心理科学进展 ›› 2021, Vol. 29 ›› Issue (4): 635-651.doi: 10.3724/SP.J.1042.2021.00635
收稿日期:
2020-04-29
出版日期:
2021-04-15
发布日期:
2021-02-22
基金资助:
ZHANG Zhao1,2, ZHANG Liwei1(), GONG Ran1,3
Received:
2020-04-29
Online:
2021-04-15
Published:
2021-02-22
Supported by:
摘要:
过滤效能反映了视觉工作记忆的干扰抑制功能, 研究者可基于储存容量或表征精度对其进行测量, 其神经加工过程主要分为觉察分心项目、过滤启动、实现过滤或储存, 涉及前额叶皮层和基底核、后顶叶皮层的协同作用。过滤效能的变化方向受到年龄、特殊障碍、情绪、认知特点等因素的影响。未来研究仍需解决的问题包括厘清过滤效能与工作记忆容量的关系, 辨明过滤效能的心理实现过程, 探索不同年龄、特殊障碍和职业等群体过滤效能的脑机制以及提升基础研究范式的生态学效度。
中图分类号:
张照, 张力为, 龚然. (2021). 视觉工作记忆的过滤效能. 心理科学进展 , 29(4), 635-651.
ZHANG Zhao, ZHANG Liwei, GONG Ran. (2021). The filtering efficiency in visual working memory. Advances in Psychological Science, 29(4), 635-651.
[1] | 高在峰, 郁雯珺, 徐晓甜, 尹军, 水仁德, 沈模卫. (2012). 对侧延迟活动: 视觉工作记忆信息存储的ERP指标. 科学通报, 57(30),2806-2814. doi: https://doi.org/10.1360/972012-728. |
[2] | 郭恒, 何莉, 周仁来. (2016). 经颅直流电刺激提高记忆功能. 心理科学进展, 24(3),356-366. doi: https://doi.org/10.3724/sp.j.1042.2016.00356. |
[3] | 何旭, 郭春彦. (2013). 视觉工作记忆的容量与资源分配. 心理科学进展, 21(10),1741-1748. doi: https://doi.org/10.3724/sp.j.1042.2013.01741. |
[4] | 库逸轩. (2019). 工作记忆的认知神经机制. 生理学报, 71(1),173-185. doi: https://doi.org/10.13294/j.aps.2019.0004. |
[5] | 梁怡雯. (2016). 工作记忆加工中抑制干扰的神经机制研究. (硕士学位论文). 华东师范大学, 上海. |
[6] | 刘志英, 库逸轩. (2017). 知觉表征精度对工作记忆中抑制干扰能力的影响. 心理学报, 49(10),1247-1255. |
[7] | 龙芳芳. (2018). 负性情绪状态对视觉工作记忆资源分配及过滤效率的影响. (硕士学位论文). 辽宁师范大学, 沈阳. |
[8] | 冉雪梅. (2017). 精神分裂症患者的视觉工作记忆损伤:来自行为和脑电的证据. (硕士学位论文). 华东师范大学, 上海. |
[9] | 世界卫生组织. (2018). 道路交通伤害. 2018-12-07取自 https://www.who.int/zh/news-room/fact-sheets/detail/road-traffic-injuries. |
[10] | 王思思. (2019). 视觉工作记忆的存储和干扰抑制的神经机制. (博士学位论文). 华东师范大学, 上海. |
[11] | 王思思, 库逸轩. (2018). 右侧背外侧前额叶在视觉工作记忆中的因果性作用. 心理学报, 50(7),727-738. doi: https://doi.org/10.3724/sp.j.1041.2018.00727. |
[12] | 魏萍, 康冠兰. (2012). 奖赏性线索启动和调控视觉搜索额顶网络的神经机制. 心理科学进展, 20(6),798-804. |
[13] | 张宁宁. (2012). 基于神经人因学的人—车交互系统若干问题的研究. (博士学位论文). 东北大学, 沈阳. |
[14] | Allen, R. J., Baddeley, A. D., & Hitch, G. J. (2014). Evidence for two attentional components in visual working memory. Journal of Experimental Psychology: Learning Memory and Cognition, 40(6),1499-1509. doi: https://doi.org/10.1037/xlm0000002. |
[15] |
Allon, A. S., & Luria, R. (2017). Compensation mechanisms that improve distractor filtering are shortlived. Cognition, 164,74-86.
URL pmid: 28391134 |
[16] |
Allon, A. S., & Luria, R. (2019). Filtering performance in visual working memory is improved by reducing early spatial attention to the distractors. Psychophysiology, 56(5), Article e13323. doi: https://doi.org/10.1111/psyp.13323.
doi: 10.1111/psyp.13323 URL pmid: 30609072 |
[17] |
Allon, A. S., Vixman, G., & Luria, R. (2019). Gestalt grouping cues can improve filtering performance in visual working memory. Psychological Research, 83(8),1656-1672. doi: https://doi.org/10.1007/s00426-018-1032-5.
URL pmid: 29845437 |
[18] |
Arciniega, H., Gözenman, F., Jones, K. T., Stephens, J. A., & Berryhill, M. E. (2018). Frontoparietal tDCS benefits visual working memory in older adults with low working memory capacity. Frontiers in Aging Neuroscience, 10, Article e00057. doi: https://doi.org/10.3389/fnagi.2018.00057.
URL pmid: 30620773 |
[19] |
Astle, D. E., Harvey, H., Stokes, M., Mohseni, H., Nobre, A. C., & Scerif, G. (2014). Distinct neural mechanisms of individual and developmental differences in VSTM capacity. Developmental Psychobiology, 56(4),601-610. doi: https://doi.org/10.1002/dev.21126.
URL pmid: 23775219 |
[20] |
Awh, E., & Vogel, E. K. (2008). The bouncer in the brain. Nature Neuroscience, 11(1),5-6. doi: https://doi.org/10.1038/nn0108-5.
URL pmid: 18160954 |
[21] |
Baier, B., Müller, N. G., & Dieterich, M. (2014). What part of the cerebellum contributes to a visuospatial working memory task? Annals of Neurology, 76(5),754-757. doi: https://doi.org/10.1002/ana.24272.
URL pmid: 25220347 |
[22] |
Bodner, K. E., Cowan, N., & Christ, S. E. (2019). Contributions of filtering and attentional allocation to working memory performance in individuals with autism spectrum disorder. Journal of Abnormal Psychology, 128(8),881-891. doi: https://doi.org/10.1037/abn0000471.
URL pmid: 31599633 |
[23] | Buelow, M. T., Okdie, B. M., Brunell, A. B., & Trost, Z. (2015). Stuck in a moment and you cannot get out of it: The lingering effects of ostracism on cognition and satisfaction of basic needs. Personality and Individual Differences, 76,39-43. |
[24] |
Christ, S. E., Kester, L. E., Bodner, K. E., & Miles, J. H. (2011). Evidence for selective inhibitory impairment in individuals with autism spectrum disorder. Neuropsychology, 25(6),690-701. doi: https://doi.org/dx.doi.org/10.1037/a0024256.
URL pmid: 21728431 |
[25] |
Cisler, J. M., & Koster, E. H. W. (2010). Mechanisms of attentional biases towards threat in anxiety disorders: An integrative review. Clinical Psychology Review, 30(2),203-216. doi: https://doi.org/10.1016/j.cpr.2009.11.003.
URL pmid: 20005616 |
[26] |
Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3(3),201-215. doi: https://doi.org/10.1038/nrn755.
URL pmid: 11994752 |
[27] |
Cowan, N., Fristoe, N. M., Elliott, E. M., Brunner, R. P., & Saults, J. S. (2006). Scope of attention, control of attention, and intelligence in children and adults. Memory & Cognition, 34(8),1754-1768.
doi: 10.3758/bf03195936 URL pmid: 17489300 |
[28] | Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24(1),114-185. |
[29] | D'Esposito, M., & Postle, B. R. (2015). The cognitive neuroscience of working memory. Annual Review of Psychology, 66(1),115-142. doi: https://doi.org/10.1146/annurev-psych-010814-015031. |
[30] |
di Rosa, E., Brigadoi, S., Cutini, S., Tarantino, V., Dell'Acqua, R., Mapelli, D., … Vallesi, A. (2019). Reward motivation and neurostimulation interact to improve working memory performance in healthy older adults: A simultaneous tDCS-fNIRS study. NeuroImage, 202, Article e116062. doi: https://doi.org/10.1016/j.neuroimage.2019.116062.
URL pmid: 31473355 |
[31] |
Doehnert, M., Brandeis, D., Imhof, K., Drechsler, R., & Steinhausen, H. C. (2010). Mapping attention-deficit/ hyperactivity disorder from childhood to adolescence—No neurophysiologic evidence for a developmental lag of attention but some for inhibition. Biological Psychiatry, 67(7),608-616. doi: https://doi.org/10.1016/j.biopsych.2009.07.038.
URL pmid: 19811774 |
[32] |
Drummond, S.P. A., Anderson, D. E., Straus, L. D., Vogel, E. K., & Perez, V. B. (2012). The effects of two types of sleep deprivation on visual working memory capacity and filtering efficiency. Plos One, 7(4), Article e0035653. doi: https://doi.org/10.1371/journal.pone.0035653.
doi: 10.1371/journal.pone.0036036 URL pmid: 22563436 |
[33] | Dube, B., Emrich, S. M., & Al-Aidroos, N. (2017). More than a filter: Feature-based attention regulates the distribution of visual working memory resources. Journal of Experimental Psychology: Human Perception and Performance, 43(10),1843-1854. doi: https://doi.org/10.1037/xhp0000428. |
[34] |
Duncan, J. (2001). An adaptive coding model of neural function in prefrontal cortex. Nature Reviews Neuroscience, 2(11),820.
URL pmid: 11715058 |
[35] |
Emrich, S. M., & Busseri, M. A. (2015). Re-evaluating the relationships among filtering activity, unnecessary storage, and visual working memory capacity. Cognitive, Affective and Behavioral Neuroscience, 15(3),589-597. doi: https://doi.org/10.3758/s13415-015-0341-z.
doi: 10.3758/s13415-015-0341-z URL pmid: 25690338 |
[36] |
Engel, A. K. (2012). Rules got rhythm. Neuron, 76(4),673-676. doi: https://doi.org/10.1016/j.neuron.2012.11.003.
doi: 10.1016/j.neuron.2012.11.003 URL pmid: 23177954 |
[37] | Feldmann-Wüstefeld, T.,& Edward K. Vogel. (2018). Neural evidence for the contribution of active suppression during working memory filtering. Cerebral Cortex, 29(2),529-543. |
[38] | Fougnie, D., Suchow, J. W., & Alvarez, G. A. (2012). Variability in the quality of visual working memory. Nature Communications, 3(1),1228-1246. doi: https://doi.org/10.1038/ncomms2237. |
[39] |
Fuster, J. M. (2001). The prefrontal cortex—an update: Time is of the essence. Neuron, 30(2),319-333.
doi: 10.1016/s0896-6273(01)00285-9 URL pmid: 11394996 |
[40] | Gaspar, J. M., Christie, G. J., Prime, D. J., Jolicœur, P., & McDonald, J. J. (2016). Inability to suppress salient distractors predicts low visual working memory capacity. Proceedings of the National Academy of Sciences, 113(13),3693-3698. |
[41] | Gazzaley, A., Clapp, W., Kelley, J., McEvoy, K., Knight, R. T., & D'Esposito, M. (2008). Age-related top-down suppression deficit in the early stages of cortical visual memory processing. Proceedings of the National Academy of Sciences, 105(35),13122-13126. |
[42] |
Ge, Y., Sheng, B. Y., Qu, W. N., Xiong, Y. X., Sun, X., & Zhang, K. (2020). Differences in visual-spatial working memory and driving behavior between morning-type and evening-type drivers. Accident Analysis and Prevention, 136, Article e105402. doi: https://doi.org/10.1016/j.aap.2019. 105402.
URL pmid: 31874332 |
[43] |
Gold, J. M., Fuller, R. L., Robinson, B. M., McMahon, R. P., Braun, E. L., & Luck, S. J. (2006). Intact attentional control of working memory encoding in schizophrenia. Journal of Abnormal Psychology, 115(4),658-673. doi: https://doi.org/10.1037/0021-843X.115.4.658.
URL pmid: 17100524 |
[44] |
Hadar, B., Luria, R., & Liberman, N. (2019a). Induced social power improves visual working memory. Personality and Social Psychology Bulletin, 46(2),285-297. doi: https://doi.org/10.1177/0146167219855045.
URL pmid: 31189437 |
[45] |
Hadar, B., Luria, R., & Liberman, N. (2019b). Concrete mindset impairs filtering in visual working memory. Psychonomic Bulletin & Review, 26(6),1917-1924. doi: https://doi.org/10.3758/s13423-019-01625-6.
doi: 10.3758/s13423-019-01625-6 URL pmid: 31429059 |
[46] | Hasher, L., & Zacks, R. T. (1988). Working memory, comprehension, and aging: A review and a new view. The Psychology of Learning and Motivation, 22,193-225. |
[47] | Hawes, D. J., Zadro, L., Fink, E., Richardson, R., O'Moore, K., Griffiths, B., & Williams, K. D. (2012). The effects of peer ostracism on children's cognitive processes. European Journal of Developmental Psychology, 9(5),599-613. |
[48] | Hazy, T. E., Frank, M. J., & O'Reilly, R. C. (2007). Towards an executive without a homunculus: Computational models of the prefrontal cortex/basal ganglia system. Philosophical Transactions of the Royal Society B: Biological Sciences, 362(1485),1601-1613. doi: https://doi.org/10.1098/rstb.2007.2055. |
[49] |
Heimrath, K., Sandmann, P., Becke, A., Müller, N. G., & Zaehle, T. (2012). Behavioral and electrophysiological effects of transcranial direct current stimulation of the parietal cortex in a visuo-spatial working memory task. Frontiers in Psychiatry, 3, Article e00056. doi: https://doi.org/10.3389/fpsyt.2012.00056.
URL pmid: 23162480 |
[50] |
Hsu, T.-Y., Tseng, P., Liang, W.-K., Cheng, S. -K., & Juan, C.-H. (2014). Transcranial direct current stimulation over right posterior parietal cortex changes prestimulus alpha oscillation in visual short-term memory task. NeuroImage, 98,306-313. doi: https://doi.org/10.1016/j.neuroimage.2014.04.069.
URL pmid: 24807400 |
[51] |
Jia, S., Zhang, Q., & Li, S. (2014). Field dependence- independence modulates the efficiency of filtering out irrelevant information in a visual working memory task. Neuroscience, 278,136-143. doi: https://doi.org/10.1016/j.neuroscience.2014.07.075.
doi: 10.1016/j.neuroscience.2014.07.075 URL pmid: 25135352 |
[52] |
Johnson, M. K., McMahon, R. P., Robinson, B. M., Harvey, A. N., Hahn, B., Leonard, C. J.… Gold, J. M. (2013). The relationship between working memory capacity and broad measures of cognitive ability in healthy adults and people with schizophrenia. Neuropsychology, 27(2),220-229. doi: https://doi.org/10.1037/a0032060.
URL pmid: 23527650 |
[53] |
Jones, K. T., & Berryhill, M. E. (2012). Parietal contributions to visual working memory depend on task difficulty. Frontiers in Psychiatry, 3, Article e00081. doi: https://doi.org/10.3389/fpsyt.2012.00081.
URL pmid: 23162480 |
[54] |
Jones, K. T., Gözenman, F., & Berryhill, M. E. (2015). The strategy and motivational influences on the beneficial effect of neurostimulation: A tDCS and fNIRS study. NeuroImage, 105,238-247. doi: https://doi.org/10.1016/j.neuroimage.2014.11.012.
URL pmid: 25462798 |
[55] |
Jost, K., Bryck, R. L., Vogel, E. K., & Mayr, U. (2011). Are old adults just like low working memory young adults? Filtering efficiency and age differences in visual working memory. Cerebral Cortex, 21(5),1147-1154. doi: https://doi.org/10.1093/cercor/bhq185.
URL pmid: 20884722 |
[56] |
Jost, K., & Mayr, U. (2016). Switching between filter settings reduces the efficient utilization of visual working memory. Cognitive, Affective and Behavioral Neuroscience, 16(2),207-218. doi: https://doi.org/10.3758/s13415-015-0380-5.
URL pmid: 26450507 |
[57] |
Koshino, H., Kana, R. K., Keller, T. A., Cherkassky, V. L., Minshew, N. J., & Just, M. A. (2007). fMRI investigation of working memory for faces in autism : Visual coding and underconnectivity with frontal areas. Cerebral Cortex, 18(2),289-300. doi: https://doi.org/10.1093/cercor/bhm054.
URL pmid: 17517680 |
[58] |
Lee, E.-Y., Cowan, N., Vogel, E. K., Rolan, T., Valle-Inclán, F., & Hackley, S. A. (2010). Visual working memory deficits in patients with Parkinson's disease are due to both reduced storage capacity and impaired ability to filter out irrelevant information. Brain, 133(9),2677-2689. doi: https://doi.org/10.1093/brain/awq197.
URL pmid: 20688815 |
[59] |
Li, S., Cai, Y., Liu, J., Li, D., Feng, Z., Chen, C., & Xue, G. (2017). Dissociated roles of the parietal and frontal cortices in the scope and control of attention during visual working memory. NeuroImage, 149,210-219. doi: https://doi.org/10.1016/j.neuroimage.2017.01.061.
URL pmid: 28131893 |
[60] |
Liberman, N., & Trope, Y. (2008). The psychology of transcending the here and now. Science, 322(5905),1201-1205.
URL pmid: 19023074 |
[61] |
Liberman, N., & Trope, Y. (2014). Traversing psychological distance. Trends in Cognitive Sciences, 18(7),364-369.
