心理科学进展 ›› 2020, Vol. 28 ›› Issue (11): 1853-1864.doi: 10.3724/SP.J.1042.2020.01853
尹华站1,2,3, 崔晓冰1,2, 白幼玲1,2, 曹格格1,2,3, 邓靖歆1,2,3, 李丹1,2()
收稿日期:
2020-02-24
出版日期:
2020-11-15
发布日期:
2020-09-23
通讯作者:
李丹
E-mail:Lidantina@163.com
基金资助:
YIN Huazhan1,2,3, CUI Xiaobing1,2, BAI Youling1,2, CAO Gege1,2,3, DENG Jinxin1,2,3, LI Dan1,2()
Received:
2020-02-24
Online:
2020-11-15
Published:
2020-09-23
Contact:
LI Dan
E-mail:Lidantina@163.com
摘要:
时间既是人类信息加工的对象, 也是(非时间)信息加工的制约因素。数十毫秒至数秒之间的时间加工与人类日常生活关联紧密, 譬如主观计时、演奏及言语等活动。根据以往文献分析可知, 在该时间区域内, 20~ 60 ms、1/3~1 s、2~3 s是研究者关注的重要时间参数, 但是支持这些参数的证据尚存分歧。首先从“时间信息加工”和“信息加工的时间特性”的视角介绍时间参数的基本观点及其提出背景, 然后基于“时间信息加工”视角从行为学研究、脑损伤研究、神经药理学研究, 脑电研究、脑成像研究、经颅磁刺激研究、经颅直流电刺激研究等领域介评了1/3~1 s和2~3 s分界区域的证据, 接着基于“信息加工的时间特性”视角从时序知觉阈限研究、感觉运动同步研究、主观节奏研究、言语行为研究、知觉逆转研究、返回抑制研究及失匹配负波研究等领域介评了20~60 ms和2~3 s时间窗口的证据。未来研究既要注意构建基于分界区域与时间窗口的更强解释力的理论假说, 也要厘清分界区域与时间窗口的联系与区别。
中图分类号:
尹华站, 崔晓冰, 白幼玲, 曹格格, 邓靖歆, 李丹. (2020). 时间信息加工与信息加工时间特性双视角下的重要时间参数及其证据. 心理科学进展 , 28(11), 1853-1864.
YIN Huazhan, CUI Xiaobing, BAI Youling, CAO Gege, DENG Jinxin, LI Dan. (2020). The important time parameters and related evidences from dual perspectives of temporal information processing and temporal processing of information. Advances in Psychological Science, 28(11), 1853-1864.
[1] | 陈有国 . ( 2010). 时间知觉自动与受控加工的神经机制 (博士学位论文), 西南大学, 重庆. |
[2] | 陈有国, 彭春花, 张志杰, 黄希庭 . ( 2008). 自动与控制计时系统脑机制研究. 西南大学学报(社会科学版), 34( 4), 9-14. |
[3] | 陈有国, 张志杰, 黄希庭, 郭秀艳, 袁宏, 张甜 . ( 2007). 时间知觉的注意调节: 一项ERP研究. 心理学报, 39( 6), 1002-1011. |
[4] | 王余娟, 张志杰, 邹增丽 . ( 2008). 时距估计长度效应的研究述评. 现代生物医学进展, 22( 12), 2560-2562+2531. |
[5] | 尹华站 . ( 2013). 时间加工分段性研究述评. 心理科学, 36( 3), 743-747. |
[6] | 尹华站, 李丹, 陈盈羽, 黄希庭 . ( 2016). 1~6秒时距认知分段性特征. 心理学报, 48( 9), 1119-1129. |
[7] | 尹华站, 李丹, 陈盈羽, 黄希庭 . ( 2017). 1s范围视听时距认知的分段性研究. 心理科学, 40( 2), 321-328. |
[8] | 尹华站, 李祚山, 李丹, 黄希庭 . ( 2010). 时距加工“长度效应”研究述评. 心理科学进展, 18( 6), 887-891. |
[9] | 张志杰, 刘强, 黄希庭 . ( 2007). 时间知觉的神经机制——EEG时频分析的探索. 西南大学学报(自然科学版), 29( 10), 152-155. |
[10] | 张志杰, 袁宏, 黄希庭 . ( 2007). 不同时距加工机制的比较:来自ERP的证据(Ⅰ). 心理科学, 29( 1), 87-90. |
[11] | Baath, R. ( 2015). Subjective rhythmic: A replication and an assessment of two theoretical explanations. Music Perception: An Interdisciplinary Journal, 33( 2), 244-254. |
[12] |
Bao, Y., Sander, T., Trahms, L., Koppel, E., Lei, Q., & Zhou, B . ( 2011). The eccentricity effect of inhibition of return is resistant to practice. Neuroscience Letters, 500( 1), 47-51.
