ISSN 1671-3710
CN 11-4766/R
主办:中国科学院心理研究所
出版:科学出版社

心理科学进展 ›› 2022, Vol. 30 ›› Issue (2): 255-274.doi: 10.3724/SP.J.1042.2022.00255

• 元分析 • 上一篇    下一篇

工作记忆训练诱发的神经可塑性——基于系列fMRI实验的脑区分布递减时空模型

陈幸明1, 付彤1, 刘昌3, 张宾1, 伏云发4, 李恩泽5, ZHANG Jian6, 陈盛强2, 党彩萍1,2()   

  1. 1广州医科大学附属脑科医院, 广州 510370
    2广州医科大学卫生管理学院, 广州 511436
    3南京师范大学心理学院, 南京 210024
    4昆明理工大学信息工程与自动化学院, 昆明理工大学医学院, 昆明 650031
    5南方医科大学南方医院精神心理科, 广州 510515
    6天津医科大学, 天津 300070
  • 收稿日期:2021-02-17 出版日期:2022-02-15 发布日期:2021-12-24
  • 通讯作者: 党彩萍 E-mail:dcp619@163.com
  • 基金资助:
    国家自然科学基金资助项目(31400874);广州市哲学社会科学规划课题(15G99);广州医科大学高水平大学建设项目(02-410-B205001186)

Neuroplasticity induced by working memory training: A spatio-temporal model of decreased distribution in brain regions based on fMRI experiments

CHEN Xingming1, FU Tong1, LIU Chang3, ZHANG Bin1, FU Yunfa4, LI Enze5, ZHANG Jian6, CHEN Shengqiang2, DANG Caiping1,2()   

  1. 1Brain Hospital Affiliated to Guangzhou Medical University, Guangzhou 510370, China
    2School of Health Management, Guangzhou Medical University, Guangzhou 511436, China
    3School of Psychology, Nanjing Normal University, Nanjing 210024, China
    4School of Information Engineering and Automation, School of Medicine, Kunming University of Science and Technology, Kunming 650031, China
    5Department of Psychology, Nanfang Hospital Affiliated to Southern Medical University, Guangzhou 510515, China
    6Tianjing Medical University,Tianjing 300070, China
  • Received:2021-02-17 Online:2022-02-15 Published:2021-12-24
  • Contact: DANG Caiping E-mail:dcp619@163.com

摘要:

工作记忆训练(Working Memory Training, WMT)诱发神经可塑性, 但其具体机制尚不明晰。为探索WMT改变正常人群大脑功能的时空特性, 以“扩展的智力顶额整合理论”和“神经效率假说”为依据, 采用逐层递进的5种方法, 分6个步骤来查究近20年来正常人群WMT的37篇fMRI文献。第一步, 用叙述性综述、频数分析和卡方检验法比较脑区激活模式和脑网络功能连接在WMT前后发生的改变, 发现WMT改变了大脑的5个联合区、7个宏观区和3个子区。其中, 额上回、顶下小叶和扣带回这3个子区各自激活减弱的报道文献数量多于其激活增强的, 且这种差异分别具有统计学意义。第二步, 采用激活似然估计法对其中26篇开展元分析, 发现大脑的3个子区激活减弱水平在WMT前后的差异具有统计学意义, 即额中回(BA6和8)、额上回(BA6)和前扣带回(BA24和32)。第三步, 综合定性和定量分析结果, 提出WMT脑区分布递减时空模型, 产生5个结果和讨论。第四步, 采用非参数检验进一步追踪WMT效应的调节因素, 发现训练的任务类型和时间分别对脑区激活的影响具有统计学意义。第五步, 针对正常人群WMT诱发神经可塑性的时空特性, 得出3个结论:第一, WMT改变了正常人群相应脑区的神经活动, 表现为减弱或增强, 但减弱更加突出, 且更新和较短时间的WMT倾向于诱发较多减弱; 第二, 这些神经活动变化主要发生在额顶叶联合区, 但也包括分别以颞叶、枕叶、扣带回及纹状体为主的联合区, 在一定范围内体现了整脑功能联合。这体现了WMT诱发神经可塑性的空间特性, 且符合“扩展的智力顶额整合理论”; 第三, 额中回、额上回、顶下小叶和扣带回(尤其前扣带回)这4个子区在激活减弱水平上重点展示了WMT神经可塑性的时间特性, 且符合“神经效率假说”, 恰好体现出“聪明的大脑更懒惰”。第六步, 指出WMT诱发神经可塑性的未来研究可能关注脑可塑性中的低活跃性、辨析额中回、额上回、顶下小叶和扣带回(尤其前扣带回)这4个子区在激活减弱水平上体现的时间特性、找寻训练减弱或增强大脑活动的综合性影响因素。

关键词: 工作记忆训练, 神经可塑性, 脑区分布递减时空模型, 额中回, 额上回, 前扣带回

Abstract:

Working memory training (WMT) induces neuroplasticity, but its specific mechanism remains unclear. In order to explore the spatio-temporal characteristics of brain function changes induced by WMT, the findings of 37 fMRI papers on WMT in normal population over the last 20 years were investigated with a step-by-step approach, including 5 methods and the following 6 steps, as well as with two assumptions based on the two theories— “Extended Parieto-Frontal Integration Theory” (ExtPFIT) and “neuro efficiency hypothesis”. Step 1, the changes of activation pattern and function connectivity in various brain regions before and after WMT among the 37 papers were compared using descriptive review, frequency analysis and Chi-square test. It was found that 5 association areas, 7 macro regions and 3 sub-regions of the brain were changed by WMT. Especially, the number of articles reporting decreased activation in 3 sub-regions—superior frontal gyrus, inferior parietal lobule and cingulate gyrus was more than that reporting increased activation in them, and this difference was statistically significant. Step 2, 26 out of the 37 papers were used to conduct meta-analysis with activation likelihood estimation method, and it showed that 3 sub-regions with the statistically significant effects in their decreased activation were middle frontal gyrus (BA6 and 8), superior frontal gyrus (BA6) and anterior cingulate gyrus (BA24 and 32). Step 3, based on the comprehensive results of qualitative and quantitative research analyses, a spatio-temporal model of decreased distribution in brain regions of WMT was proposed, and there were 5 results and their discussions obtained with the said model. Step 4, 31 out of the 37 papers were analyzed using non-parametric tests to check the factors that possibly regulated the training effect of WMT, which showed that the respective effect of task type and time of the training on brain activation had statistically significant. Step 5, according to the above analyses, 3 conclusions were drawn regarding the spatio-temporal characteristics of the neuroplasticity induced by WMT in normal population, i.e. 1) WMT can either weaken or enhance the brain activities, and the weakening effect appears more prominent. In addition, updating and shorter time of WMT tend to induce more weakening effects; 2) Such changes occur mostly in the frontal-parietal association area, but also possibly in the temporal lobe, occipital lobe, cingulate gyrus, striatum and other association areas, which reflects the whole brain functional association within a certain range. It highlights the spatial characteristics of the neuroplasticity, which fits in easily with ExtPFIT; 3) The 4 sub-regions of the middle frontal gyrus, superior frontal gyrus, inferior parietal lobule and cingulate gyrus (anterior in particular) in decreased activation mainly reflect the spatial characteristics of the neuroplasticity which fits in easily with “neural efficiency hypothesis” and “smarter brains may be slightly lazier”. Step 6, it was proposed that further research of the neuroplasticity induced by WMT was to possibly focus on low brain activity on its plasticity, distinguish the temporal characteristics of the training effect reflected in 4 sub-regions of middle frontal gyrus, superior frontal gyrus, inferior parietal lobule and cingulate gyrus (anterior in particular), as well as to probe the comprehensive influencing factors that increase or decrease the brain activities.

Key words: working memory training, neuroplasticity, a spatio-temporal model of decreased distribution in brain regions, middle frontal gyrus, superior frontal gyrus, anterior cingulate gyrus

中图分类号: