[1] |
杭丹丹. (2020). 多级计分认知诊断评估中的Q矩阵验证方法与应用研究 (硕士学位论文). 江西师范大学, 南昌,
|
[2] |
刘芯伶. (2020). 多级评分情境下Q矩阵修正的非参数方法 (硕士学位论文). 浙江师范大学, 金华,
|
[3] |
刘彦楼, 辛涛, 李令青, 田伟, 刘笑笑. (2016). 改进的认知诊断模型项目功能差异检验方法--基于观察信息矩阵的Wald统计量. 心理学报, 48(5), 588-598.
|
[4] |
刘彦楼, 张倩萌, 郑宗军, 尹昊. (2019). 认知诊断模型中项目水平模型比较统计量的健壮性. 心理科学, 42, 1251-1259.
|
[5] |
涂冬波, 蔡艳, 戴海琦. (2012). 基于DINA模型的Q矩阵修正方法. 心理学报, 44(4), 558-568.
|
[6] |
汪大勋, 高旭亮, 蔡艳, 涂冬波. (2018). 一种非参数化的Q矩阵估计方法: ICC-IR方法开发. 心理科学, 41(2), 466-474.
|
[7] |
汪大勋, 高旭亮, 蔡艳, 涂冬波. (2019). 一种广义的认知诊断Q矩阵修正新方法. 心理科学, 42(4), 988-996.
|
[8] |
汪大勋, 高旭亮, 蔡艳, 涂冬波. (2020). 基于类别水平的多级计分认知诊断Q矩阵修正: 相对拟合统计量视角. 心理学报, 52(1), 93-106.
|
[9] |
汪大勋, 高旭亮, 韩雨婷, 涂冬波. (2018). 一种简单有效的Q矩阵估计方法开发: 基于非参数化方法视角. 心理科学, 41(1), 180-188.
|
[10] |
汪文义, 高朋, 宋丽红, 汪腾. (2020). 带噪音预处理的改进探索性Q矩阵标定方法. 江西师范大学学报(自然科学版), 44(2), 136-141.
|
[11] |
汪文义, 宋丽红, 丁树良. (2015). 基于探索性因素分析的Q矩阵标定方法. 江西师范大学学报(自然科学版), 39(2), 138-144+170.
|
[12] |
汪文义, 宋丽红, 丁树良. (2018). 基于可达阵的一种Q矩阵标定方法. 心理科学, 41(4), 968-975.
|
[13] |
喻晓锋, 罗照盛, 高椿雷, 李喻骏, 王睿, 王钰彤. (2015). 使用似然比D-2统计量的题目属性定义方法. 心理学报, 47(3), 417-426.
|
[14] |
喻晓锋, 罗照盛, 秦春影, 高椿雷, 李喻骏. (2015). 基于作答数据的模型参数和Q矩阵联合估计. 心理学报, 47(2), 273-282.
|
[15] |
杨亚坤, 朱仕浩, 刘芯伶. (2020). 基于项目拟合统计量RMSEA的Q矩阵估计方法. 心理技术与应用, 8(1), 51-59.
|
[16] |
Barnes, T.(2010). Novel derivation and application of skill matrices:The Q-matrix method. In C. Ramero, S. Vemtora, M. Pechemizkiy, & R. S. J. de Baker (Eds.), Handbook of educational data mining (pp.159-172). Boca Raton, FL: Chapman & Hall.
|
[17] |
Chen, J. S.(2017). A residual-based approach to validate Q-matrix specifications. Applied Psychological Measurement, 41(4), 277-293.
doi: 10.1177/0146621616686021
URL
|
[18] |
Chen, J. S., de la Torre, J., & Zhang, Z.(2013). Relative and absolute fit evaluation in cognitive diagnosis modeling. Journal of Educational Measurement, 50(2), 123-140.
doi: 10.1111/jedm.2013.50.issue-2
URL
|
[19] |
Chen, Y. H., Culpepper, S. A., Chen, Y. G., & Douglas, J.(2018). Bayesian estimation of the DINA Q-matrix. Psychometrika, 83(1), 89-108.
doi: 10.1007/s11336-017-9579-4
URL
|
[20] |
Chen, Y, Statistical analysis of Q-matrix based diagnostic classificatio, X. Liu, J. C., Xu, G. J., & Ying, Z. L.(2015). n models. Journal of the American Statistical Association, 110(510), 850-866.
doi: 10.1080/01621459.2014.934827
URL
|
[21] |
Chiu, C.-Y.(2013). Statistical refinement of the Q-matrix in cognitive diagnosis. Applied Psychological Measurement, 37(8), 598-618.
doi: 10.1177/0146621613488436
URL
|
[22] |
Chung, M. T.(2019). A Gibbs sampling algorithm that estimates the Q-matrix for the DINA model. Journal of Mathematical Psychology, 93, 102275.
