ISSN 1671-3710
CN 11-4766/R
主办:中国科学院心理研究所
出版:科学出版社

心理科学进展 ›› 2020, Vol. 28 ›› Issue (10): 1777-1788.doi: 10.3724/SP.J.1042.2020.01777

• 研究方法 • 上一篇    

Lasso回归:从解释到预测

张沥今1, 魏夏琰2, 陆嘉琦2, 潘俊豪1()   

  1. 1中山大学心理学系, 广州 510006
    2浙江大学心理与行为科学系, 杭州 310028
  • 收稿日期:2019-12-13 出版日期:2020-10-15 发布日期:2020-08-24
  • 通讯作者: 潘俊豪 E-mail:panjunh@mail.sysu.edu.cn
  • 基金资助:
    * 国家自然科学基金项目(31871128);教育部人文社会科学研究规划基金项目(18YJA190013)

Lasso regression: From explanation to prediction

ZHANG Lijin1, WEI Xiayan2, LU Jiaqi2, PAN Junhao1()   

  1. 1Department of Psychology, Sun Yat-sen University, Guangzhou 510006, China
    2Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou 310028, China
  • Received:2019-12-13 Online:2020-10-15 Published:2020-08-24
  • Contact: PAN Junhao E-mail:panjunh@mail.sysu.edu.cn

摘要:

传统的最小二乘回归法关注于对当前数据集的准确估计, 容易导致模型的过拟合, 影响模型结论的可重复性。随着方法学领域的发展, 涌现出的新兴统计工具可以弥补传统方法的局限, 从过度关注回归系数值的解释转向提升研究结果的预测能力也愈加成为心理学领域重要的发展趋势。Lasso方法通过在模型估计中引入惩罚项的方式, 可以获得更高的预测准确度和模型概化能力, 同时也可以有效地处理过拟合和多重共线性问题, 有助于心理学理论的构建和完善。

关键词: 回归, 正则化, 预测, Lasso

Abstract:

Regression analysis, a method to evaluate the relationship between variables, is widely used in psychological studies. However, due to its highly focus on the interpretation of sample data, the traditional ordinary least squares regression has several drawbacks, such as over-fitting problem and limitation on dealing with multicollinearity, which may undermine the generalizability of the model. With the rapid development of methodology research, a shift from focusing on interpretation of the regression coefficients to improving the prediction of the model has emerged and become more and more important. Least absolute shrinkage and selection operator (Lasso) regression has been emerged to better compensate for the limitations of traditional methods. By introducing a penalty term in the model and shrinking the regression coefficients to zero, Lasso regression can achieve a higher accuracy of model prediction and model generalizability with the cost of a certain estimation bias. Besides, Lasso regression can also effectively deal with the multicollinearity problem. Therefore, it is helpful for the construction and improvement of psychological theory.

Key words: regression, regularization, Lasso, prediction

中图分类号: