of cue placement on the relative dominance of boundaries and landmark arrays in goal localization. Quarterly Journal of Experimental Psychology, 72(11), 2614-2631.
doi: 10.1177/1747021819855354 URL |
[105] |
Zhou, R., & Mou, W. (2019b). Boundary shapes guide selection of reference points in goal localization. Attention, Perception, & Psychophysics, 81(7), 2482-2498.
doi: 10.3758/s13414-019-01776-7 URL |
[1] | 孔祥祯, 张凤翔, 蒲艺. 空间导航的脑网络基础和调控机制[J]. 心理科学进展, 2023, 31(3): 330-337. |
[2] | 郭玉冬, 欧琪雯, 段锦云. 领导者对员工主动行为的心理与行为反应[J]. 心理科学进展, 2022, 30(5): 1158-1167. |
[3] | 加锁锁, 郭理, 蔡子君, 毛日佑. 组织中绩效压力的双刃剑效应[J]. 心理科学进展, 2022, 30(12): 2846-2856. |
[4] | 朱俊萍. 如何克服边界条件:来自记忆强度影响记忆去稳定的分子机制的启示[J]. 心理科学进展, 2021, 29(8): 1450-1461. |
[5] | 方岚, 郑苑仪, 金晗, 李晓庆, 杨玉芳, 王瑞明. 口语句子的韵律边界:窥探言语理解的秘窗[J]. 心理科学进展, 2021, 29(3): 425-437. |
[6] | 顾俊娟, 石金富. 汉字位置加工和词边界效应的认知机制[J]. 心理科学进展, 2021, 29(2): 191-201. |
[7] | 谢菊兰, 刘小妹, 李见, 陈春燕, 龚艳萍. 社交电商中的社交-消费转换机制[J]. 心理科学进展, 2020, 28(3): 405-415. |
[8] | 邵意如, 周楚. 事件切割:我们如何知觉并记忆日常事件?[J]. 心理科学进展, 2019, 27(9): 1564-1573. |
[9] | 刘鹏, 申鸿魁. 对人类不良记忆的修饰:来自记忆再巩固的证据[J]. 心理科学进展, 2019, 27(8): 1417-1426. |
[10] | 王宏蕾, 孙健敏. 授权型领导的负面效应:理论机制与边界条件[J]. 心理科学进展, 2019, 27(5): 858-870. |
[11] | 张家鑫, 海拉干, 李会杰. 空间导航的测量及其在认知老化中的应用[J]. 心理科学进展, 2019, 27(12): 2019-2033. |
[12] | 冯彩玲. 工作场所领导愤怒的有效性及其作用机制[J]. 心理科学进展, 2019, 27(11): 1917-1928. |
[13] | 王婷, 杨付. 无边界职业生涯下职业成功的诱因与机制[J]. 心理科学进展, 2018, 26(8): 1488-1500. |
[14] | 廖化化; 颜爱民. 权变视角下的情绪劳动:调节变量及其作用机制[J]. 心理科学进展, 2017, 25(3): 500-510. |
[15] | 齐亚菲;莫书亮. 父母对儿童青少年媒介使用的积极干预[J]. 心理科学进展, 2016, 24(8): 1290-1299. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||