doi: 10.1016/j.jmp.2019.07.002
URL
|
[23] |
Close, C. N.(2012). An exploratory technique for finding the Q-matrix for the DINA model in cognitive diagnostic assessment: Combining theory with data (Unpublished doctorial dissertation). University of Minnesota.
|
[24] |
Cui, Y.(2007). The hierarchy consistency index: A person -fit statistic for the attribute hierarchy method (Unpublished doctorial dissertation). University of Alberta, Edmonton.
|
[25] |
DeCarlo, L. T.(2012). Recognizing uncertainty in the Q-matrix via a Bayesian extension of the DINA model. Applied Psychological Measurement, 36(6), 447-468.
doi: 10.1177/0146621612449069
URL
|
[26] |
de la Torre, J.(2008). An empirically based method of Q-matrix validation for the DINA model: Development and applications. Journal of Educational Measurement, 45(4), 343-362.
doi: 10.1111/jedm.2008.45.issue-4
URL
|
[27] |
de la Torre, J.(2009). DINA model and parameter estimation: A didactic. Journal of Educational and Behavioral Statistics, 34(1), 115-130.
|
[28] |
de la Torre, J., & Chiu, C.-Y.(2016). A general method of empirical Q-matrix validation. Psychometrika, 81(2), 253- 273.
doi: 10.1007/s11336-015-9467-8
URL
|
[29] |
Kang, C. H., Yang, Y. K., & Zeng, P. H.(2019). Q-matrix refinement based on item fit statistic RMSEA. Applied Psychological Measurement, 43(7), 527-542.
doi: 10.1177/0146621618813104
URL
|
[30] |
Liu, J. C., Xu, G. J., & Ying, Z. L.(2012). Data-driven learning of Q-matrix. Applied Psychological Measurement, 36(7), 548-564.
doi: 10.1177/0146621612456591
URL
|
[31] |
Liu, Y. L., Andersson, B., Xin, T., Zhang, H. Y., & Wang, L. L.(2019). Improved Wald statistics for item-level model comparison in diagnostic classification models. Applied Psychological Measurement, 43, 402-414.
doi: 10.1177/0146621618798664
URL
|
[32] |
Liu, Y. L., Tian, W., & Xin, T.(2016). An application of M2 statistic to evaluate the fit of cognitive diagnostic models. Journal of Educational and Behavioral Statistics, 41, 3-26.
|
[33] |
Liu, Y. L., Xin, T., Andersson, B., & Tian, W.(2019). Information matrix estimation procedures for cognitive diagnostic models. British Journal of Mathematical and Statistical Psychology, 72, 18-37.
doi: 10.1111/bmsp.2019.72.issue-1
URL
|
[34] |
Liu, Y. L., Yin, H., Xin, T., Shao, L. C., & Yuan, L.(2019). A comparison of differential item functioning detection methods in cognitive diagnostic models. Frontiers in Psychology, 10, 1137.
doi: 10.3389/fpsyg.2019.01137
URL
|
[35] |
Ma, W. C., & de la Torre, J.(2020). An empirical Q-matrix validation method for the sequential generalized DINA model. The British Journal of Mathematical and Statistical Psychology, 73(1), 142-163.
doi: 10.1111/bmsp.v73.1
URL
|
[36] |
McKinley, R. L., & Mills, C. N.(1985). A comparison of several goodness-of-fit statistics. Applied Psychological Measurement, 9(1), 49-57.
doi: 10.1177/014662168500900105
URL
|
[37] |
Rupp, A. A., & Templin, J.(2008). The effects of Q-matrix misspecification on parameter estimates and classification accuracy in the DINA model. Educational and Psychological Measurement, 68(1), 78-96.
doi: 10.1177/0013164407301545
URL
|
[38] |
Templin, J. L., & Henson, R. A.(2006). Measurement of psychological disorders using cognitive diagnosis models. Psychological Methods, 11, 287-305.
doi: 10.1037/1082-989X.11.3.287
URL
|
[39] |
Wang, D. X., Cai, Y., & Tu, D. B.(2020). Q-matrix estimation methods for cognitive diagnosis models: Based on partial known Q-matrix.
|
[40] |
Wang, W. Y., Song, L. H., Ding, S. L., Meng, Y. R., Cao, C. X., & Jie, Y. J.(2018). An EM-based method for Q-matrix validation. Applied Psychological Measurement, 42(6), 446-459.
doi: 10.1177/0146621617752991
URL
|
[41] |
Xiang, R.(2013). Columbia University, New York.
|
[42] |
Xu, G. J., & Shang, Z. R.(2018). Identifying latent structures in restricted latent class models. Journal of the American Statistical Association, 113(523), 1284-1295.
doi: 10.1080/01621459.2017.1340889
URL
|
[43] |
Yu, X. F., & Cheng, Y.(2020). Data-driven Q-matrix validation using a residual-based statistic in cognitive diagnostic assessment. British Journal of Mathematical and Statistical Psychology. 73, 145-179.
doi: 10.1111/bmsp.v73.s1
URL
|