心理科学进展 ›› 2023, Vol. 31 ›› Issue (8): 1477-1495.doi: 10.3724/SP.J.1042.2023.01477 cstr: 32111.14.2023.01477
收稿日期:
2022-10-13
出版日期:
2023-08-15
发布日期:
2023-05-12
基金资助:
ZHOU Shiren1, QIU Xiufu1, HE Zhenhong1(), ZHANG Dandan2
Received:
2022-10-13
Online:
2023-08-15
Published:
2023-05-12
摘要:
既往研究积累了无损脑刺激(non-invasive brain stimulation, NIBS)技术干预情绪调节以改善负性情绪的大量证据。总结NIBS的情绪调节干预效果和适用范围对于丰富情绪调节理论、促进转化研究有重要意义。通过综述文献可发现NIBS能有效影响相关脑区(例如前额叶)的活动, 从而干预外显与内隐情绪调节过程; 通过改善情绪调节功能, NIBS具有改善精神障碍症状的潜在可能性。此领域尚需解决的问题如下:首先, 研究间异质性太强导致结果不一; 其次, 情绪调节干预过程的脑神经环路机制仍不明确, 情绪调节的衡量指标单一。此外, 以往NIBS方案存在定位精度不高、单时段效果微弱、现有方案难以满足新需要, 以及具有一定的副作用等问题。据此, 未来有必要全面定量总结现有文献, 结合神经导航技术确定最优靶点, 考察干预状态下外显/内隐情绪调节的脑神经环路改变, 并从主观体验-生理指标-神经特征多层面评估NIBS干预效果。未来还可采用多靶点NIBS方案, 或结合超扫描、神经反馈等技术以提高研究效度, 为相关的转化研究和临床提供启示。
中图分类号:
周士人, 仇秀芙, 何振宏, 张丹丹. (2023). 基于无损脑刺激的情绪调节干预. 心理科学进展 , 31(8), 1477-1495.
ZHOU Shiren, QIU Xiufu, HE Zhenhong, ZHANG Dandan. (2023). Non-invasive brain stimulation-based emotion regulation interventions. Advances in Psychological Science, 31(8), 1477-1495.
作者 | 设计类型、样本量 n (实验组)|n (对照组) | 真刺激组 刺激部位 (定位依据) | 刺激频率, 脉冲(pulses) 强度选择 | 对照组刺激部位 定位依据 | NIBS 时间 模式 | 刺激材料 | 任务类型 | 情绪调节 方向, 策略 | 实验结果 |
---|---|---|---|---|---|---|---|---|---|
HF-rTMS (k = 6) | |||||||||
He, Liu et al., Human Brain Mapping | 组间设计 30|29 | rvlPFC (F8, 10-20) | 10 Hz, 1170 脉冲, 90% rMT | 线圈倾斜 90◦ | 离线 | 社会排斥图片 | 外显情绪调节 | 下调, 重评策略 | 消极情绪: 实验组 < 对照组 |
Li et al., Human Brain Mapping | 组间设计 40|40 a | rvlPFC (F8, 10-20) | 10 Hz, 800 脉冲, 90% rMT | 对照刺激部位 (vertex, Cz, 10-20) | 离线 | 消极的社会反馈 | 外显情绪调节 | 下调, 重评策略 | 情绪感受: 实验组 = 对照组 |
Li et al., Human Brain Mapping | 组间设计 40|40a | lvlPFC (F7, 10-20) | 10 Hz, 800 脉冲, 90% rMT | 对照刺激部位 (vertex, Cz, 10-20) | 离线 | 消极的社会反馈 | 外显情绪调节 | 下调, 重评策略 | 情绪感受: 实验组 = 对照组 |
Zhao et al., Journal of Neuroscience | 组间设计 30|30 a | rdlPFC (F4, 10-20) | 10 Hz, 624 脉冲, 90% rMT | 对照刺激部位 (vertex, Cz, 10-20) | 离线 | 社会排斥图片 | 外显情绪调节 | 下调, 分心策略 重评策略 | 下调, 分心(消极感受: 实验组< 对照组) |
Zhao et al., Journal of Neuroscience | 组间设计 30|30 a | rvlPFC (F8, 10-20) | 10 Hz, 624 脉冲, 90% rMT | 对照刺激部位 (vertex, Cz, 10-20) | 离线 | 社会排斥图片 | 外显情绪调节 | 下调, 分心策略 重评策略 | 下调, 重评(消极感受: 实验组< 对照组) |
