心理科学进展 ›› 2021, Vol. 29 ›› Issue (1): 123-130.doi: 10.3724/SP.J.1042.2021.00123
收稿日期:
2020-06-16
出版日期:
2021-01-15
发布日期:
2020-11-23
通讯作者:
周临舒
E-mail:zhoulinshu@163.com
ZHOU Can, ZHOU Linshu(), JIANG Cunmei
Received:
2020-06-16
Online:
2021-01-15
Published:
2020-11-23
Contact:
ZHOU Linshu
E-mail:zhoulinshu@163.com
摘要:
愉悦情绪体验是音乐活动中最普遍的心理现象。通过系统回顾相关的神经科学研究, 认为音乐愉悦体验与大脑奖赏系统的活动有关, 并涉及伏隔核与听觉皮层等其他脑区的交互。在这个过程中, 多巴胺的传递与音乐愉悦体验存在因果联系。基于预期视角, 奖赏预测误差理论和音乐信息理论模型可以解释音乐愉悦体验的产生机制。未来研究应进一步检验伏隔核及各皮层在音乐愉悦体验中的功能, 并整合不同的预期理论。
中图分类号:
周璨, 周临舒, 蒋存梅. (2021). 音乐愉悦体验的神经机制. 心理科学进展 , 29(1), 123-130.
ZHOU Can, ZHOU Linshu, JIANG Cunmei. (2021). Neural mechanisms underlying the experience of musical pleasure. Advances in Psychological Science, 29(1), 123-130.
[1] |
Belfi, A. M., Evans, E., Heskje, J., Bruss, J., & Tranel, D. (2017). Musical anhedonia after focal brain damage. Neuropsychologia, 97, 29-37.
doi: 10.1016/j.neuropsychologia.2017.01.030 URL pmid: 28159618 |
[2] |
Belfi, A. M., & Loui, P. (2020). Musical anhedonia and rewards of music listening: Current advances and a proposed model. Annals of the New York Academy of Sciences, 1464(1), 99-114.
doi: 10.1111/nyas.14241 URL pmid: 31549425 |
[3] |
Berridge, K. C., & Kringelbach, M. L. (2008). Affective neuroscience of pleasure: Reward in humans and animals. Psychopharmacology, 199(3), 457-480.
doi: 10.1007/s00213-008-1099-6 URL pmid: 18311558 |
[4] |
Berridge, K. C., & Kringelbach, M. L. (2015). Pleasure systems in the brain. Neuron, 86(3), 646-664.
doi: 10.1016/j.neuron.2015.02.018 URL pmid: 25950633 |
[5] |
Blood, A. J., & Zatorre, R. J. (2001). Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion. Proceedings of the National Academy of Sciences of the United States of America, 98(20), 11818-11823.
doi: 10.1073/pnas.191355898 URL pmid: 11573015 |
[6] |
Brodal, H. P., Osnes, B., & Specht, K. (2017). Listening to rhythmic music reduces connectivity within the basal ganglia and the reward system. Frontiers in Neuroscience, 11, 153.
doi: 10.3389/fnins.2017.00153 URL pmid: 28400717 |
[7] |
Cheung, V. K., Harrison, P. M., Meyer, L., Pearce, M. T., Haynes, J.-D., & Koelsch, S. (2019). Uncertainty and surprise jointly predict musical pleasure and amygdala, hippocampus, and auditory cortex activity. Current Biology, 29(23), 4084-4092.
doi: 10.1016/j.cub.2019.09.067 URL pmid: 31708393 |
[8] |
Clark, C. N., Golden, H. L., McCallion, O., Nicholas, J. M., Cohen, M. H., Slattery, C. F., ... Crutch, S. J. (2018). Music models aberrant rule decoding and reward valuation in dementia. Social Cognitive and Affective Neuroscience, 13(2), 192-202.
doi: 10.1093/scan/nsx140 URL pmid: 29186630 |
[9] |
Conard, N. J., Malina, M., & Münzel, S. C. (2009). New flutes document the earliest musical tradition in southwestern Germany. Nature, 460(7256), 737-740.
doi: 10.1038/nature08169 URL pmid: 19553935 |
[10] |
de Fleurian, R., Harrison, P. M., Pearce, M. T., & Quiroga- Martinez, D. R. (2019). Reward prediction tells us less than expected about musical pleasure. Proceedings of the National Academy of Sciences of the United States of America, 116(42), 20813-20814.
doi: 10.1073/pnas.1913244116 URL pmid: 31537748 |
[11] |
Dubé, L., & Le Bel, J. (2003). The content and structure of laypeople's concept of pleasure. Cognition and Emotion, 17(2), 263-295.
doi: 10.1080/02699930302295 URL pmid: 29715723 |
[12] |
Egerton, A., Mehta, M. A., Montgomery, A. J., Lappin, J. M., Howes, O. D., Reeves, S. J., ... Grasby, P. M. (2009). The dopaminergic basis of human behaviors: A review of molecular imaging studies. Neuroscience & Biobehavioral Reviews, 33(7), 1109-1132.
doi: 10.1016/j.neubiorev.2009.05.005 URL pmid: 19481108 |
[13] |
Ferreri, L., Mas-Herrero, E., Zatorre, R. J., Ripollés, P., Gomez-Andres, A., Alicart, H., ... Rodriguez-Fornells, A. (2019). Dopamine modulates the reward experiences elicited by music. Proceedings of the National Academy of Sciences of the United States of America, 116(9), 3793-3798.
doi: 10.1073/pnas.1811878116 URL pmid: 30670642 |
[14] |
Fletcher, P. D., Downey, L., Witoonpanich, P., & Warren, J. (2013). The brain basis of musicophilia: Evidence from frontotemporal lobar degeneration. Frontiers in Psychology, 4, 347.
doi: 10.3389/fpsyg.2013.00347 URL pmid: 23801975 |
[15] |
Freeman, T. P., Pope, R. A., Wall, M. B., Bisby, J. A., Luijten, M., Hindocha, C., ... Curran, H. V. (2018). Cannabis dampens the effects of music in brain regions sensitive to reward and emotion. International Journal of Neuropsychopharmacology, 21(1), 21-32.
doi: 10.1093/ijnp/pyx082 URL |
[16] |
Gold, B. P., Mas-Herrero, E., Zeighami, Y., Benovoy, M., Dagher, A., & Zatorre, R. J. (2019). Musical reward prediction errors engage the nucleus accumbens and motivate learning. Proceedings of the National Academy of Sciences of the United States of America, 116(8), 3310-3315.
doi: 10.1073/pnas.1809855116 URL pmid: 30728301 |
[17] |
Gold, B. P., Pearce, M. T., Mas-Herrero, E., Dagher, A., & Zatorre, R. J. (2019). Predictability and uncertainty in the pleasure of music: A reward for learning? Journal of Neuroscience, 39(47), 9397-9409.
doi: 10.1523/JNEUROSCI.0428-19.2019 URL pmid: 31636112 |
[18] |
Griffiths, T. D., Warren, J. D., Dean, J. L., & Howard, D. (2004). “When the feeling’s gone”: A selective loss of musical emotion. Journal of Neurology, Neurosurgery & Psychiatry, 75(2), 344-345.
doi: 10.1007/s00415-020-10157-2 URL pmid: 32813052 |
[19] |
Hansen, N. C., Dietz, M. J., & Vuust, P. (2017). Commentary: Predictions and the brain: How musical sounds become rewarding. Frontiers in Human Neuroscience, 11, 168.
doi: 10.3389/fnhum.2017.00168 URL pmid: 28424603 |
[20] |
Hansen, N. C., & Pearce, M. T. (2014). Predictive uncertainty in auditory sequence processing. Frontiers in Psychology, 5, 1052.
doi: 10.3389/fpsyg.2014.01052 URL pmid: 25295018 |
[21] |
Heydari, S., & Holroyd, C. B. (2016). Reward positivity: Reward prediction error or salience prediction error? Psychophysiology, 53(8), 1185-1192.
doi: 10.1111/psyp.12673 URL pmid: 27184070 |
[22] |
Huron, D. (2001). Is music an evolutionary adaptation? Annals of the New York Academy of Sciences, 930(1), 43-61.
doi: 10.1111/j.1749-6632.2001.tb05724.x URL |
[23] |
Jacome, D. E. (1984). Aphasia with elation, hypermusia, musicophilia and compulsive whistling. Journal of Neurology, Neurosurgery & Psychiatry, 47(3), 308-310.
doi: 10.1136/jnnp.47.3.308 URL pmid: 6707680 |
[24] | Juslin, P. N., & Sloboda, J. A. (2013). Music and Emotion. In D. Deutsch (Ed.), The psychology of music (pp.583-645). San Diego, CA: Academic Press. |
[25] | Koelsch, S. (2012). Brain and music. Oxford, UK: Wiley-Blackwell. |
[26] |
Koelsch, S. (2014). Brain correlates of music-evoked emotions. Nature Reviews Neuroscience, 15(3), 170-180.
doi: 10.1038/nrn3666 URL |
[27] |
Koelsch, S., Fritz, T., Schulze, K., Alsop, D., & Schlaug, G. (2005). Adults and children processing music: An fMRI study. NeuroImage, 25(4), 1068-1076.
doi: 10.1016/j.neuroimage.2004.12.050 URL pmid: 15850725 |
[28] |
Koelsch, S., Fritz, T., v. Cramon, D. Y., Müller, K., & Friederici, A. D. (2006). Investigating emotion with music: An fMRI study. Human Brain Mapping, 27(3), 239-250.
doi: 10.1002/hbm.20180 URL pmid: 16078183 |
[29] | Koelsch, S., Vuust, P., & Friston, K. (2019). Predictive processes and the peculiar case of music. Trends in Cognitive Sciences, 23(1), 63-77. |
[30] |
Lehne, M., Rohrmeier, M., & Koelsch, S. (2013). Tension- related activity in the orbitofrontal cortex and amygdala: An fMRI study with music. Social Cognitive and Affective Neuroscience, 9(10), 1515-1523.
doi: 10.1093/scan/nst141 URL pmid: 23974947 |
[31] |
Mallik, A., Chanda, M. L., & Levitin, D. J. (2017). Anhedonia to music and mu-opioids: Evidence from the administration of naltrexone. Scientific Reports, 7, 41952.
doi: 10.1038/srep41952 URL pmid: 28176798 |
[32] |
Martínez-Molina, N., Mas-Herrero, E., Rodríguez-Fornells, A., Zatorre, R. J., & Marco-Pallarés, J. (2016). Neural correlates of specific musical anhedonia. Proceedings of the National Academy of Sciences of the United States of America, 113(46), E7337-E7345.
doi: 10.1073/pnas.1611211113 URL pmid: 27799544 |
[33] |
Martínez-Molina, N., Mas-Herrero, E., Rodríguez-Fornells, A., Zatorre, R. J., & Marco-Pallarés, J. (2019). White matter microstructure reflects individual differences in music reward sensitivity. Journal of Neuroscience, 39(25), 5018-5027.
doi: 10.1523/JNEUROSCI.2020-18.2019 URL pmid: 31000588 |
[34] |
Mas-Herrero, E., Dagher, A., & Zatorre, R. J. (2018). Modulating musical reward sensitivity up and down with transcranial magnetic stimulation. Nature Human Behaviour, 2(1), 27-32.
doi: 10.1038/s41562-017-0241-z URL pmid: 30980048 |
[35] |
Mas-Herrero, E., Karhulahti, M., Marco-Pallares, J., Zatorre, R. J., & Rodriguez-Fornells, A. (2018). The impact of visual art and emotional sounds in specific musical anhedonia. Progress in Brain Research, 237, 399-413.
doi: 10.1016/bs.pbr.2018.03.017 URL pmid: 29779745 |
[36] | Mas-Herrero, E., Marco-Pallares, J., Lorenzo-Seva, U., Zatorre, R. J., & Rodriguez-Fornells, A. (2013). Individual differences in music reward experiences. Music Perception: An Interdisciplinary Journal, 31(2), 118-138. |
[37] |
Mas-Herrero, E., Zatorre, R. J., Rodriguez-Fornells, A., & Marco-Pallarés, J. (2014). Dissociation between musical and monetary reward responses in specific musical anhedonia. Current Biology, 24(6), 699-704.
doi: 10.1016/j.cub.2014.01.068 URL |
[38] |
Mazzoni, M., Moretti, P., Pardossi, L., Vista, M., Muratorio, A., & Puglioli, M. (1993). A case of music imperception. Journal of Neurology, Neurosurgery, and Psychiatry, 56(3), 322.
doi: 10.1136/jnnp.56.3.322 URL pmid: 8459254 |
[39] |
Menon, V., & Levitin, D. J. (2005). The rewards of music listening: Response and physiological connectivity of the mesolimbic system. NeuroImage, 28(1), 175-184.
doi: 10.1016/j.neuroimage.2005.05.053 URL pmid: 16023376 |
[40] | Meyer, L. B. (1956). Emotion and meaning in music. London: University of Chicago Press. |
[41] |
Mitterschiffthaler, M. T., Fu, C. H., Dalton, J. A., Andrew, C. M., & Williams, S. C. (2007). A functional MRI study of happy and sad affective states induced by classical music. Human Brain Mapping, 28(11), 1150-1162.
doi: 10.1002/hbm.20337 URL pmid: 17290372 |
[42] |
Pearce, M. T. (2018). Statistical learning and probabilistic prediction in music cognition: Mechanisms of stylistic enculturation. Annals of the New York Academy of Sciences, 1423(1), 378-395.
doi: 10.1111/nyas.2018.1423.issue-1 URL |
[43] |
Rohrer, J. D., Smith, S. J., & Warren, J. D. (2006). Craving for music after treatment for partial epilepsy. Epilepsia, 47(5), 939-940.
doi: 10.1111/j.1528-1167.2006.00565.x URL pmid: 16686661 |
[44] |
Royal, I., Vuvan, D. T., Zendel, B. R., Robitaille, N., Schönwiesner, M., & Peretz, I. (2016). Activation in the right inferior parietal lobule reflects the representation of musical structure beyond simple pitch discrimination. PLoS One, 11( 5).
doi: 10.1371/journal.pone.0169091 URL pmid: 28036384 |
[45] | Sacks, O. (2007). Musicophilia: Tales of music and the brain. London: Picador. |
[46] |
Salimpoor, V. N., Benovoy, M., Larcher, K., Dagher, A., & Zatorre, R. J. (2011). Anatomically distinct dopamine release during anticipation and experience of peak emotion to music. Nature Neuroscience, 14(2), 257-262.
doi: 10.1038/nn.2726 URL pmid: 21217764 |
[47] |
Salimpoor, V. N., Benovoy, M., Longo, G., Cooperstock, J. R., & Zatorre, R. J. (2009). The rewarding aspects of music listening are related to degree of emotional arousal. PloS ONE, 4(10):e7487.
doi: 10.1371/journal.pone.0007487 URL pmid: 19834599 |
[48] |
Salimpoor, V. N., van den. Bosch, I., Kovacevic, N., Mcintosh, A. R., Dagher, A., & Zatorre, R. J. (2013). Interactions between the nucleus accumbens and auditory cortices predict music reward value. Science, 340(6129), 216-219.
doi: 10.1126/science.1231059 URL |
[49] |
Salimpoor, V. N., Zald, D. H., Zatorre, R. J., Dagher, A., & McIntosh, A. R. (2015). Predictions and the brain: How musical sounds become rewarding. Trends in Cognitive Sciences, 19(2), 86-91.
doi: 10.1016/j.tics.2014.12.001 URL pmid: 25534332 |
[50] |
Satoh, M., Kato, N., Tabei, K.-I., Nakano, C., Abe, M., Fujita, R., ... Kondo, K. (2016). A case of musical anhedonia due to right putaminal hemorrhage: A disconnection syndrome between the auditory cortex and insula. Neurocase, 22(6), 518-525.
doi: 10.1080/13554794.2016.1264609 URL pmid: 27925501 |
[51] |
Satoh, M., Nakase, T., Nagata, K., & Tomimoto, H. (2011). Musical anhedonia: Selective loss of emotional experience in listening to music. Neurocase, 17(5), 410-417.
doi: 10.1080/13554794.2010.532139 URL pmid: 21714738 |
[52] |
Schubert, E. (2013). Emotion felt by the listener and expressed by the music: Literature review and theoretical perspectives. Frontiers in Psychology, 4, 1-18.
doi: 10.3389/fpsyg.2013.00001 URL pmid: 23382719 |
[53] |
Schultz, W. (2015). Neuronal reward and decision signals: From theories to data. Physiological Reviews, 95(3), 853-951.
doi: 10.1152/physrev.00023.2014 URL pmid: 26109341 |
[54] |
Schultz, W. (2016). Dopamine reward prediction error coding. Dialogues in Clinical Neuroscience, 18(1), 23-32.
URL pmid: 27069377 |
[55] |
Schultz, W. (2017). Reward prediction error. Current Biology, 27(10), R369-R371.
doi: 10.1016/j.cub.2017.02.064 URL pmid: 28535383 |
[56] |
Sescousse, G., Caldú, X., Segura, B., & Dreher, J. C. (2013). Processing of primary and secondary rewards: A quantitative meta-analysis and review of human functional neuroimaging studies. Neuroscience & Biobehavioral Reviews, 37(4), 681-696.
doi: 10.1016/j.neubiorev.2013.02.002 URL pmid: 23415703 |
[57] |
Watabe-Uchida, M., Eshel, N., & Uchida, N. (2017). Neural circuitry of reward prediction error. Annual Review of Neuroscience, 40(1), 373-394.
doi: 10.1146/annurev-neuro-072116-031109 URL |
[58] |
Zatorre, R. J. (2015). Musical pleasure and reward: Mechanisms and dysfunction. Annals of the New York Academy of Sciences, 1337(1), 202-211.
doi: 10.1111/nyas.12677 URL |
[59] | Zatorre, R. J., & Salimpoor, V. N. (2013). From perception to pleasure: Music and its neural substrates. Proceedings of the National Academy of Sciences of the United States of America, 110(Suppl. 2), 10430-10437. |
[1] | 刘沛菡, 张火垠, 张旭凯, 李红, 雷怡. 急性疼痛与慢性疼痛对奖赏加工的影响及神经机制[J]. 心理科学进展, 2023, 31(3): 402-415. |
[2] | 寇娟, 杨梦圆, 魏子杰, 雷怡. 自闭症谱系障碍社交动机理论:机制及干预探索[J]. 心理科学进展, 2023, 31(1): 20-32. |
[3] | 王松雪, 程思, 蒋挺, 刘勋, 张明霞. 外在奖赏对陈述性记忆的影响[J]. 心理科学进展, 2023, 31(1): 78-86. |
[4] | 邹迪, 李红, 王福顺. 唤醒定义探析及其认知神经生理基础[J]. 心理科学进展, 2022, 30(9): 2020-2033. |
[5] | 徐慧, 王滔. 自闭症谱系障碍个体的社会动机缺陷[J]. 心理科学进展, 2022, 30(5): 1050-1061. |
[6] | 李俊娇, 陈伟, 石佩, 董媛媛, 郑希付. 预期错误在恐惧记忆更新中的作用与机制[J]. 心理科学进展, 2022, 30(4): 834-850. |
[7] | 叶丽群, 谭欣, 姚堃, 丁玉珑. 正常老化对视觉早期注意的影响——来自ERP的证据[J]. 心理科学进展, 2022, 30(12): 2746-2763. |
[8] | 黄建平, 许婧娴, 宛小昂. 联想学习对消费行为的影响:基于产品搜索经验的视角[J]. 心理科学进展, 2022, 30(11): 2414-2423. |
[9] | 严万森, 刘苏姣, 张冉冉, 徐鹏. 强迫性特征在药物成瘾行为中的易感性及其前额叶-反奖赏系统神经基础[J]. 心理科学进展, 2021, 29(8): 1345-1357. |
[10] | 李晓明, 邹是, 高友明. 失望情绪在不作为惯性产生中的作用[J]. 心理科学进展, 2021, 29(8): 1396-1401. |
[11] | 孙红月, 鲁盼, 蒋元萍. 跨期决策中的负折扣现象及其机制[J]. 心理科学进展, 2021, 29(7): 1291-1299. |
[12] | 王泽军, 褚昕宇. 贝叶斯决策理论对复杂运动决策中运动预期的启发——以网球和足球为例[J]. 心理科学进展, 2021, 29(7): 1300-1312. |
[13] | 秦浩方, 黄蓉, 贾世伟. 反馈相关负波:一种抑郁症的生物标记物[J]. 心理科学进展, 2021, 29(3): 404-413. |
[14] | 王磊, 贺荟中, 毕小彬, 周丽, 范晓壮. 社会动机理论视角下自闭症谱系障碍者的社交缺陷[J]. 心理科学进展, 2021, 29(12): 2209-2223. |
[15] | 陈乐乐, 黄蓉, 贾世伟. 反馈相关负波与成瘾[J]. 心理科学进展, 2020, 28(6): 959-968. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||