心理科学进展 ›› 2020, Vol. 28 ›› Issue (6): 945-958.doi: 10.3724/SP.J.1042.2020.00945
收稿日期:
2019-05-05
出版日期:
2020-06-15
发布日期:
2020-04-22
通讯作者:
曲折
E-mail:quzhe@mail.sysu.edu.cn
基金资助:
ZHONG Chupeng1, QU Zhe1(), DING Yulong2
Received:
2019-05-05
Online:
2020-06-15
Published:
2020-04-22
Contact:
QU Zhe
E-mail:quzhe@mail.sysu.edu.cn
摘要:
人类对感觉阈限附近的视觉刺激的知觉不总是一致的。为探究这种视知觉不一致的现象及其神经机制, 一些研究者关注刺激前脑内自发alpha神经振荡(8~13 Hz)对视知觉的影响。近年来的研究发现, 刺激前alpha振荡能量的降低能提高被试的探测击中率, 但不能提高知觉精确度; 而刺激前alpha振荡的相位能预测被试能否成功探测刺激。刺激前alpha能量被认为调控了视皮层的基础活动强度; alpha能量的降低反映了皮层基础活动的增强, 进而提高了对较弱刺激的探测率。刺激前alpha相位则被认为调控了皮层兴奋和抑制的时间; 大脑在刺激呈现时的不同状态(兴奋/抑制)决定了最终的知觉结果。
中图分类号:
钟楚鹏, 曲折, 丁玉珑. (2020). 刺激前alpha振荡对视知觉的影响. 心理科学进展 , 28(6), 945-958.
ZHONG Chupeng, QU Zhe, DING Yulong. (2020). The influences of prestimulus alpha oscillation on visual perception. Advances in Psychological Science, 28(6), 945-958.
图2 信号检测论对探测任务的神经机制的解释 A:信号(即目标刺激出现)及噪音(即目标刺激未出现或无意义的随机噪音刺激)诱发的神经活动强度的概率分布。c为反应标准, 当神经活动大于c时, 个体会做出“是”的判断, 无论该神经活动是信号还是噪音诱发的。d’为分辨力, 即区分信号与噪音的能力, 在信号检测论模型中以信号和噪音的概率分布的差距表示。击中率和漏报率分别可用c右侧和左侧的、信号概率分布曲线下的面积所表示; 虚报率和正确拒绝率分别可用c右侧和左侧的、噪音概率分布曲线下的面积所表示。B:击中率提高的两种可能, 知觉精确度提高的机制为信号与噪音的概率分布之间的差距扩大(从d’1到d’2), 导致c右侧的、信号概率曲线以下的面积扩大, 击中率提高; 反应偏好的机制是信号与噪音的概率分布和c的位置关系(即图中的x)发生变化(从x1到x2), 导致c右侧的、信号概率曲线和噪音概率曲线以下的面积扩大, 即击中率和虚报率同时提高, 但不伴随d’的变化。图中灰色线为变化前的基线状态, 黑色线为变化后的状态。
图3 在探测任务中, 决策偏差和知觉偏差两种假说对刺激前alpha振荡能量降低造成的影响的解释 A:决策偏差的假说认为, 刺激前alpha振荡的降低会导致个体采用更激进的反应标准进行判断(即c的降低, 从c1到c2), 神经活动强度超过一个更低的标准即可使个体作出“是”判断。B:知觉偏差假说认为, 刺激前alpha振荡的降低会导致视皮层的基础活动强度提高, 体现为信号和噪音诱发的神经活动强度均被同等增强(从灰色曲线到黑色曲线), 两个概率分布之间的差距(即d’)不发生变化。两种假说都会导致个体作出“是”判断的频率提高, 表现为击中率和虚报率同时提高。
图4 “两区间迫选”探测任务的研究逻辑 完成“两区间迫选”探测任务最有效的方法是比较两个区间之间神经活动的强弱, 并报告刺激出现在神经活动较强的区间。被试判断的正确率与目标呈现区间的神经活动强度大于目标缺失区间强度的概率呈正相关, 在信号检测论模型中, 这一概率与目标呈现区间和目标缺失区间的神经活动的概率分布曲线之间的距离(即图中的x)呈正相关。A, B:目标缺失区间和目标呈现区间前的alpha振荡能量完全相等时, 两个区间的神经活动强度的概率分布, 用于与其他状态进行比较。C:如果目标呈现区间前的alpha振荡能量更低, 根据知觉偏差假说, 与A情况相比, 目标刺激诱发的神经活动将会增强(即目标呈现区间的神经活动强度概率分布曲线从灰线处移动到黑线处), 导致x增大, 被试的判断正确率提高。D:如果目标呈现区间前的alpha振荡能量更低, 根据决策偏差假说, 与B情况相比, 此时被改变的只有反应标准(即目标呈现区间的反应标准从c1移动到c2), x不变, 被试的判断正确率不会发生明显变化。E:如果目标缺失区间前的alpha振荡能量更低, 根据知觉偏差假说, 与A情况相比, 此时目标缺失区间的神经活动增强(即目标缺失区间的神经活动强度概率分布曲线从灰色虚线处移动到黑色虚线处), 导致x变小, 被试的判断正确率降低。F:如果目标缺失区间前的alpha振荡能量更低, 根据决策偏差假说, 与B情况相比, 此时目标呈现区间的反应标准从c1移动到c2, x仍然没有改变, 被试的判断正确率依然不会发生明显变化。
图5 抑制定时理论 上:抑制功能与神经元兴奋性的关系。Alpha振荡反映了抑制作用随着时间的强弱变化(余弦曲线), 在某些时段抑制作用的强度高于神经元的兴奋性(两条水平线分别代表两个神经元的兴奋性)。下:抑制作用和神经元兴奋性的强弱关系导致了神经元周期性交替处于兴奋和抑制状态。当抑制作用弱于神经元兴奋性时, 神经元能够发放神经冲动; 而当抑制作用强于神经元兴奋性时, 神经元无法发放神经冲动。图中一条竖线代表一次神经冲动的发放。[图引用并修改自Klimesch等(2007)]