spTMS (k = 1) | |||||||||
Cao et al., Cognitive, Affective, & Behavioral Neuroscience | 组内设计 15|15 | lvlPFC (F7, 10-20) | spTMS, 1 脉冲, 90% rMT | 对照刺激部位 (vertex, Cz, 10-20) | 在线 | 消极IAPS 图片 | 外显情绪调节 | 下调, 重评策略 | 效价: 实验组 < 对照组 唤醒度: 实验组 = 对照组 |
iTBS (k = 1) | |||||||||
Deng et al., Journal of Psychiatry & Neuroscience | 组内设计 16|19 | ldlPFC (F3, 10-20) | 30 Hz, 1800 脉冲, 80% rMT | 对照刺激部位 (vertex, Cz, 10-20) | 离线 | 电击 | 恐惧消退(内隐情绪调节) | / | SCR: 实验组 = 对照组 |
表1 TMS对外显/内隐情绪调节的影响
作者 | 设计类型、样本量 n (实验组)|n (对照组) | 真刺激组 刺激部位 (定位依据) | 刺激频率, 脉冲(pulses) 强度选择 | 对照组刺激部位 定位依据 | NIBS 时间 模式 | 刺激材料 | 任务类型 | 情绪调节 方向, 策略 | 实验结果 |
---|---|---|---|---|---|---|---|---|---|
HF-rTMS (k = 6) | |||||||||
He, Liu et al., Human Brain Mapping | 组间设计 30|29 | rvlPFC (F8, 10-20) | 10 Hz, 1170 脉冲, 90% rMT | 线圈倾斜 90◦ | 离线 | 社会排斥图片 | 外显情绪调节 | 下调, 重评策略 | 消极情绪: 实验组 < 对照组 |
Li et al., Human Brain Mapping | 组间设计 40|40 a | rvlPFC (F8, 10-20) | 10 Hz, 800 脉冲, 90% rMT | 对照刺激部位 (vertex, Cz, 10-20) | 离线 | 消极的社会反馈 | 外显情绪调节 | 下调, 重评策略 | 情绪感受: 实验组 = 对照组 |
Li et al., Human Brain Mapping | 组间设计 40|40a | lvlPFC (F7, 10-20) | 10 Hz, 800 脉冲, 90% rMT | 对照刺激部位 (vertex, Cz, 10-20) | 离线 | 消极的社会反馈 | 外显情绪调节 | 下调, 重评策略 | 情绪感受: 实验组 = 对照组 |
Zhao et al., Journal of Neuroscience | 组间设计 30|30 a | rdlPFC (F4, 10-20) | 10 Hz, 624 脉冲, 90% rMT | 对照刺激部位 (vertex, Cz, 10-20) | 离线 | 社会排斥图片 | 外显情绪调节 | 下调, 分心策略 重评策略 | 下调, 分心(消极感受: 实验组< 对照组) |
Zhao et al., Journal of Neuroscience | 组间设计 30|30 a | rvlPFC (F8, 10-20) | 10 Hz, 624 脉冲, 90% rMT | 对照刺激部位 (vertex, Cz, 10-20) | 离线 | 社会排斥图片 | 外显情绪调节 | 下调, 分心策略 重评策略 | 下调, 重评(消极感受: 实验组< 对照组) |
spTMS (k = 1) | |||||||||
Cao et al., Cognitive, Affective, & Behavioral Neuroscience | 组内设计 15|15 | lvlPFC (F7, 10-20) | spTMS, 1 脉冲, 90% rMT | 对照刺激部位 (vertex, Cz, 10-20) | 在线 | 消极IAPS 图片 | 外显情绪调节 | 下调, 重评策略 | 效价: 实验组 < 对照组 唤醒度: 实验组 = 对照组 |
iTBS (k = 1) | |||||||||
Deng et al., Journal of Psychiatry & Neuroscience | 组内设计 16|19 | ldlPFC (F3, 10-20) | 30 Hz, 1800 脉冲, 80% rMT | 对照刺激部位 (vertex, Cz, 10-20) | 离线 | 电击 | 恐惧消退(内隐情绪调节) | / | SCR: 实验组 = 对照组 |