URL pmid: 24726527 |
[62] |
Liesefeld, A. M., Liesefeld, H. R., & Zimmer, H. D. (2014). Intercommunication between prefrontal and posterior brain regions for protecting visual working memory from distractor interference. Psychological Science, 25(2),325-333. doi: https://doi.org/10.1177/0956797613501170.
doi: 10.1177/0956797613501170 URL pmid: 24379152 |
[63] |
Luck, S. J., & Vogel, E. K. (2013). Visual working memory capacity: From psychophysics and neurobiology to individual differences. Trends in Cognitive Sciences, 17(8),391-400. doi: https://doi.org/10.1016/j.tics.2013.06.006.
doi: 10.1016/j.tics.2013.06.006 URL pmid: 23850263 |
[64] |
Luria, R., Balaban, H., Awh, E., & Vogel, E. K. (2016). The contralateral delay activity as a neural measure of visual working memory. Neuroscience and Biobehavioral Reviews, 62,100-108. doi: https://doi.org/10.1016/j.neubiorev.2016.01.003.
URL pmid: 26802451 |
[65] |
Ma, W. J., Husain, M., & Bays, P. M. (2014). Changing concepts of working memory. Nature Neuroscience, 17(3),347-356. doi: https://doi.org/10.1038/nn.3655.
URL pmid: 24569831 |
[66] | Mall, J. T., Morey, C. C., Wolff, M. J., & Lehnert, F. (2014). Visual selective attention is equally functional for individuals with low and high working memory capacity: Evidence from accuracy and eye movements. Attention, Perception, and Psychophysics, 76(7),1998-2014. doi: https://doi.org/10.3758/s13414-013-0610-2. |
[67] |
Manza, P., Hau, C.L. V., & Leung, H.-C. (2014). Alpha power gates relevant information during working memory updating. Journal of Neuroscience, 34(17),5998-6002. doi: https://doi.org/10.1523/JNEUROSCI.4641-13.2014.
URL pmid: 24760858 |
[68] |
McNab, F., & Klingberg, T. (2008). Prefrontal cortex and basal ganglia control access to working memory. Nature Neuroscience, 11(1),103-107. doi: https://doi.org/10.1038/ nn2024.
URL pmid: 18066057 |
[69] |
Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review, 63(2),81-97.
URL pmid: 13310704 |
[70] |
Moran, T. P. (2016). Anxiety and working memory capacity: A meta-analysis and narrative review. Psychological Bulletin, 142(8),831-864. doi: https://doi.org/10.1037/bul0000051.
URL pmid: 26963369 |
[71] | Moriya, J., & Sugiura, Y. (2012). High visual working memory capacity in trait social anxiety. Plos One, 7(4), Article e0034244. doi: https://doi.org/10.1371/journal.pone.0034244. |
[72] | Nitsche, M. A., & Paulus, W. (2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. Journal of Physiology, 527(3),633-639. doi: https://doi.org/10.1111/j.1469-7793.2000.t01-1- 00633.x. |
[73] |
O'luanaigh, C., O'connell, H., Chin, A.-V., Hamilton, F., Coen, R., Walsh, C., & Lawlor, B. A.(2012). Loneliness and cognition in older people: The dublin healthy ageing study. Aging Ment Health, 16(3),347-352.
URL pmid: 22129350 |
[74] |
Owens, M., Koster, E. H. W., & Derakshan, N. (2012). Impaired filtering of irrelevant information in dysphoria: An ERP study. Social Cognitive and Affective Neuroscience, 7(7),752-763. doi: https://doi.org/10.1093/scan/nsr050.
URL pmid: 21896495 |
[75] |
Owens, M., Koster, E.H. W., & Derakshan, N. (2013). Improving attention control in dysphoria through cognitive training: Transfer effects on working memory capacity and filtering efficiency. Psychophysiology, 50(3),297-307. doi: https://doi.org/10.1111/psyp.12010.
doi: 10.1111/psyp.12010 URL pmid: 23350956 |
[76] | Pashler, H. (1988). Familiarity and visual change detection. Perception & Psychophysics, 44(4),369-378. |
[77] | Payer, D., Marshuetz, C., Sutton, B., Hebrank, A., Welsh, R. C., & Park, D. C. (2006). Decreased neural specialization in old adults on a working memory task. Neuro Report, 17,478-491. |
[78] |
Pessoa, L., Kastner, S., & Ungerleider, L. G. (2003). Neuroimaging studies of attention: From modulation of sensory processing to top-down control. Journal of Neuroscience, 23(10),3990-3998. doi: https://doi.org/10.1523/jneurosci.23-10-03990.2003.
URL pmid: 12764083 |
[79] |
Peverill, M., McLaughlin, K. A., Finn, A. S., & Sheridan, M. A. (2016). Working memory filtering continues to develop into late adolescence. Developmental Cognitive Neuroscience, 18,78-88. doi: https://doi.org/10.1016/j.dcn.2016.02.004.
doi: 10.1016/j.dcn.2016.02.004 URL pmid: 27026657 |
[80] |
Plebanek, D. J., & Sloutsky, V. M. (2019). Selective attention, filtering, and the development of working memory. Developmental Science, 22(1), Article e12727. doi: https://doi.org/10.1111/desc.12727.
doi: 10.1111/desc.12717 URL pmid: 30105854 |
[81] | Pope, P. A., Brenton, J. W., & Miall, R. C. (2015). Task- specific facilitation of cognition by anodal transcranial direct current stimulation of the prefrontal cortex. Cerebral Cortex, 25(11),4551-4558. |
[82] |
Pratte, M. S., Park, Y. E., Rademaker, R. L., & Tong, F. (2017). Accounting for stimulus-specific variation in precision reveals a discrete capacity limit in visual working memory. Journal of Experimental Psychology: Human Perception and Performance, 43(1),6-17. doi: https://doi.org/10.1037/xhp0000302.
doi: 10.1037/xhp0000302 URL pmid: 28004957 |
[83] |
Qi, S. Q., Ding, C., & Li, H. (2014). Neural correlates of inefficient filtering of emotionally neutral distractors from working memory in trait anxiety. Cognitive, Affective and Behavioral Neuroscience, 14(1),253-265. doi: https://doi.org/10.3758/s13415-013-0203-5.
doi: 10.3758/s13415-013-0203-5 URL pmid: 23963822 |
[84] | Rainer, G., Asaad, W. F., & Miller, E. K. (1998). Selective representation of relevant information by neurons in the primate prefrontal cortex. Nature, 393(6685),577-579. |
[85] |
Ress, D., Backus, B. T., & Heeger, D. J. (2000). Activity in primary visual cortex predicts performance in a visual detection task. Nature Neuroscience, 3(9),940-945.
URL pmid: 10966626 |
[86] |
Robison, M. K., McGuirk, W. P., & Unsworth, N. (2017). No evidence for enhancements to visual working memory with transcranial direct current stimulation to prefrontal or posterior parietal cortices. Behavioral Neuroscience, 131(4),277-288. doi: https://doi.org/10.1037/bne0000202.
URL pmid: 28714714 |
[87] |
Rouder, J. N., Morey, R. D., Morey, C. C., & Cowan, N. (2011). How to measure working memory capacity in the change detection paradigm. Psychonomic Bulletin & Review, 18(2),324-330.
URL pmid: 21331668 |
[88] | Ruff, C. C. (2013). Sensory processing: Who's in top-down control? Annals of the New York Academy of Sciences, 1296,88-107. |
[89] |
Sandrini, M., Rossini, P. M., & Miniussi, C. (2008). Lateralized contribution of prefrontal cortex in controlling task-irrelevant information during verbal and spatial working memory tasks: rTMS evidence. Neuropsychologia, 46(7),2056-2063. doi: https://doi.org/10.1016/j.neuropsychologia.2008.02.003.
doi: 10.1016/j.neuropsychologia.2008.02.003 URL pmid: 18336847 |
[90] | Schmicker, M., Schwefel, M., Vellage, A. -K., & Müller, N. G. (2016). Training of attentional filtering, but not of memory storage, enhances working memory efficiency by strengthening the neuronal gatekeeper network. Journal of Cognitive Neuroscience, 28(4),636-642. doi: https://doi.org/10.1162/jocn. |
[91] | Shipstead, Z., Redick, T. S., & Engle, R. W. (2010). Does working memory training generalize? Psychologica Belgica, 50(3),245-276. |
[92] |
Spronk, M., Vogel, E. K., & Jonkman, L. M. (2012). Electrophysiological evidence for immature processing capacity and filtering in visuospatial working memory in adolescents. Plos One, 7(8), Article e0042262. doi: https://doi.org/10.1371/journal.pone.0042262.
URL pmid: 22957000 |
[93] |
Spronk, M., Vogel, E. K., & Jonkman, L. M. (2013). No behavioral or ERP evidence for a developmental lag in visual working memory capacity or filtering in adolescents and adults with ADHD. Plos One, 8(5), Article e0062673. doi: https://doi.org/10.1371/journal.pone.0062673.
URL pmid: 23741516 |
[94] |
Sternberg, N., Luria, R., & Sheppes, G. (2018). For whom is social-network usage associated with anxiety? The moderating role of neural working-memory filtering of Facebook information. Cognitive, Affective and Behavioral Neuroscience, 18(6),1145-1158. doi: https://doi.org/10.3758/ s13415-018-0627-z.
doi: 10.3758/s13415-018-0627-z URL pmid: 30094562 |
[95] | Stout, D. M., & Rokke, P. D. (2010). Components of working memory predict symptoms of distress. Cognition and Emotion, 24(8),1293-1303. doi: https://doi.org/10.1080/02699930903309334. |
[96] |
Stout, D. M., Shackman, A. J., Johnson, J. S., & Larson, C. L. (2015). Worry is associated with impaired gating of threat from working memory. Emotion, 15(1),6-11. doi: https://doi.org/10.1037/emo0000015.
URL pmid: 25151519 |
[97] |
Stout, D. M., Shackman, A. J., & Larson, C. L. (2013). Failure to filter: Anxious individuals show inefficient gating of threat from working memory. Frontiers in Human Neuroscience, 7, Article e00058. doi: https://doi.org/10.3389/fnhum.2013.00058.
URL pmid: 24431994 |
[98] |
Thiruchselvam, R., Hajcak, G., & Gross, J. J. (2012). Looking inward: Shifting attention within working memory representations alters emotional responses. Psychological Science, 23(12),1461-1466. doi: https://doi.org/10.1177/0956797612449838.
URL pmid: 23137969 |
[99] |
Tseng, P., Hsu, T.-Y., Chang, C.-F., Tzeng, O.J. L., Hung, D. L., Muggleton, N. G.… Juan, C.-H. (2012). Unleashing potential: Transcranial direct current stimulation over the right posterior parietal cortex improves change detection in low-performing individuals. Journal of Neuroscience, 32(31),10554-10561. doi: https://doi.org/10.1523/JNEUROSCI.0362-12.2012.
URL pmid: 22855805 |
[100] |
van den Berg, R., Awh, E., & Ma, W. J. (2014). Factorial comparison of working memory models. Psychological Review, 121(1),124-149. doi: https://doi.org/10.1037/a0035234.
URL pmid: 24490791 |
[101] |
van den Berg, R., Shin, H., Chou, W. C., George, R., & Ma, W. J. (2012). Variability in encoding precision accounts for visual short-term memory limitations. Proceedings of the National Academy of Sciences of the United States of America, 109(22),8780-8785. doi: https://doi.org/10.1073/ pnas.1117465109.
doi: 10.1073/pnas.1117465109 URL pmid: 22582168 |
[102] |
Vellage, A.-K., Becke, A., Strumpf, H., Baier, B., Schönfeld, M. A., Hopf, J. M., & Müller, N. G. (2016). Filtering and storage working memory networks in younger and older age. Brain and Behavior, 6(11), Article e00544. doi: https://doi.org/10.1002/brb3.544.
URL pmid: 27843692 |
[103] |
Vogel, E. K., & Machizawa, M. G. (2004). Neural activity predicts individual differences in visual working memory capacity. Nature, 428(6984),748.
URL pmid: 15085132 |
[104] |
Vogel, E. K., McCollough, A. W., & Machizawa, M. G. (2005). Neural measures reveal individual differences in controlling access to working memory. Nature, 438(7067),500-503. doi: https://doi.org/10.1038/nature04171.
URL pmid: 16306992 |
[105] |
Wang, S. S., Itthipuripat, S., & Ku, Y. X. (2019). Electrical stimulation over human posterior parietal cortex selectively enhances the capacity of visual short-term memory. Journal of Neuroscience, 39(3),528-536. doi: https://doi.org/10.1523/JNEUROSCI.1959-18.2018.
URL pmid: 30459222 |
[106] |
Ward, R. T., Miskovich, T. A., Stout, D. M., Bennett, K. P., Lotfi, S., & Larson, C. L. (2019). Reward-related distracters and working memory filtering. Psychophysiology, 55(10), Article e13402. doi: https://doi.org/10.1111/psyp.13402.
URL pmid: 29732574 |
[107] |
Wu, Y.-J., Tseng, P., Chang, C. -F., Pai, M., -C., Hsu, K. -S., Lin, C., -C., & Juan, C.-H. (2014). Modulating the interference effect on spatial working memory by applying transcranial direct current stimulation over the right dorsolateral prefrontal cortex. Brain and Cognition, 91,87-94.
doi: 10.1016/j.bandc.2014.09.002 URL pmid: 25265321 |
[108] |
Xu, M. S., Qiao, L., Qi, S. Q., Li, Z. A., Diao, L. T., Fan, L. X., … Yang, D. (2018). Social exclusion weakens storage capacity and attentional filtering ability in visual working memory. Social Cognitive and Affective Neuroscience, 13(1),92-101. doi: https://doi.org/10.1093/scan/nsx139.