[1] | 武侠, 钟楚鹏, 丁玉珑, 曲折 . (2018). 利用时频分析研究非相位锁定脑电活动. 心理科学进展, 26(8), 1349-1364. |
[2] | Achim, A., Bouchard, J., & Braun, C. M. J . (2013). EEG amplitude spectra before near threshold visual presentations differentially predict detection/omission and short-long reaction time outcomes. International Journal of Psychophysiology, 89(1), 88-98. |
[3] | Babiloni, C., Vecchio, F., Bultrini, A., Luca Romani, G., & Rossini, P. M . (2005). Pre-and poststimulus alpha rhythms are related to conscious visual perception: A high-resolution EEG study. Cerebral Cortex, 16(12), 1690-1700. |
[4] | Bae, G.-Y., & Luck, S. J . (2018). Dissociable decoding of spatial attention and working memory from EEG oscillations and sustained potentials. Journal of Neuroscience, 38(2), 409-422. |
[5] | Bahramisharif, A., van Gerven,, M. A. J, Aarnoutse,, E. J., Mercier, M. R., Schwartz, T. H., Foxe, J. J., ... Jensen, O . (2013). Propagating neocortical gamma bursts are coordinated by traveling alpha waves. Journal of Neuroscience, 33(48), 18849-18854. |
[6] | Bastiaansen, M. C. M., Posthuma, D., Groot, P. F. C., & de Geus, E. J. C . (2002). Event-related alpha and theta responses in a visuo-spatial working memory task. Clinical Neurophysiology, 113(12), 1882-1893. |
[7] | Benwell, C. S. Y., Tagliabue, C. F., Veniero, D., Cecere, R., Savazzi, S., & Thut, G . (2017). Prestimulus EEG power predicts conscious awareness but not objective visual performance. eNeuro, 4(6). |
[8] | Bernat, E., Shevrin, H., & Snodgrass, M . (2001). Subliminal visual oddball stimuli evoke a P300 component. Clinical Neurophysiology, 112(1), 159-171. |
[9] | Bonaiuto, J. J., Meyer, S. S., Little, S., Rossiter, H., Callaghan, M. F., Dick, F., ... Bestmann, S . (2018). Lamina-specific cortical dynamics in human visual and sensorimotor cortices. eLife, 7, e33977. |
[10] | Bonnefond, M., & Jensen, O . (2012). Alpha oscillations serve to protect working memory maintenance against anticipated distracters. Current Biology, 22(20), 1969-1974. |
[11] | Brüers, S., & VanRullen, R . (2017). At what latency does the phase of brain oscillations influence perception?. eNeuro, 4(3). |
[12] | Busch, N. A., Dubois, J., & VanRullen, R . (2009). The phase of ongoing EEG oscillations predicts visual perception. Journal of Neuroscience, 29(24), 7869-7876. |
[13] |
Busch, N. A., & VanRullen, R . (2010). Spontaneous EEG oscillations reveal periodic sampling of visual attention. Proceedings of the National Academy of Sciences, 107(37), 16048-16053.
doi: 10.1073/pnas.1004801107 URL |
[14] | Callaway, E., & Yeager, C. L . (1960). Relationship between reaction time and electroencephalographic alpha phase. Science, 132(3441), 1765-1766. |
[15] | Chaumon, M., & Busch, N. A . (2014). Prestimulus neural oscillations inhibit visual perception via modulation of response gain. Journal of Cognitive Neuroscience, 26(11), 2514-2529. |
[16] | Cohen, M. X . (2017). Where does EEG come from and what does it mean?. Trends in Neurosciences, 40(4), 208-218. |
[17] | Dalal, S. S., Vidal, J. R., Hamamé, C. M., Ossandón, T., Bertrand, O., Lachaux, J. P., & Jerbi, K . (2011). Spanning the rich spectrum of the human brain: Slow waves to gamma and beyond. Brain Structure and Function, 216(2), 77-84. |
[18] |
de Pesters, A., Coon, W. G., Brunner, P., Gunduz, A., Ritaccio, A. L., Brunet, N. M., ... Schalk, G . (2016). Alpha power indexes task-related networks on large and small scales: A multimodal ECoG study in humans and a non-human primate. Neuroimage, 134, 122-131.
doi: 10.1016/j.neuroimage.2016.03.074 URL |
[19] | Devrim, M., Demiralp, T., & Kurt, A . (1997). The effects of subthreshold visual stimulation on P300 response. Neuroreport, 8(14), 3113-3117. |
[20] | Dougherty, K., Cox, M. A., Ninomiya, T., Leopold, D. A., & Maier, A . (2017). Ongoing alpha activity in V1 regulates visually driven spiking responses. Cerebral Cortex, 27(2), 1113-1124. |
[21] | Drewes, J., & VanRullen, R . (2011). This is the rhythm of your eyes: The phase of ongoing electroencephalogram oscillations modulates saccadic reaction time. Journal of Neuroscience, 31(12), 4698-4708. |
[22] | Dugué, L., Marque, P., & VanRullen, R . (2011). The phase of ongoing oscillations mediates the causal relation between brain excitation and visual perception. Journal of Neuroscience, 31(33), 11889-11893. |
[23] | Dustman, R. E., & Beck, E. C . (1965). Phase of alpha brain waves, reaction time and visually evoked potentials. Electroencephalography and Clinical Neurophysiology, 18(5), 433-440. |
[24] | Ergenoglu, T., Demiralp, T., Bayraktaroglu, Z., Ergen, M., Beydagi, H., & Uresin, Y . (2004). Alpha rhythm of the EEG modulates visual detection performance in humans. Cognitive Brain Research, 20(3), 376-383. |
[25] |
Foster, J. J., & Awh, E . (2018). The role of alpha oscillations in spatial attention: Limited evidence for a suppression account. Current Opinion in Psychology, 29, 34-40.
doi: 10.1016/j.copsyc.2018.11.001 URL |
[26] | Foster, J. J., Bsales, E. M., Jaffe, R. J., & Awh, E . (2017). Alpha-band activity reveals spontaneous representations of spatial position in visual working memory. Current Biology, 27(20), 3216-3223. |
[27] | Foster, J. J., Sutterer, D. W., Serences, J. T., Vogel, E. K., & Awh, E . (2017). Alpha-band oscillations enable spatially and temporally resolved tracking of covert spatial attention. Psychological Science, 28(7), 929-941. |
[28] | Gruber, W. R., Zauner, A., Lechinger, J., Schabus, M., Kutil, R., & Klimesch, W . (2014). Alpha phase, temporal attention, and the generation of early event related potentials. Neuroimage, 103, 119-129. |
[29] | Haegens, S., Barczak, A., Musacchia, G., Lipton, M. L., Mehta, A. D., Lakatos, P., & Schroeder, C. E . (2015). Laminar profile and physiology of the α rhythm in primary visual, auditory, and somatosensory regions of neocortex. Journal of Neuroscience, 35(42), 14341-14352. |
[30] | Haegens, S., Nácher, V., Luna, R., Romo, R., & Jensen, O . (2011). α-Oscillations in the monkey sensorimotor network influence discrimination performance by rhythmical inhibition of neuronal spiking. Proceedings of the National Academy of Sciences, 108(48), 19377-19382. |
[31] |
Hamm, J. P., Dyckman, K. A., McDowell, J. E., & Clementz, B. A . (2012). Pre-cue fronto-occipital alpha phase and distributed cortical oscillations predict failures of cognitive control. Journal of Neuroscience, 32(20), 7034-7041.
doi: 10.1523/JNEUROSCI.5198-11.2012 URL |
[32] |
Hanslmayr, S., Aslan, A., Staudigl, T., Klimesch, W., Herrmann, C. S., & Bäuml, K. H . (2007). Prestimulus oscillations predict visual perception performance between and within subjects. Neuroimage, 37(4), 1465-1473.
doi: 10.1016/j.neuroimage.2007.07.011 URL |
[33] |
Hanslmayr, S., Gross, J., Klimesch, W., & Shapiro, K. L . (2011). The role of alpha oscillations in temporal attention. Brain Research Reviews, 67(1-2), 331-343.
doi: 10.1016/j.brainresrev.2011.04.002 URL |
[34] | Hanslmayr, S., Klimesch, W., Sauseng, P., Gruber, W., Doppelmayr, M., Freunberger, R., & Pecherstorfer, T . (2005). Visual discrimination performance is related to decreased alpha amplitude but increased phase locking. Neuroscience Letters, 375(1), 64-68. |
[35] | Hanslmayr, S., Volberg, G., Wimber, M., Dalal, S. S., & Greenlee, M. W . (2013). Prestimulus oscillatory phase at 7 Hz gates cortical information flow and visual perception. Current Biology, 23(22), 2273-2278. |
[36] | Harris, A. M., Dux, P. E., & Mattingley, J. B . (2018). Detecting unattended stimuli depends on the phase of prestimulus neural oscillations. Journal of Neuroscience, 38(12), 3092-3101. |
[37] | Herrmann, C. S . (2001). Human EEG responses to 1-100 Hz flicker: resonance phenomena in visual cortex and their potential correlation to cognitive phenomena. Experimental Brain Research, 137(3-4), 346-353. |
[38] | Hülsdünker, T., Strüder, H. K., & Mierau, A . (2018). The pre-stimulus oscillatory alpha phase affects neural correlates of early visual perception. Neuroscience Letters, 685, 90-95. |
[39] | Iemi, L., & Busch, N. A . (2018). Moment-to-Moment fluctuations in neuronal excitability bias subjective perception rather than strategic decision-making. eNeuro, 5( 3). |
[40] | Iemi, L., Chaumon, M., Crouzet, S. M., & Busch, N. A . (2017). Spontaneous neural oscillations bias perception by modulating baseline excitability. Journal of Neuroscience, 37(4), 807-819. |
[41] | Jansen, B. H., & Brandt, M. E . (1991). The effect of the phase of prestimulus alpha activity on the averaged visual evoked response. Electroencephalography and Clinical Neurophysiology/ Evoked Potentials Section, 80(4), 241-250. |
[42] |
Jensen, O., Bonnefond, M., & VanRullen, R . (2012). An oscillatory mechanism for prioritizing salient unattended stimuli. Trends in Cognitive Sciences, 16(4), 200-206.
doi: 10.1016/j.tics.2012.03.002 URL |
[43] | Jensen, O., Gelfand, J., Kounios, J., & Lisman, J. E . (2002). Oscillations in the alpha band (9-12 Hz) increase with memory load during retention in a short-term memory task. Cerebral Cortex, 12(8), 877-882. |
[44] | Jensen, O., Gips, B., Bergmann, T. O., & Bonnefond, M . (2014). Temporal coding organized by coupled alpha and gamma oscillations prioritize visual processing. Trends in Neurosciences, 37(7), 357-369. |
[45] | Kelly, S. P., Lalor, E. C., Reilly, R. B., & Foxe, J. J . (2006). Increases in alpha oscillatory power reflect an active retinotopic mechanism for distracter suppression during sustained visuospatial attention. Journal of Neurophysiology, 95(6), 3844-3851. |
[46] | Klimesch, W . (2012). Alpha-band oscillations, attention, and controlled access to stored information. Trends in Cognitive Sciences, 16(12), 606-617. |
[47] |
Klimesch, W., Sauseng, P., & Hanslmayr, S . (2007). EEG alpha oscillations: The inhibition-timing hypothesis. Brain Research Reviews, 53(1), 63-88.
doi: 10.1016/j.brainresrev.2006.06.003 URL |
[48] | Koivisto, M., Grassini, S., Salminen-Vaparanta, N., & Revonsuo, A . (2017). Different electrophysiological correlates of visual awareness for detection and identification. Journal of Cognitive Neuroscience, 29(9), 1621-1631. |
[49] | Leenders, M. P., Lozano-Soldevilla, D., Roberts, M. J., Jensen, O., & de Weerd, P . (2016). Diminished alpha lateralization during working memory but not during attentional cueing in older adults. Cerebral Cortex, 28(1), 21-32. |
[50] |
Limbach, K., & Corballis, P. M . (2016). Prestimulus alpha power influences response criterion in a detection task. Psychophysiology, 53(8), 1154-1164.
doi: 10.1111/psyp.2016.53.issue-8 URL |
[51] | Macmillan, N. A., & Creelman, C. D . (2005) . Detection theory: A user’s guide (2nd ed) New York, NY: Psychology Press. |
[52] | Makeig, S., & Jung, T. P . (1996). Tonic, phasic, and transient EEG correlates of auditory awareness in drowsiness. Cognitive Brain Research, 4(1), 15-25. |
[53] |
Mathewson, K. E., Fabiani, M., Gratton, G., Beck, D. M., & Lleras, A . (2010). Rescuing stimuli from invisibility: Inducing a momentary release from visual masking with pre-target entrainment. Cognition, 115(1), 186-191.
doi: 10.1016/j.cognition.2009.11.010 URL |
[54] | Mathewson, K. E., Gratton, G., Fabiani, M., Beck, D. M., & Ro, T . (2009). To see or not to see: Prestimulus α phase predicts visual awareness. Journal of Neuroscience, 29(9), 2725-2732. |
[55] | Mathewson, K. E., Prudhomme, C., Fabiani, M., Beck, D. M., Lleras, A., & Gratton, G . (2012). Making waves in the stream of consciousness: Entraining oscillations in EEG alpha and fluctuations in visual awareness with rhythmic visual stimulation. Journal of Cognitive Neuroscience, 24(12), 2321-2333. |
[56] | Michalareas, G., Vezoli, J., van Pelt, S., Schoffelen, J.-M., Kennedy, H., & Fries, P . (2016). Alpha-beta and gamma rhythms subserve feedback and feedforward influences among human visual cortical areas. Neuron, 89(2), 384-397. |
[57] | Pfurtscheller, G., Stancák, A., & Neuper, C . (1996). Event- related synchronization (ERS) in the alpha band — An electrophysiological correlate of cortical idling: A review. International Journal of Psychophysiology, 24(1-2), 39-46. |
[58] | Risner, M. L., Aura, C. J., Black, J. E., & Gawne, T. J . (2009). The visual evoked potential is independent of surface alpha rhythm phase. Neuroimage, 45(2), 463-469. |
[59] |
Roberts, D. M., Fedota, J. R., Buzzell, G. A., Parasuraman, R., & McDonald, C. G . (2014). Prestimulus oscillations in the alpha band of the EEG are modulated by the difficulty of feature discrimination and predict activation of a sensory discrimination process. Journal of Cognitive Neuroscience, 26(8), 1615-1628.
doi: 10.1162/jocn_a_00569 URL |
[60] |
Romei, V., Gross, J., & Thut, G . (2010). On the role of prestimulus alpha rhythms over occipito-parietal areas in visual input regulation: Correlation or causation?. Journal of Neuroscience, 30(25), 8692-8697.
doi: 10.1523/JNEUROSCI.0160-10.2010 URL |
[61] | Ruhnau, P., Hauswald, A., & Weisz, N . (2014). Investigating ongoing brain oscillations and their influence on conscious perception-network states and the window to consciousness. Frontiers in Psychology, 5, 1230. |
[62] | Rutiku, R., Aru, J., & Bachmann, T . (2016). General markers of conscious visual perception and their timing. Frontiers in Human Neuroscience, 10, 23. |
[63] | Samaha, J., Iemi, L., & Postle, B. R . (2017). Prestimulus alpha-band power biases visual discrimination confidence, but not accuracy. Consciousness and Cognition, 54, 47-55. |
[64] |
Samaha, J., & Postle, B. R . (2015). The speed of alpha-band oscillations predicts the temporal resolution of visual perception. Current Biology, 25(22), 2985-2990.
doi: 10.1016/j.cub.2015.10.007 URL |
[65] |
Sauseng, P., Klimesch, W., Doppelmayr, M., Pecherstorfer, T., Freunberger, R., & Hanslmayr, S . (2005). EEG alpha synchronization and functional coupling during top‐down processing in a working memory task. Human Brain Mapping, 26(2), 148-155.
doi: 10.1002/(ISSN)1097-0193 URL |
[66] | Steriade, M., McCormick, D. A., & Sejnowski, T. J . (1993). Thalamocortical oscillations in the sleeping and aroused brain. Science, 262(5134), 679-685. |
[67] | Thut, G., Nietzel, A., Brandt, S. A., & Pascual-Leone, A . (2006). α-Band electroencephalographic activity over occipital cortex indexes visuospatial attention bias and predicts visual target detection. Journal of Neuroscience, 26(37), 9494-9502. |
[68] | Thut, G., Schyns, P. G., & Gross, J . (2011). Entrainment of perceptually relevant brain oscillations by non-invasive rhythmic stimulation of the human brain. Frontiers in Psychology, 2, 170. |
[69] | Tran, T. T., Hoffner, N. C., LaHue, S. C., Tseng, L., & Voytek, B . (2016). Alpha phase dynamics predict age-related visual working memory decline. Neuroimage, 143, 196-203. |
[70] | van Dijk, H., Schoffelen, J.-M., Oostenveld, R., & Jensen, O . (2008). Prestimulus oscillatory activity in the alpha band predicts visual discrimination ability. Journal of Neuroscience, 28(8), 1816-1823. |
[71] |
van Kerkoerle, T., Self, M. W., Dagnino, B., Gariel-Mathis, M.-A., Poort, J., van der Togt, C., & Roelfsema, P. R . (2014). Alpha and gamma oscillations characterize feedback and feedforward processing in monkey visual cortex. Proceedings of the National Academy of Sciences, 111(40), 14332-14341.
doi: 10.1073/pnas.1402773111 URL |
[72] |
VanRullen, R . (2016). Perceptual cycles. Trends in Cognitive Sciences, 20(10), 723-735.
doi: 10.1016/j.tics.2016.07.006 URL |
[73] | Varela, F., Lachaux, J.-P., Rodriguez, E., & Martinerie, J . (2001). The brainweb: phase synchronization and large-scale integration. Nature Reviews Neuroscience, 2(4), 229-239. |
[74] | Vosskuhl, J., Strüber, D., & Herrmann, C. S . (2018). Non-invasive brain stimulation: a paradigm shift in understanding brain oscillations. Frontiers in Human Neuroscience, 12. |
[75] | Wang, C.-H., Tseng, Y.-T., Liu, D., & Tsai, C.-L . (2017). Neural oscillation reveals deficits in visuospatial working memory in children with developmental coordination disorder. Child Development, 88(5), 1716-1726. |
[76] | Wang, X.-J . (2010). Neurophysiological and computational principles of cortical rhythms in cognition. Physiological Reviews, 90(3), 1195-1268. |
[77] |
Ward, L. M . (2003). Synchronous neural oscillations and cognitive processes. Trends in Cognitive Sciences, 7(12), 553-559.
doi: 10.1016/j.tics.2003.10.012 URL |
[78] | Watson, B. O., Ding, M. X., & Buzsáki, G . (2018). Temporal coupling of field potentials and action potentials in the neocortex. European Journal of Neuroscience, 48(7), 2482-2497. |
[79] | Wilenius, M. E., & Revonsuo, A. T . (2007). Timing of the earliest ERP correlate of visual awareness. Psychophysiology, 44(5), 703-710. |
[80] |
Witt, J. K., Taylor, J. E. T., Sugovic, M., & Wixted, J. T . (2015). Signal detection measures cannot distinguish perceptual biases from response biases. Perception, 44(3), 289-300.
doi: 10.1068/p7908 URL |
[81] | Worden, M. S., Foxe, J. J., Wang, N., & Simpson, G. V . (2000). Anticipatory biasing of visuospatial attention indexed by retinotopically specific α-band electroencephalography increases over occipital cortex. Journal of Neuroscience, 20( 6), RC63. |
[1] | 张思源, 李雪冰. 不同频率经颅交流电刺激在精神疾病中的应用[J]. 心理科学进展, 2022, 30(9): 2053-2066. |
[2] | 陈梁杰, 刘雷, 葛钟书, 杨晓东, 李量. 节律在听觉言语理解中的作用[J]. 心理科学进展, 2022, 30(8): 1818-1831. |
[3] | 王鑫麟, 邱晓悦, 翁旭初, 杨平. 工作记忆的神经振荡调控:基于神经振荡夹带现象[J]. 心理科学进展, 2022, 30(4): 802-816. |
[4] | 叶超群, 林郁泓, 刘春雷. 创造力产生过程中的神经振荡机制[J]. 心理科学进展, 2021, 29(4): 697-706. |
[5] | 方岚, 郑苑仪, 金晗, 李晓庆, 杨玉芳, 王瑞明. 口语句子的韵律边界:窥探言语理解的秘窗[J]. 心理科学进展, 2021, 29(3): 425-437. |
[6] | 章小丹, 张沥今, 丁玉珑, 曲折. 注意过程中的行为振荡现象[J]. 心理科学进展, 2021, 29(3): 460-471. |
[7] | 霍鹏辉, 冯成志, 陈庭继. 注视者及观察者因素对注视知觉的影响[J]. 心理科学进展, 2021, 29(2): 238-251. |
[8] | 贾磊, 徐玉帆, 王成, 任俊, 汪俊. γ节律神经振荡:反映自闭症多感觉整合失调的一项重要生物指标[J]. 心理科学进展, 2021, 29(1): 31-44. |
[9] | 赵亚军, 蔡永春, 张智君, 郭爽, 尧德中. 无意识条件下眼睛注视知觉与注视追随的加工分离[J]. 心理科学进展, 2019, 27(suppl.): 21-21. |
[10] | 黄莹莹, 王一博, 杨绘, 张鹏, 孙俨, 喻仁贵. 大脑视觉表象神经编码的层级表征模型研究[J]. 心理科学进展, 2019, 27(suppl.): 23-23. |
[11] | 李萍, 张明明, 李帅霞, 张火垠, 罗文波. 面孔表情和声音情绪信息整合加工的脑机制[J]. 心理科学进展, 2019, 27(7): 1205-1214. |
[12] | 钱浩悦, 黄逸慧, 高湘萍. Gamma神经振荡和信息整合加工[J]. 心理科学进展, 2018, 26(3): 433-441. |
[13] | 袁祥勇, 张西磊, 王莹, 蒋毅. 视听整合增强视觉节律的神经振荡[J]. 心理科学进展, 2017, 25(suppl.): 53-53. |
[14] | 李 琪, 许晶, 郑亚. 刺激前负波:奖赏期待的电生理指标[J]. 心理科学进展, 2017, 25(7): 1114-1121. |
[15] | 赵亚军; 阿同古丽.阿不力米提. 面孔种族信息对眼睛注视知觉的影响[J]. 心理科学进展, 2016, 24(Suppl.): 97-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||