实验 作者 | 设计类型、 样本量 n (实验组)| n (对照组) | 刺激部位 (定位依据) | 电流强度, 阳极片+阴极片 面积, 刺激 持续时间 | 对照组(在 ?s后电流 减弱至 0mA) | NIBS 时间 模式 | 刺激材料 | 任务类型 | 情绪调节 方向, 策略 | 实验结果 |
---|---|---|---|---|---|---|---|---|---|
Hofhansel et al., Brain Stimulation | 组间设计 12|14 | rdlPFC (阳极, F4; 阴极, Fp1, 10-20) | 1.5 mA, 35+100 cm², 20 min | 20 s | 离线 | IAPS消极图片 | 外显情绪调节 | 下调 上调, 重评策略 | 效价: 实验组 = 对照组 |
Clarke et al., Cognitive, Affective, & Behavioral Neuroscience | 组间设计 59|57 | ldlPFC (阳极, F3; 阴极, 左斜方肌, 10-20) | 2 mA, 24+24 cm², 20 min | 60 s | 在线 | IAPS消极图片 | 外显情绪调节 | 下调, 重评策略 | 消极感受: 实验组 = 对照组 |
Feeser et al., Brain stimulation | 组间设计 21|21 | rdlPFC (阳极, F4; 阴极, Fp1, 10-20) | 1.5 mA, 35+100 cm², 20 min | 30 s | 在线 | IAPS消极图片 | 外显情绪调节 | 下调 上调, 重评策略 | 下调: 唤醒度: 实验组 < 对照组 SCR: 实验组 < 对照组 上调: 唤醒度: 实验组 > 对照组 SCR: 实验组 > 对照组 |
He et al., Social Cognitive and Affective Neuroscience | 组间设计 23|21 | rvlPFC (阳极, F6; 阴极, Fp1, 10-20) | 1.5 mA, 25+35 cm², 24 min | 30 s | 在线 | 社会排斥图片 | 外显情绪调节 | 下调, 重评策略 | negative feeling: 实验组 < 对照组 PD: 实验组 < 对照组 |
He, Zhao et al., Psychological medicine | 组间设计 48|46 | rvlPFC (阳极, F6; 阴极, Fp1, 10-20) | 2.5 mA, 25+25 cm², 34 min | 30 s | 在线 | 社会排斥图片 | 外显情绪调节 | 下调, 重评策略 | 消极感受: 实验组 < 对照组 PD: 实验组 < 对照组 |
Marques et al., Scientific reports | 组间设计 30|30 | rvlPFC (阳极, F8; 阴极, F7, 10-20) | 1.5 mA, 16+16 cm², 20 min | 30 s | 在线 | IAPS消极图片 | 外显情绪调节 | 下调 上调, 重评策略 | 下调, 上调 效价: 实验组 = 对照组 唤醒度: 实验组 = 对照组 |
Van Dam & Chrysikou, Cognitive, Affective, & Behavioral Neuroscience | 组间设计 11|7 | ldlPFC (阳极, F3; 阴极, 对侧乳突, 10-20) | 1.5 mA, 25+25 cm², 20 min | 10 s | 在线 | IAPS消极图片 | 外显情绪调节 | 下调, 重评策略 | 消极感受: 实验组 = 对照组 |
Chrysikou et al., Cognitive Neuroscience and Neuroimaging | 组间设计 10|10 | ldlPFC (阳极, F3; 阴极, F4, 10-20) | 1.5 mA, 25+25 cm², 20 min | 10 s | 在线 | IAPS消极图片 | 外显情绪调节 | 下调, 重评策略 | 消极感受: 实验组 = 对照组 |
Hansenne & Weets, Polish Psychological Bulletin | 组间设计 (只有女性) 20|20 | ldlPFC (阳极, F3; 阴极, Fp2, 10-20) | 1.5 mA, 9 + 25 cm², 25 min | 30 s | 在线 | IAPS消极 图片 | 外显情绪调节 | 下调, 重评策略 | 唤醒度: 实验组 = 对照组 |
Dittert et al., Frontiers in behavioral neuroscience | 组间设计 37|26 | lvmPFC (阳极, F7下方; 阴极, F8下方, 10-20) | 1.5 mA, 16+16 cm², 20 min | 10 s | 离线 | 95dB的女性尖叫声、恐惧的面孔 | 内隐情绪调节(恐惧消退) | / | SCR: 实验组 = 对照组 |
高可翔 等; 心理学报 | 组间设计 40|40 | vmPFC | 1.5 mA, 9+9 cm², 10 min | 60s | 离线 | IAPS消 图片, 无序词句 | 内隐情绪调节(认知重评) | / | 效价: 实验组 > 对照组 消极感受:实验组 < 对照组 |
表2 tDCS对外显/内隐情绪调节的影响
实验 作者 | 设计类型、 样本量 n (实验组)| n (对照组) | 刺激部位 (定位依据) | 电流强度, 阳极片+阴极片 面积, 刺激 持续时间 | 对照组(在 ?s后电流 减弱至 0mA) | NIBS 时间 模式 | 刺激材料 | 任务类型 | 情绪调节 方向, 策略 | 实验结果 |
---|---|---|---|---|---|---|---|---|---|
Hofhansel et al., Brain Stimulation | 组间设计 12|14 | rdlPFC (阳极, F4; 阴极, Fp1, 10-20) | 1.5 mA, 35+100 cm², 20 min | 20 s | 离线 | IAPS消极图片 | 外显情绪调节 | 下调 上调, 重评策略 | 效价: 实验组 = 对照组 |
Clarke et al., Cognitive, Affective, & Behavioral Neuroscience | 组间设计 59|57 | ldlPFC (阳极, F3; 阴极, 左斜方肌, 10-20) | 2 mA, 24+24 cm², 20 min | 60 s | 在线 | IAPS消极图片 | 外显情绪调节 | 下调, 重评策略 | 消极感受: 实验组 = 对照组 |
Feeser et al., Brain stimulation | 组间设计 21|21 | rdlPFC (阳极, F4; 阴极, Fp1, 10-20) | 1.5 mA, 35+100 cm², 20 min | 30 s | 在线 | IAPS消极图片 | 外显情绪调节 | 下调 上调, 重评策略 | 下调: 唤醒度: 实验组 < 对照组 SCR: 实验组 < 对照组 上调: 唤醒度: 实验组 > 对照组 SCR: 实验组 > 对照组 |
He et al., Social Cognitive and Affective Neuroscience | 组间设计 23|21 | rvlPFC (阳极, F6; 阴极, Fp1, 10-20) | 1.5 mA, 25+35 cm², 24 min | 30 s | 在线 | 社会排斥图片 | 外显情绪调节 | 下调, 重评策略 | negative feeling: 实验组 < 对照组 PD: 实验组 < 对照组 |
He, Zhao et al., Psychological medicine | 组间设计 48|46 | rvlPFC (阳极, F6; 阴极, Fp1, 10-20) | 2.5 mA, 25+25 cm², 34 min | 30 s | 在线 | 社会排斥图片 | 外显情绪调节 | 下调, 重评策略 | 消极感受: 实验组 < 对照组 PD: 实验组 < 对照组 |
Marques et al., Scientific reports | 组间设计 30|30 | rvlPFC (阳极, F8; 阴极, F7, 10-20) | 1.5 mA, 16+16 cm², 20 min | 30 s | 在线 | IAPS消极图片 | 外显情绪调节 | 下调 上调, 重评策略 | 下调, 上调 效价: 实验组 = 对照组 唤醒度: 实验组 = 对照组 |
Van Dam & Chrysikou, Cognitive, Affective, & Behavioral Neuroscience | 组间设计 11|7 | ldlPFC (阳极, F3; 阴极, 对侧乳突, 10-20) | 1.5 mA, 25+25 cm², 20 min | 10 s | 在线 | IAPS消极图片 | 外显情绪调节 | 下调, 重评策略 | 消极感受: 实验组 = 对照组 |
Chrysikou et al., Cognitive Neuroscience and Neuroimaging | 组间设计 10|10 | ldlPFC (阳极, F3; 阴极, F4, 10-20) | 1.5 mA, 25+25 cm², 20 min | 10 s | 在线 | IAPS消极图片 | 外显情绪调节 | 下调, 重评策略 | 消极感受: 实验组 = 对照组 |
Hansenne & Weets, Polish Psychological Bulletin | 组间设计 (只有女性) 20|20 | ldlPFC (阳极, F3; 阴极, Fp2, 10-20) | 1.5 mA, 9 + 25 cm², 25 min | 30 s | 在线 | IAPS消极 图片 | 外显情绪调节 | 下调, 重评策略 | 唤醒度: 实验组 = 对照组 |
Dittert et al., Frontiers in behavioral neuroscience | 组间设计 37|26 | lvmPFC (阳极, F7下方; 阴极, F8下方, 10-20) | 1.5 mA, 16+16 cm², 20 min | 10 s | 离线 | 95dB的女性尖叫声、恐惧的面孔 | 内隐情绪调节(恐惧消退) | / | SCR: 实验组 = 对照组 |
高可翔 等; 心理学报 | 组间设计 40|40 | vmPFC | 1.5 mA, 9+9 cm², 10 min | 60s | 离线 | IAPS消 图片, 无序词句 | 内隐情绪调节(认知重评) | / | 效价: 实验组 > 对照组 消极感受:实验组 < 对照组 |
[1] |
高可翔, 张岳瑶, 李思瑾, 袁加锦, 李红, 张丹丹. (2023). 腹内侧前额叶在内隐认知重评中的因果作用. 心理学报, 55(2), 210-223
doi: 10.3724/SP.J.1041.2023.00210 |
[2] |
何振宏, 张丹丹, 罗跃嘉. (2015). 抑郁症人群的心境一致性认知偏向. 心理科学进展, 23(12), 2118-2128.
doi: 10.3724/SP.J.1042.2015.02118 |
[3] |
莫李澄, 郭田友, 张岳瑶, 徐锋, 张丹丹. (2021). 激活右腹外侧前额叶提高抑郁症患者对社会疼痛的情绪调节能力:一项TMS研究. 心理学报, 53(5), 494-504.
doi: 10.3724/SP.J.1041.2021.00494 |
[4] |
张丹丹, 刘珍莉, 陈钰, 买晓琴. (2019). 右腹外侧前额叶对高抑郁水平成年人社会情绪调节的作用: 一项tDCS研究. 心理学报, 51(2), 207-215.
doi: 10.3724/SP.J.1041.2019.00207 |
[5] | Abend, R., Jalon, I., Gurevitch, G., Sar-El, R., Shechner, T., Pine, D. S., … Bar-Haim, Y. (2016). Modulation of fear extinction processes using transcranial electrical stimulation. Translational Psychiatry, 6(10), e913. |
[6] |
Abend, R., Sar-El, R., Gonen, T., Jalon, I., Vaisvaser, S., Bar-Haim, Y., & Hendler, T. (2019). Modulating emotional experience using electrical stimulation of the medial- prefrontal cortex: A preliminary tDCS-fMRI study. Neuromodulation: Technology at the Neural Interface, 22(8), 884-893.
doi: 10.1111/ner.12787 URL |
[7] |
Adams, T. G., Cisler, J. M., Kelmendi, B., George, J. R., Kichuk, S. A., Averill, C. L., … Pittenger, C. (2021). Transcranial direct current stimulation targeting the medial prefrontal cortex modulates functional connectivity and enhances safety learning in obsessive-compulsive disorder: Results from two pilot studies. Depress Anxiety, 39(1), 37-48.