doi: 10.1016/j.neulet.2011.06.003 URL pmid: 21683762 |
[13] | Bao, Y., Szymaszek, A., Wang, X., Oron, A., Koppel, E., & Szelag, E . ( 2013). Temporal order perception of auditory stimuli is selectively modified by tonal and non-tonal language environments. Cognition, 129( 3), 579-585. |
[14] | Broersen, R., Onuki, Y., Abdelgabar, A. R., Owens, C. B., Picard, S., Willems, J., … Zeeuw, C. I. D . ( 2016). Impaired spatio-temporal predictive motor timing associated with spinocerebellar ataxia type 6. PLoS ONE, 11( 8), e0162042. |
[15] | Buonomano, D. V., Bramen, J., & Khodadadifar, M . ( 2009). Influence of the interstimulus interval on temporal processing and learning: testing the state-dependent network model. Philosophical Transactions of the Royal Society B: Biological Sciences, 364( 1525), 1865-1873. |
[16] |
Berle, B., & Bonnet, M. ( 1999). What’s an internal clock for?: From temporal information processing to temporal processing of information. Behavioural Processes, 45( 1-3), 59-72.
URL pmid: 24897527 |
[17] |
Burr, D. C., &Santoro, L. ( 2001). Temporal integration of optic flow, measured by contrast and coherence thresholds. Vision Research, 41( 15), 1891-1899.
doi: 10.1016/s0042-6989(01)00072-4 URL pmid: 11412882 |
[18] | Cester, I., Mioni, G., & Cornoldi, C . ( 2017). Time processing in children with mathematical difficulties. Learning and Individual Differences, 58, 22-30. |
[19] |
Chen, Y. G., Chen, X., Kuang, C. W., & Huang, X. T . ( 2015). Neural oscillatory correlates of duration maintenance in working memory. Neuroscience, 290, 389-397.
doi: 10.1016/j.neuroscience.2015.01.036 URL pmid: 25637487 |
[20] | Dodd, M. D., & Pratt, J. ( 2007). The effect of previous trial type on inhibition of return. Psychological Research, 71( 4), 411-417. |
[21] | Dodd, M. D., van der Stigchel, S., & Hollingworth, A . ( 2009). Novelty is not always the best policy: Inhibition of return and facilitation of return as a function of visual task. Psychological Science, 20( 3), 333-339. |
[22] | Adroit-Volet, S., & Hale, Q. ( 2019). Differences in modal distortion in time perception due to working memory capacity: a response with a developmental study in children and adults. Psychological Research, 83( 7), 1496-1505. |
[23] |
Elbert, T., Ulrich, R., Rockstroh, B., & Lutzenberger, W . ( 1991). The processing of temporal intervals reflected by CNV-like brain potentials. Psychophysiology, 28( 6), 648-655.
doi: 10.1111/j.1469-8986.1991.tb01009.x URL pmid: 1816592 |
[24] | Elhorst, J. P., Heijnen, P., Samarina, A Jacobs, J. P. A. M. ( 2017). Transitions at different moments in time: a spatial probit approach. Journal of Applied Econometrics, 32( 2), 422-439. |
[25] |
Fairhall, S. L., Albi, A., & Melcher, D . ( 2014). Temporal integration windows for naturalistic visual sequences. PLoS ONE, 9( 7), e102248.
URL pmid: 25010517 |
[26] | Frailness, P. ( 1984). Perception and estimation of time. Annual Review of Psychology, 35( 1), 1-37. |
[27] | Gerstner, G. E., & Cianfarani, T. ( 1998). Temporal dynamics of human masticatory sequences. Physiology & Behavior, 64( 4), 457-461. |
[28] |
Gomez, C., Argandona, E. D., Solier, R. G., Angulo, J. C., & Vazquez, M . ( 1995). Timing and competition in networks representing ambiguous figures. Brain and Cognition, 29( 2), 103-114.
doi: 10.1006/brcg.1995.1270 URL pmid: 8573326 |
[29] |
Hasson, U., Chen, J., & Honey, C. J . ( 2015). Hierarchical process memory: Memory as an integral component of information processing. Trends in Cognitive Sciences, 19( 6), 304-313.
doi: 10.1016/j.tics.2015.04.006 URL pmid: 25980649 |
[30] |
Kagerer, F. A., Wittmann, M., Szelag, E., & Steinbüchel, N. V . ( 2002). Cortical involvement in temporal reproduction: evidence for differential roles of the hemispheres. Neuropsychologia, 40( 3), 357-366.
URL pmid: 11684169 |
[31] |
Koch, G., Oliveri, M., Torriero, S., Salerno, S., Gerfo, E. L., & Caltagirone, C . ( 2007). Repetitive TMS of cerebellum interferes with millisecond time processing. Experimental Brain Research, 179( 2), 291-299.
doi: 10.1007/s00221-006-0791-1 URL pmid: 17146647 |
[32] | Kogo, N., Hermans, L., Stuer, D., van Ee, R., & Wagemans, J . ( 2015). Temporal dynamics of different cases of bi-stable figure-ground perception. Vision Research, 106, 7-19. |
[33] |
Lewis, P. A., & Mall, R. C ( 2003a). Distinct systems for automatic and cognitively controlled time measurement: Evidence from neuroimaging. Current Opinion in Neurobiology, 13( 2), 250-255.
URL pmid: 12744981 |
[34] |
Lewis, P. A., & Mall, R. C . ( 2003b). Brain activation patterns during measurement of sub- and supra-second intervals. Neuropsychologia, 41( 12), 1583-1592.
doi: 10.1016/s0028-3932(03)00118-0 URL pmid: 12887983 |
[35] | Liang, W., Zhang, J., & Bao, Y . ( 2015) Gender-specific effects of emotional modulation on visual temporal order thresholds. Cognitive Processing, 16( 1), 143-148. |
[36] |
Matsuda, S., Matsumoto, H., Furubayashi, T., Hanajima, R., Tsuji, S., Ugawa, Y., & Terao, Y . ( 2015). The 3-second rule in hereditary pure cerebellar ataxia: A synchronized tapping study. PLOS One, 10( 2), e0118592.
URL pmid: 25706752 |
[37] |
Michalczyk, L., & Bielas, J. ( 2019). The gap effect reduces both manual and saccadic inhibition of return (IOR). Experimental Brain Research, 237( 7), 1643-1653.
doi: 10.1007/s00221-019-05537-8 URL pmid: 30953082 |
[38] | Mic, hon, J., A . ( 1985). The compleat time experiencer. In J. A. Mic hon & J. L. Jackson (Eds.), Time, mind, and behavior(pp.20-52). Berlin Heidelberg: Springer-Verlag. |
[39] |
Mitani, K., & Kashino, M. ( 2018). Auditory feedback assists post hoc error correction of temporal reproduction, and perception of self-produced time intervals in subsecond range. Frontiers in Psychology, 8, 1-8.
doi: 10.3389/fpsyg.2017.00001 URL pmid: 28197108 |
[40] |
Mohan, K. M., & Rajashekhar, B. ( 2019). Temporal processing and speech perception through multi-channel and channel- free hearing aids in hearing impaired. International Journal of Audiology, 58( 12), 923-932.
URL pmid: 31495290 |
[41] | Montemayor, C., & Wittmann, M. ( 2014). The varieties of presence: Hierarchical levels of temporal integration. Timing & Time Perception, 2( 3), 325-338. |
[42] |
Morillon, B., Kell, C. A., & Giraud, A.-L . ( 2009). Three stages and four neural systems in time estimation. Journal of Neuroscience, 29( 47), 14803-14811.
doi: 10.1523/JNEUROSCI.3222-09.2009 URL pmid: 19940175 |
[43] | Münsterberg, H. ( 1889). Beiträge zur experimentellen Psychologie: Heft 2 [Contributions to Experimental Psychology, Issue 2]. Freiburg, Germany: Akademische Verlagsbuchhandlung von J.C. B. Mohr. |
[44] | Murai, Y., & Yotsumoto, Y. ( 2016). Timescale- and sensory modality-dependency of the central tendency of time perception. PLoS One, 11( 7), e0158921. |
[45] |
Nani, A., Manuello, J., Liloia, D., Duca, S., Costa, T., & Cauda, F . ( 2019). The neural correlates of time: A meta- analysis of neuroimaging studies. Journal of Cognitive Neuroscience, 31( 12), 1796-1826.
doi: 10.1162/jocn_a_01459 URL pmid: 31418337 |
[46] |
Notter, M. P., Hanke, M., Murray, M. M., & Geiser, E . ( 2019). Encoding of auditory temporal gestalt in the human brain. Cerebral Cortex, 29( 2), 475-484.
doi: 10.1093/cercor/bhx328 URL pmid: 29365070 |
[47] | Noulhiane, M., Pouthas, V., & Samson, S . ( 2009). Is time reproduction sensitive to sensory modalities? European Journal of Cognitive Psychology, 21( 1), 18-34. |
[48] | Pfeuty, M., Monfort, V., Klein, M., Krieg, J., Collé, S., Colnat- Coulbois, S., Maillard, L . ( 2019). Role of the supplementary motor area during reproduction of supra-second time intervals: An intracerebral EEG study. NeuroImage, 191, 403-420. |
[49] |
Phillmore, L. S., & Klein, R. M . ( 2019). The puzzle of spontaneous alternation and inhibition of return: How they might fit together. Hippocampus, 29( 8), 762-770.
doi: 10.1002/hipo.23102 URL pmid: 31157942 |
[50] | Po, J. M. C., Kieser, J. A., Gallo, L. M., Tésenyi, A. J., Herbison, P., & Farella, M . ( 2011). Time-frequency analysis of chewing activity in the natural environment. Journal of Dental Research, 90( 10), 1206-1210. |
[51] |
Koppel, E. ( 1994). Temporal mechanisms in perception. International Review of Neurobiology, 37, 185-202.
doi: 10.1016/s0074-7742(08)60246-9 URL pmid: 7883478 |
[52] | Koppel, E. ( 1997). A hierarchical model of temporal perception. Trends in Cognitive Sciences, 1( 2), 56-61. |
[53] | Koppel, E. ( 2009). Pre-semantically defined temporal windows for cognitive processing. Philosophical Transactions of the Royal Society B: Biological Sciences, 364( 1525), 1887-1896. |
[54] | Koppel, E., & Bao, Y. . (2014). Temporal windows as a bridge from objective to subjective time. In: D. Lloyd & V. Arstila (Eds.), Subjective Time (pp. 241-261), MIT Press. |
[55] | Koppel, E., 包燕, 周斌 . ( 2011). “temporal windows” as logistical basis for cognitive processing. 心理科学进展, 19( 6), 775-793. |
[56] | Rammsayer, T. H . ( 2009). Effects of pharmacologically induced dopamine-receptor stimulation on human temporal information processing. Neuroquantology, 7( 1), 103-113. |
[57] |
Rammsayer, T. H., Borter, N., & Troche, S. J . ( 2015). Visual-auditory differences in duration discrimination of intervals in the subsecond and second range. Frontiers in Psychology, 6, 1-7.
doi: 10.3389/fpsyg.2015.00001 URL pmid: 25688217 |
[58] |
Rammsayer, T. H., & Lima, S. D . ( 1991). Duration discrimination of filled and empty auditory intervals: Cognitive and perceptual factors. Perception & Psychophysics, 50( 6), 565-574.
doi: 10.3758/bf03207541 URL pmid: 1780204 |
[59] |
Rammsayer, T. H., & Troche, S. J . ( 2014). In search of the internal structure of the processes underlying interval timing in the sub-second and the second range: A confirmatory factor analysis approach. Acta Psychologica, 147, 68-74.
doi: 10.1016/j.actpsy.2013.05.004 URL pmid: 23795690 |
[60] | Rammsayer, T., & Manichean, S. ( 2018). Visual-auditory differences in duration discrimination depend on modality- specific, sensory-automatic temporal processing: Converging evidence for the validity of the Sensory-Automatic Timing Hypothesis. Quarterly Journal of Experimental Psychology, 71( 11), 2364-2377. |
[61] |
Rammsayer, T., & Ulrich, R. ( 2005). No evidence for qualitative differences in the processing of short and long temporal intervals. Acta Psychologica, 120( 2), 141-171.
doi: 10.1016/j.actpsy.2005.03.005 URL pmid: 15907778 |
[62] |
Rammsayer, T., & Ulrich, R. ( 2011). Elaborative rehearsal of nontemporal information interferes with temporal processing of durations in the range of seconds but not milliseconds. Acta Psychologica, 137( 1), 127-133.
doi: 10.1016/j.actpsy.2011.03.010 URL pmid: 21474111 |
[63] | Repp, B. H., & Doggett, R. ( 2007). Tapping to a very slow beat: A comparison of musicians and nonmusicians. Music Perception: An Interdisciplinary Journal, 24( 4), 367-376. |
[64] |
Röhricht, J., Jo, H.-G., Wittmann, M., & Schmidt, S . ( 2018). Exploring the maximum duration of the contingent negative variation. International Journal of Psychophysiology, 128, 52-61.
doi: 10.1016/j.ijpsycho.2018.03.020 URL pmid: 29604306 |
[65] | Roll, M., Gosselke, S., Lindgren, M., & Horne, M . ( 2013). Time-driven effects on processing grammatical agreement. Frontiers in Psychology, 4, 1-8. |
[66] |
Roll, M., Lindgren, M., Alter, K., & Horne, M . ( 2012). Time-driven effects on parsing during reading. Brain and Language, 121( 3), 267-272.
URL pmid: 22480626 |
[67] |
Samuel, A. G., & Kat, D. ( 2003). Inhibition of return: A graphical meta-analysis of its time course and an empirical test of its temporal and spatial properties. Psychonomic Bulletin & Review, 10( 4), 897-906.
doi: 10.3758/bf03196550 URL pmid: 15000537 |
[68] | Souto, D., Born, S., & Kerzel, D . ( 2018). The contribution of forward masking to saccadic inhibition of return. Attention Perception & Psychophysics, 80( 5), 1182-1192. |
[69] |
Stauffer, C. C., Haldemann, J., Troche, S. J., & Rammsayer, T. H . ( 2012). Auditory and visual temporal sensitivity: evidence for a hierarchical structure of modality-specific and modality-independent levels of temporal information processing. Psychological Research, 76( 1), 20-31.
URL pmid: 21461936 |
[70] |
Szelag, E., Kowalska, J., Rymarczyk, K., & Koppel, E . ( 2002). Duration processing in children as determined by time reproduction: Implications for a few seconds temporal window. Acta Psychologica, 110( 1), 1-19.
doi: 10.1016/s0001-6918(01)00067-1 URL pmid: 12005225 |
[71] |
Szelag, E., Steinbuchel, N., Reiser, M., de Langen, E. G., & Poppel, E . ( 1996). Temporal constraints in processing of nonverbal rhythmic patterns. Acta Neurobiologiae Experimentalis, 56( 1), 215-225.
URL pmid: 8787177 |
[72] |
Szelag, E., von Steinbüchel, N., & Koppel, E . ( 1997). Temporal processing disorders in patients with Broca’s aphasia. Neuroscience Letters, 235( 1-2), 33-36.
doi: 10.1016/s0304-3940(97)00703-9 URL pmid: 9389589 |
[73] | Tokushige, S.-I., Terao, Y., Matsuda, S., Furubayashi, T., Sasaki, T., Inomata-Terada, S., … Ugawa, Y . ( 2018). Does the clock tick slower or faster in Parkinson’s disease? - Insights gained from the synchronized tapping task. Frontiers in Psychology, 9, 1178-1186. |
[74] | Ulbrich, P., Churan, J., Fink, M., & Wittmann, M . ( 2007). Temporal reproduction: Further evidence for two processes. Acta Psychologica, 125( 1), 51-65. |
[75] |
van der Wel, R. P. R. D., Sternad, D., & Rosenbaum, D. A . ( 2009). Moving the arm at different rates: Slow movements are avoided. Journal of Motor Behavior, 42( 1), 29-36.
doi: 10.1080/00222890903267116 URL pmid: 19906636 |
[76] | Wang, L., Bao, Y., Zhang, J., Lin, X., Yang, L., Koppel, E., & Zhou, B . ( 2016). Scanning the world in three seconds: Mismatch negativity as an indicator of temporal segmentation. PsyCh Journal, 5( 3), 170-176. |
[77] | Wang, L., Lin, X., Zhou, B., Koppel, E., & Bao, Y . ( 2015). Subjective present: a window of temporal integration indexed by mismatch negativity. Cognitive Processing, 16, 131-135. |
[78] | Wang, L., Lin, X., Zhou, B., Koppel, E., & Bao, Y . ( 2016). Rubberband effect in temporal control of mismatch negativity. Frontiers in Psychology, 7, e84536. |
[79] | Wang, Y., Kirubarajan, T., Tharmarasa, R., Jassemi-Zargani, R., & Kashyap, N . ( 2018). Multiperiod coverage path planning and scheduling for airborne surveillance. IEEE Transactions on Aerospace & Electronic Systems, 54( 5), 2257-2273. |
[80] | Wernery, J., Atmanspacher, H., Kornmeier, J., Candia, V., Folkers, G., & Wittmann, M . ( 2015). Temporal processing in bistable perception of the necker cube. Perception, 44( 2), 157-168. |
[81] |
White, P. A . ( 2017). The three-second “subjective present”: A critical review and a new proposal. Psychological Bulletin, 143( 7), 735-756.
doi: 10.1037/bul0000104 URL pmid: 28368147 |
[82] | White, P. A . ( 2018). Is conscious perception a series of discrete temporal frames? Consciousness and Cognition, 60, 98-126. |
[83] | Wittmann, M. ( 2011). Moments in Time. Frontiers in Integrative Neuroscience, 5( 2), 41. |
[84] | Yin, H. Z., Cheng, M., & Li, D . ( 2019). The right dorsolateral prefrontal cortex is essential in seconds range timing, but not in milliseconds range timing: An investigation with trans cranial direct current stimulation. Brain and cognition. 135, e103568. |
[85] |
Yu, X., Chen, Y., Qiu, J., Li, X., & Huang, X . ( 2017). Neural oscillations associated with auditory duration maintenance in working memory. Scientific Reports, 7( 1), 5695.
doi: 10.1038/s41598-017-06078-2 URL pmid: 28720790 |
[86] | Zhao, C., Zhang, D., & Bao, Y . ( 2018). A time window of 3 s in the aesthetic appreciation of poems. PsyCh Journal, 7( 31), 51-52. |
[1] | 文小辉;刘强;孙弘进 等. 多感官线索整合的理论模型[J]. 心理科学进展, 2009, 17(4): 659-666. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||