ISSN 1671-3710
CN 11-4766/R
主办:中国科学院心理研究所
出版:科学出版社

心理科学进展 ›› 2018, Vol. 26 ›› Issue (8): 1349-1364.doi: 10.3724/SP.J.1042.2018.1349

• 研究方法 • 上一篇    下一篇

利用时频分析研究非相位锁定脑电活动

武侠1, 钟楚鹏1, 丁玉珑1, 曲折1()   

  1. 1中山大学心理系, 广州 510006
  • 收稿日期:2017-10-16 出版日期:2018-08-15 发布日期:2018-07-02
  • 通讯作者: 曲折 E-mail:quzhe@mail.sysu.edu.cn
  • 基金资助:
    国家自然科学基金项目(31471070);国家自然科学基金项目(31271190)

Application of time-frequency analysis in investigating non-phase locked components of EEG

WU Xia1, ZHONG Chupeng1, DING Yulong1, QU Zhe1()   

  1. 1 Department of psychology, Sun Yat-sen University, Guangzhou 510006, China
  • Received:2017-10-16 Online:2018-08-15 Published:2018-07-02
  • Contact: QU Zhe E-mail:quzhe@mail.sysu.edu.cn

摘要:

时频分析技术自20世纪80年代被引入到心理学脑电数据分析领域以来, 克服了传统的时域ERP方法只能分析相位锁定成分的缺陷, 可以帮助研究者挖掘到脑电信号中非相位锁定的成分。在心理学领域, 应用最多的时频分析方法是小波变换和Hilbert变换, 而能量、相位一致性和耦合是三个最常用的分析指标。研究者利用不同的分析指标来揭示不同的心智过程。不同频段的能量被认为体现了不同的认知过程, 如α能量被发现与注意选择性有关, 而γ能量则与特征整合相关。相位一致性常被用于讨论ERP产生的机制。耦合则通常说明了长距离脑区之间的信息交流以及高级脑区对低级脑区的认知控制, 在完成各种复杂认知任务的时候会表现出不同的耦合模式。

关键词: 时频分析, 小波变换, Hilbert变换, 能量, 相位一致性, 耦合

Abstract:

Since the introduction of the time-frequency analysis technique into the field of EEG data in the 1980’s, researchers can excavate non-phase locked components in EEG signals, overcoming the previous shortcomings of traditional ERP methods. In the field of psychology, the two most commonly used time-frequency analysis methods are wavelet transform and Hilbert transform. Power, phase locking index (PLI), and coherence are three important indices of time-frequency analysis. Power in different frequency band is typically considered to reflect different mental processes. For example, α power is frequently related to selective attention, while γ energy is often associated with feature binding. Researchers use PLI to investigate the mechanism generated by an ERP component. Coherence indicates the exchange of information between long-distance brain regions and cognitive control of higher-level brain regions in the low-level brain regions, which show different patterns in various complex cognitive tasks.

Key words: time-frequency analysis, wavelet transform, Hilbert transform, power, PLI, coherence

中图分类号: