心理科学进展 ›› 2022, Vol. 30 ›› Issue (3): 580-590.doi: 10.3724/SP.J.1042.2022.00580
收稿日期:
2021-04-10
出版日期:
2022-03-15
发布日期:
2022-01-25
通讯作者:
马舒
E-mail:mas@zstu.edu.cn
基金资助:
WAN Bicheng, YANG Zheng, LI Hongting, MA Shu()
Received:
2021-04-10
Online:
2022-03-15
Published:
2022-01-25
Contact:
MA Shu
E-mail:mas@zstu.edu.cn
摘要:
虚拟现实技术通过提供视觉、听觉和触觉等信息为用户创造身临其境的感知体验, 其中触觉反馈面临诸多技术瓶颈使得虚拟现实中的自然交互受限。基于多感官错觉的伪触觉技术可以借助其他通道的信息强化和丰富触觉感受, 是目前虚拟现实环境中优化触觉体验的有效途径。本文聚焦于触觉中最重要的维度之一——粗糙度, 试图为解决虚拟现实中触觉反馈的受限问题提供新思路。探讨了粗糙度感知中, 视、听、触多感觉通道整合的关系, 分析了视觉线索(表面纹理密度、表面光影、控制显示比)和听觉线索(音调/频率、响度)如何影响触觉粗糙度感知, 总结了当下调控这些因素来改变粗糙度感知的方法。最后, 探讨了使用伪触觉反馈技术时, 虚拟现实环境中视、听、触觉信息在呈现效果、感知整合等方面与真实世界相比可能存在的差异, 提出可借鉴的改善触觉体验的适用方法和未来待研究的方向。
中图分类号:
万必成, 杨振, 李宏汀, 马舒. (2022). “有声有色”的触觉体验:来自多感觉通道整合的线索. 心理科学进展 , 30(3), 580-590.
WAN Bicheng, YANG Zheng, LI Hongting, MA Shu. (2022). The vivid tactile experience from vision and auditory: Clues from multisensory channel integration. Advances in Psychological Science, 30(3), 580-590.
[1] | 吴淼. (2019). 视触觉交互的纹理力触觉感知实验研究及应用 (硕士学位论文). 东南大学, 南京. |
[2] |
Adams, W. J., Kerrigan, I. S., & Graf, E. W. (2016). Touch influences perceived gloss. Scientific Reports, 6(1), 21866- 21866.
doi: 10.1038/srep21866 URL |
[3] |
Aktar, T., Chen, J., Ettelaie, R., Holmes, M., & Henson, B. (2017). Human roughness perception and possible factors effecting roughness sensation. Journal of Texture Studies, 48(3), 181-192.
doi: 10.1111/jtxs.2017.48.issue-3 URL |
[4] | Altinsoy, M. E. (2004, April). The influence of frequency on the integration of auditory and tactile information. In: Proceedings of the 18th International Congress on Acoustics (ICA), Kyoto, Japan. |
[5] | Altinsoy, M. E. (2008, September). The effect of auditory cues on the audiotactile roughness perception: Modulation frequency and sound pressure level. In: International Workshop on Haptic and Audio Interaction Design, HAID 2008, A. Pirhonen and S. Brewster (Eds.), Lecture Notes in Computer Science (Vol. 5270, pp. 120-129). Springer, Berlin and Heidelberg, Germany. |
[6] | Aoyama, S., Iwai, D., & Sato, K. (2016, November). Altering resistive force perception by modulating velocity of dot pattern projected onto hand. In Proceedings of the 2016 workshop on Multimodal Virtual and Augmented Reality, Tokyo, Japan. |
[7] | Bi, W., Newport, J., & Xiao, B. (2018, August). Interaction between static visual cues and force-feedback on the perception of mass of virtual objects. In Proceedings of the 15th ACM Symposium on Applied Perception, New York, NY: ACM. |
[8] |
Bizley, J. K., Shinn-Cunningham, B. G., & Lee, A. K. C. (2012). Nothing is irrelevant in a noisy world: Sensory illusions reveal obligatory within-and across-modality integration. The Journal of Neuroscience, 32(39), 13402- 13410.
doi: 10.1523/JNEUROSCI.2495-12.2012 URL |
[9] | Bosman, I. D. V. (2018). Using binaural audio for inducing intersensory illusions to create illusory tactile feedback in virtual reality (Unpublished master’s thesis). University of Pretoria |
[10] |
Collins, K., & Kapralos, B. (2019). Pseudo-haptics: Leveraging cross-modal perception in virtual environments. The Senses and Society, 14(3), 313-329.
doi: 10.1080/17458927.2019.1619318 URL |
[11] | Cooper, N., Milella, F., Cant, I. E., Pinto, C., White, M. D., & Meyer, G. F. (2016). The effects of multisensory cues on the sense of presence and task performance in a virtual reality environment. Perception, 45, 332-333. |
[12] |
Crommett, L. E., Pérez-Bellido, A., & Yau, J. M. (2017). Auditory adaptation improves tactile frequency perception. Journal of Neurophysiology, 117(3), 1352-1362.
doi: 10.1152/jn.00783.2016 pmid: 28077668 |
[13] |
Culbertson, H., Schorr, S. B., & Okamura, A. M. (2018). Haptics: The present and future of artificial touch sensation. Annual Review of Control, Robotics, and Autonomous Systems, 1(1), 1-12.
doi: 10.1146/control.2018.1.issue-1 URL |
[14] |
Eitan, Z., & Rothschild, I. (2011). How music touches: Musical parameters and listeners’ audio-tactile metaphorical mappings. Psychology of Music, 39(4), 449-467.
doi: 10.1177/0305735610377592 URL |
[15] |
Ernst, M. O., & Banks, M. S. (2002). Humans integrate visual and haptic information in a statistically optimal fashion. Nature, 415(6870), 429-433
doi: 10.1038/415429a URL |
[16] |
Etzi, R., Ferrise, F., Bordegoni, M., Zampini, M., & Gallace, A. (2018). The effect of visual and auditory information on the perception of pleasantness and roughness of virtual surfaces. Multisensory Research, 31(6), 501-522.
doi: 10.1163/22134808-00002603 URL |
[17] |
Guest, S., Catmur, C., Lloyd, D., & Spence, C. (2002). Audiotactile interactions in roughness perception. Experimental Brain Research, 146(2), 161-171.
doi: 10.1007/s00221-002-1164-z URL |
[18] | Günther, S., Makhija, M., Müller, F., Schön, D., Mühlhäuser, M., & Funk, M. (2019, June). PneumAct: Pneumatic kinesthetic actuation of body joints in virtual reality environments. In Proceedings of the 2019 on Designing Interactive Systems Conference (DIS ’19). ACM, New York, NY, USA. |
[19] | Hannig, G., & Deml, B. (2008, August). Scrutinizing pseudo haptic feedback of surface roughness in virtual environments. In 2008 IEEE Conference on Virtual Environments, Human-Computer Interfaces and Measurement Systems, Istanbul, Turkey. |
[20] | Hashimoto, T., Narumi, T., Nagao, R., Tanikawa, T., & Hirose, M. (2018, June). Effect of pseudo-haptic feedback on touchscreens on visual memory during image browsing. In International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, Pisa, Italy. |
[21] |
Hecht, D., Reiner, M., & Karni, A. (2008). Enhancement of response times to bi- and tri-modal sensory stimuli during active movements. Experimental Brain Research, 185(4), 655-665.
doi: 10.1007/s00221-007-1191-x URL |
[22] | Hirao, Y., Takala, T. M., & Lecuyer, A. (2020). Comparing motion-based versus controller-based pseudo-haptic weight sensations in VR. In 2020 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW), Munich, Germany. |
[23] |
Ho, Y. X., Landy, M. S., & Maloney, L. T. (2006). How direction of illumination affects visually perceived surface roughness. Journal of Vision, 6(5), 634-648.
doi: 10.1167/6.6.634 URL |
[24] | Ho, Y. X., Maloney, L. T., & Landy, M. S. (2007). The effect of viewpoint on perceived visual roughness. Journal of Vision, 7(1), 1-1. |
[25] | Hoggan, E., & Brewster, S. (2007, November). Designing audio and tactile crossmodal icons for mobile devices. In Proceedings of the 9th international conference on Multimodal interfaces. Association for Computing Machinery, New York, NY, USA, ICMI.. |
[26] |
Honson, V., Huynh-Thu, Q., Arnison, M., Monaghan, D., Isherwood, Z. J., & Kim, J. (2020, May). Effects of shape, roughness and gloss on the perceived reflectance of colored surfaces. Frontiers in Psychology, 11, 485.
doi: 10.3389/fpsyg.2020.00485 URL |
[27] | Jones, B., & O’Neil, S. (1985). Combining vision and touch in texture perception. Attention Perception & Psychophysics, 37(1), 66-72. |
[28] |
Jousmäki, V., & Hari, R. (1998). Parchment-skin illusion: Sound-biased touch. Current Biology, 8(6), 190-191.
pmid: 9512426 |
[29] | Kang, N., & Lee, S. (2018, February).A meta-analysis of recent studies on haptic feedback enhancement in immersive-augmented reality. In Proceedings of the 4th International Conference on Virtual Reality, Hong Kong. |
[30] | Kapralos, B., Moussa, F., Collins, K., & Dubrowski, A. (2017). Fidelity and multimodal interactions. In P. Wouters & H. Oostendorp (Eds.), Instructional Techniques to Facilitate Learning and Motivation of Serious Games (pp.79-101). Springer-Verlag |
[31] |
Kawabe, T. (2020). Mid-air action contributes to pseudo- haptic stiffness effects. IEEE Transactions on Haptics, 13(1), 18-24.
doi: 10.1109/TOH.4543165 URL |
[32] | Kim, S.-C., Kyung, K.-U., & Kwon, D.-S. (2007, March). The effect of sound on haptic perception. In: Jt. EuroHaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. Tsukuba, Japan. |
[33] | Klatzky, R. L., & Lederman, S. J. (2010). Multisensory texture perception. In J. Kaiser & M. Naumer (Eds.), Multisensory object perception in the primate brain (pp.211-230). New York: Springer. |
[34] | Lécuyer, A., Coquillart, S., Kheddar, A., Richard, P., & Coiffet, P. (2000, March). Pseudo-haptic feedback: Can isometric input devices simulate force feedback? In Proceedings IEEE Virtual Reality 2000, New Brunswick, NJ, USA. |
[35] |
Lederman, S. J. (1979). Auditory texture perception. Perception, 8(1), 93-103.
pmid: 432084 |
[36] |
Lederman, S. J., & Abbott, S. G. (1981). Texture perception: studies of intersensory organization using a discrepancy paradigm, and visual versus tactual psychophysics. Journal of Experimental Psychology: Human Perception and Performance, 7(4), 902-915.
doi: 10.1037/0096-1523.7.4.902 URL |
[37] | Lederman, S. J., Klatzky, R. L., Hamilton, C. L., & Ramsay, G. I. (1999). Perceiving roughness via a rigid probe: Psychophysical effects of exploration speed and mode of touch. Haptics-e, 1(1), 1-20. |
[38] | Lederman, S. J., Martin, A., Tong, C., & Klatzky, R. L. (2003, March). Relative performance using haptic and/or touch-produced auditory cues in a remote absolute texture identification task. In 11th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, Los Angeles, CA, USA. |
[39] |
Lederman, S. J., Thorne, G., & Jones, B. (1986). Perception of texture by vision and touch: multidimensionality and intersensory integration. Journal of Experimental Psychology: Human Perception and Performance, 12(2), 169-180.
doi: 10.1037/0096-1523.12.2.169 URL |
[40] | Lederman, S. J., & Taylor, M. M. (1972). Fingertip force, surface geometry, and the perception of roughness by active touch. Attention Perception & Psychophysics, 12(5), 401-408. |
[41] |
Li, M., Sareh, S., Xu, G., Ridzuan, M. B., Luo, S., Xie, J., ... Althoefer, K. (2016). Evaluation of pseudo-haptic interactions with soft objects in virtual environments. PLOS ONE, 11(6), DOI: 10.1371/journal.pone.0157681
doi: 10.1371/journal.pone.0157681 |
[42] | Lin, J.-W., Han, P.-H., Lee, J.-Y., Chen, Y.-S., Chang, T.-W., Chen, K.-W., & Hung, Y.-P. (2017, July). Visualizing the keyboard in virtual reality for enhancing immersive experience. In ACM SIGGRAPH 2017 Posters (SIGGRAPH ’17). ACM, New York, NY, USA. |
[43] |
Malpica, S., Serrano, A., Allue, M., Bedia, M. G., & Masiá, B. (2020). Crossmodal perception in virtual reality. Multimedia Tools and Applications, 79(5), 3311-3331.
doi: 10.1007/s11042-019-7331-z URL |
[44] |
Marucci, M., di Flumeri, G., Borghini, G., Sciaraffa, N., Scandola, M., Pavone, E. F., ... Aricò, P. (2021). The impact of multisensory integration and perceptual load in virtual reality settings on performance, workload and presence. Scientific Reports, 11(1), 4831-4831.
doi: 10.1038/s41598-021-84196-8 pmid: 33649348 |
[45] | Matsumoto, D., Zhu, Y., Tanaka, Y., Yamazaki, K., Hasegawa, K., Makino, Y., & Shinoda, H. (2016, November).An immersive visuo-haptic VR environment with pseudo- haptic effects on perceived stiffness. International AsiaHaptics Conference, Chiba, Japan. |
[46] |
Okamoto, S., Nagano, H., & Yamada, Y. (2013). Psychophysical dimensions of tactile perception of textures. IEEE Transactions on Haptics, 6(1), 81-93.
doi: 10.1109/TOH.2012.32 pmid: 24808270 |
[47] | Ota, Y., Ujitoko, Y., Ban, Y., Sakurai, S., & Hirota, K. (2020, September). Surface roughness judgment during finger exploration is changeable by visual oscillations. In International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, Leiden, The Netherlands. |
[48] | Paulun, V. C., Schmidt, F., van Assen, J. J. R., & Fleming, R. W. (2017). Shape, motion, and optical cues to stiffness of elastic objects. Journal of Vision, 17(1), 20-20. |
[49] | Peeva, D., Baird, B., Izmirli, O., & Blevins, D. (2004, July). Haptic and sound correlations: pitch, loudness and texture. In Proceedings. Eighth International Conference on Information Visualisation, 2004. IV 2004. London, UK. |
[50] | Poling, G. L., Weisenberger, J. M., & Kerwin, T. (2003, March). The role of multisensory feedback in haptic surface perception. In 11th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, Angeles, CA, USA. |
[51] | Ramírez, A. G. R., Luna, F. J. G., Villegas, O. O. V., & Nandayapa, M. (2018). Applications of haptic systems in virtual environments: A brief review. In O. Villegas, M. Nandayapa, & I. Soto (Eds.), Advanced Topics on Computer Vision, Control and Robotics in Mechatronics (pp. 349-377). Springer-Verlag. |
[52] | Samad, M., Gatti, E., Hermes, A., Benko, H., & Parise, C. (2019, May). Pseudo-haptic weight: Changing the perceived weight of virtual objects by manipulating control-display ratio. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, Glasgow, UK. |
[53] |
Sato, Y., Hiraki, T., Tanabe, N., Matsukura, H., Iwai, D., & Sato, K. (2020). Modifying texture perception with pseudo-haptic feedback for a projected virtual hand interface. IEEE Access, 8, 120473-120488.
doi: 10.1109/Access.6287639 URL |
[54] |
Schmidt, F., Paulun, V. C., van Assen, J. J. R., & Fleming, R. W. (2017). Inferring the stiffness of unfamiliar objects from optical, shape, and motion cues. Journal of Vision, 17(3), 18-18.
doi: 10.1167/17.3.18 pmid: 28355630 |
[55] |
Suzuki, Y., Gyoba, J., & Sakamoto, S. (2008). Selective effects of auditory stimuli on tactile roughness perception. Brain Research, 1242, 87-94.
doi: 10.1016/j.brainres.2008.06.104 pmid: 18638461 |
[56] | Suzuki, Y., Suzuki, M., & Gyoba, J. (2006). Effects of auditory feedback on tactile roughness perception. Tohoku Psychologica Folia, 65, 45-56. |
[57] | Todd, J. T., & Norman, J. F. (2018). The visual perception of metal. Journal of Vision, 18(3), 9-9. |
[58] |
Ujitoko, Y., Ban, Y., & Hirota, K. (2019a). Modulating fine roughness perception of vibrotactile textured surface using pseudo-haptic effect. IEEE Transactions on Visualization and Computer Graphics, 25(5), 1981-1990.
doi: 10.1109/TVCG.2945 URL |
[59] | Ujitoko, Y., Ban, Y., & Hirota, K. (2019b, July). Presenting static friction sensation at stick-slip transition using pseudo-haptic effect. In 2019 IEEE World Haptics Conference (WHC), Tokyo, Japan. |
[60] |
Van Egmond, R., Lemmens, P., Pappas, T. N., & Ridder, H. D. (2009). Roughness in sound and vision. Electronic Imaging, 7240(72400). doi: 10.1117/12.817164
doi: 10.1117/12.817164 |
[61] | Vardar, Y., Wallraven, C., & Kuchenbecker, K. J. (2019, July). Fingertip interaction metrics correlate with visual and haptic perception of real surfaces. In 2019 IEEE World Haptics Conference (WHC), Tokyo, Japan. |
[62] | Wall, S. A., & Harwin, W. S. (2001). Interaction of visual and haptic information in simulated environments: Texture perception. In S. Brewster & R. Murray-Smith (Eds.), Haptic human-computer interaction 2000 (pp. 108-117). Berlin/Heidelberg: Springer-Verlag. |
[63] |
Wang, D., Ohnishi, K., & Xu, W. (2020). Multimodal haptic display for virtual reality: A survey. IEEE Transactions on Industrial Electronics, 67(1), 610-623.
doi: 10.1109/TIE.41 URL |
[64] | Weisenberger, J. M., & Poling, G. L. (2004, March). Multisensory roughness perception of virtual surfaces: effects of correlated cues. In 12th International Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2004. HAPTICS ’04. Proceedings, Chicago, IL, USA. |
[65] |
Zampini, M., Guest, S., & Spence, C. (2003). The role of auditory cues in modulating the perception of electric toothbrushes. Journal of Dental Research, 82(11), 929-932.
pmid: 14578508 |
[1] | 梁静;李开云;曲方炳;陈宥辛;颜文靖;傅小兰. 说谎的非言语视觉线索[J]. 心理科学进展, 2014, 22(6): 995-1005. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||