URL pmid: 29149349 |
[109] |
Ye, C. X., Hu, Z., Li, H., Ristaniemi, T., Liu, Q., & Liu, T. (2017). A two-phase model of resource allocation in visual working memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 43(10),1557-1566. doi: https://doi.org/10.1016/j.physbeh.2017.03.040.
doi: 10.1037/xlm0000376 URL pmid: 28252988 |
[110] |
Ye, C. X., Sun, H. J., Xu, Q. R., Liang, T. F., Zhang, Y., & Liu, Q. (2019). Working memory capacity affects trade-off between quality and quantity only when stimulus exposure duration is sufficient: Evidence for the two-phase model. Scientific Reports, 9(1),1-14. doi: https://doi.org/10.1038/ s41598-019-44998-3.
doi: 10.1038/s41598-018-37186-2 URL pmid: 30626917 |
[111] |
Ye, C. X., Xu, Q. R., Liu, Q., Cong, F. Y., Saariluoma, P., Ristaniemi, T., & Astikainen, P. (2018). The impact of visual working memory capacity on the filtering efficiency of emotional face distractors. Biological Psychology, 138,63-72. doi: https://doi.org/10.1016/j.biopsycho.2018.08.009.
URL pmid: 30125615 |
[112] |
Zhang, W. W., & Luck, S. J. (2008). Discrete fixed- resolution representations in visual working memory. Nature, 453(7192),233-235. doi: https://doi.org/10.1038/ nature06860.
URL pmid: 18385672 |
[113] |
Zhou, J. F., Yin, J., Chen, T., Ding, X. W., Gao, Z. F., & Shen, M. W., (2011). Visual working memory capacity does not modulate the feature-based information filtering in visual working memory. Plos One, 6(9), Article e0023873. doi: https://doi.org/10.1371/journal.pone.0023873.
URL pmid: 21984938 |
[1] | 王勇丽, 葛胜男, Lancy Lantin Huang, 万勤, 卢海丹. 言语想象的神经机制[J]. 心理科学进展, 2023, 31(4): 608-621. |
[2] | 孔祥祯, 张凤翔, 蒲艺. 空间导航的脑网络基础和调控机制[J]. 心理科学进展, 2023, 31(3): 330-337. |
[3] | 张明霞, 李雨欣, 李瑾, 刘勋. 内外动机对青少年记忆的影响及其神经机制[J]. 心理科学进展, 2023, 31(1): 1-9. |
[4] | 王松雪, 程思, 蒋挺, 刘勋, 张明霞. 外在奖赏对陈述性记忆的影响[J]. 心理科学进展, 2023, 31(1): 78-86. |
[5] | 邓尧, 王梦梦, 饶恒毅. 风险决策研究中的仿真气球冒险任务[J]. 心理科学进展, 2022, 30(6): 1377-1392. |
[6] | 李亮, 李红. 人们为什么会羞怯:认知机制及神经基础[J]. 心理科学进展, 2022, 30(5): 1038-1049. |
[7] | 武晓菲, 肖风, 罗劲. 创造性认知重评在情绪调节中的迁移效应及其神经基础[J]. 心理科学进展, 2022, 30(3): 477-485. |
[8] | 章丽娜, 宣宾. 语言产生中词频效应老化的神经基础与时间进程[J]. 心理科学进展, 2022, 30(2): 333-342. |
[9] | 李何慧, 黄慧雅, 董琳, 罗跃嘉, 陶伍海. 发展性阅读障碍与小脑异常:小脑的功能和两者的因果关系[J]. 心理科学进展, 2022, 30(2): 343-353. |
[10] | 胡佳宝, 雷扬, 定险峰, 程晓荣, 范炤. 大众与个人审美品位的认知与神经机制[J]. 心理科学进展, 2022, 30(2): 354-364. |
[11] | 黄建平, 许婧娴, 宛小昂. 联想学习对消费行为的影响:基于产品搜索经验的视角[J]. 心理科学进展, 2022, 30(11): 2414-2423. |
[12] | 陈群林, 丁珂. 发散思维的序列位置效应:创新想法动态产生机制的新视角[J]. 心理科学进展, 2022, 30(11): 2507-2517. |
[13] | 王紫乐, 张琪. 视觉搜索中注意模板促进搜索的内在机制[J]. 心理科学进展, 2022, 30(10): 2206-2218. |
[14] | 柳王娟, 定险峰, 程晓荣, 范炤. 序列依赖效应——一种全新的“历史效应”[J]. 心理科学进展, 2022, 30(10): 2228-2239. |
[15] | 胡小勇, 杜棠艳, 李兰玉, 王甜甜. 低社会经济地位影响自我调节的神经机制[J]. 心理科学进展, 2022, 30(10): 2278-2290. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||