doi: 10.1002/da.23212 pmid: 34464485 |
[8] |
Aldao, A., Nolen-Hoeksema, S., & Schweizer, S. (2010). Emotion-regulation strategies across psychopathology: A meta-analytic review. Clinical Psychology Review, 30(2), 217-237.
doi: 10.1016/j.cpr.2009.11.004 pmid: 20015584 |
[9] |
Amidfar, M., Ko, Y. H., & Kim, Y. K. (2019). Neuromodulation and cognitive control of emotion. Advances in Experimental Medicine and Biology, 1192, 545-564.
doi: 10.1007/978-981-32-9721-0_27 pmid: 31705513 |
[10] |
Antal, A., Fischer, T., Saiote, C., Miller, R., Chaieb, L., Wang, D. J.,... Kirschbaum, C. (2014). Transcranial electrical stimulation modifies the neuronal response to psychosocial stress exposure. Human Brain Mapping, 35(8), 3750-3759.
doi: 10.1002/hbm.22434 pmid: 24382804 |
[11] |
Baeken, C., Dedoncker, J., Remue, J., Wu, G. R., Vanderhasselt, M. A., De Witte, S., … De Raedt, R. (2018). One MRI-compatible tDCS session attenuates ventromedial cortical perfusion when exposed to verbal criticism: The role of perceived criticism. Human Brain Mapping, 39(11), 4462-4470.
doi: 10.1002/hbm.24285 pmid: 29956424 |
[12] |
Barr, M. S., Farzan, F., Rajji, T. K., Voineskos, A. N., Blumberger, D. M., Arenovich, T., … Daskalakis, Z. J. (2013). Can repetitive magnetic stimulation improve cognition in schizophrenia? Pilot data from a randomized controlled trial. Biological Psychiatry, 73(6), 510-517.
doi: 10.1016/j.biopsych.2012.08.020 pmid: 23039931 |
[13] |
Berboth, S., & Morawetz, C. (2021). Amygdala-prefrontal connectivity during emotion regulation: A meta-analysis of psychophysiological interactions. Neuropsychologia, 153, 107767.
doi: 10.1016/j.neuropsychologia.2021.107767 URL |
[14] |
Begemann, M. J., Brand, B. A., Ćurčić-Blake, B., Aleman, A., & Sommer, I. E. (2020). Efficacy of non-invasive brain stimulation on cognitive functioning in brain disorders: A meta-analysis. Psychological Medicine, 50(15), 2465-2486.
doi: 10.1017/S0033291720003670 pmid: 33070785 |
[15] |
Bergmann, T. O., Karabanov, A., Hartwigsen, G., Thielscher, A., & Siebner, H. R. (2016). Combining non-invasive transcranial brain stimulation with neuroimaging and electrophysiology: Current approaches and future perspectives. Neuroimage, 140, 4-19.
doi: 10.1016/j.neuroimage.2016.02.012 pmid: 26883069 |
[16] |
Boggio, P. S., Zaghi, S., & Fregni, F. (2009). Modulation of emotions associated with images of human pain using anodal transcranial direct current stimulation (tDCS). Neuropsychologia, 47(1), 212-217.
doi: 10.1016/j.neuropsychologia.2008.07.022 pmid: 18725237 |
[17] |
Braunstein, L. M., Gross, J. J., & Ochsner, K. N. (2017). Explicit and implicit emotion regulation: A multi-level framework. Social Cognitive Affective Neuroscience, 12(10), 1545-1557.
doi: 10.1093/scan/nsx096 URL |
[18] |
Brunoni, A. R., Nitsche, M. A., Bolognini, N., Bikson, M., Wagner, T., Merabet, L.,... Fregni, F. (2012). Clinical research with transcranial direct current stimulation (tDCS): Challenges and future directions. Brain Stimulation, 5(3), 175-195.
doi: S1935-861X(11)00026-X pmid: 22037126 |
[19] |
Buhle, J. T., Silvers, J. A., Wager, T. D., Lopez, R., Onyemekwu, C., Kober, H., … Ochsner, K. N. (2014). Cognitive reappraisal of emotion: A meta-analysis of human neuroimaging studies. Cerebral Cortex, 24(11), 2981-2990.
doi: 10.1093/cercor/bht154 URL |
[20] | Bungert, A. (2010). TMS combined with fMRI (Unpublished doctoral dissertation). University of Nottingham. |
[21] | Cao, D., Li, Y., & Tang, Y. (2021). Functional specificity of the left ventrolateral prefrontal cortex in positive reappraisal: A single-pulse transcranial magnetic stimulation study. Cognitive, Affective, & Behavioral Neuroscience, 21(4), 793-804. |
[22] |
Cao, D., Qian, Z., Tang, Y., Wang, J., Jiang, T., & Li, Y. (2022). Neural indicator of positive reappraisal: A TMS- EEG study over the left VLPFC. Journal of Affective Disorders, 300, 418-429.
doi: 10.1016/j.jad.2021.12.136 URL |
[23] |
Carpenter, L. L., Aaronson, S. T., Clarke, G. N., Holtzheimer, P. E., Johnson, C. W., McDonald, W. M., … Schneider, M. B. (2017). rTMS with a two-coil array: Safety and efficacy for treatment resistant major depressive disorder. Brain Stimulation, 10(5), 926-933.
doi: S1935-861X(17)30834-3 pmid: 28642024 |
[24] |
Cash, R. F. H., Weigand, A., Zalesky, A., Siddiqi, S. H., Downar, J., Fitzgerald, P. B., & Fox, M. D. (2021). Using brain imaging to improve spatial targeting of transcranial magnetic stimulation for depression. Biological Psychiatry, 90(10), 689-700.
doi: 10.1016/j.biopsych.2020.05.033 pmid: 32800379 |
[25] | Charles, V. (2013). Positive psychological factors in late adolescence: The role of resilience and hope in the well-being of 16 to 18 year olds (Unpublished Doctoral dissertation). University of Liverpool. |
[26] | Chodakiewitz, Y. G., Bicalho, G. V., & Chodakiewitz, J. W. (2013). Multi-target neurostimulation for adequate long- term relief of neuropathic and nociceptive chronic pain components. Surgical Neurology International, 4(4), S170-175. |
[27] |
Chrysikou, E. G., Wing, E. K., & van Dam, W. O. (2019). Transcranial direct current stimulation over the prefrontal cortex in depression modulates cortical excitability in emotion regulation regions as measured by concurrent functional magnetic resonance imaging: An exploratory study. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 7(1), 85-94.
doi: 10.1016/j.bpsc.2019.12.004 URL |
[28] | Clarke, P. J. F., Van Bockstaele, B., Marinovic, W., Howell, J. A., Boyes, M. E., & Notebaert, L. (2020). The effects of left DLPFC tDCS on emotion regulation, biased attention, and emotional reactivity to negative content. Cognitive, Affective, & Behavioral Neuroscience, 20(6), 1323-1335. |
[29] | Cobos Sanchez, C., Cabello, M. R., Olozabal, A. Q., & Pantoja, M. F. (2020). Design of TMS coils with reduced Lorentz forces: Application to concurrent TMS-fMRI. Journal of Neural Engineering, 17(1), 016056. |
[30] | Corlier, J., Wilson, A., Tadayonnejad, R., Ginder, N., Levitt, J. Krantz, D., … Leuchter, A. (2021). Multi-target repetitive transcranial magnetic stimulation (rTMS) protocol for the treatment of comorbid depression and chronic pain. Brain Stimulation, 14(6), 1729-1730. |
[31] |
Crowell, S. E., Puzia, M. E., & Yaptangco, M. (2015). The ontogeny of chronic distress: Emotion dysregulation across the life span and its implications for psychological and physical health. Current Opinion in Psychology, 3, 91-99.
doi: 10.1016/j.copsyc.2015.03.023 URL |
[32] |
de Wit, S. J., van der Werf, Y. D., Mataix-Cols, D., Trujillo, J. P., van Oppen, P., Veltman, D. J., & van den Heuvel, O. A. (2015). Emotion regulation before and after transcranial magnetic stimulation in obsessive compulsive disorder. Psychological Medicine, 45(14), 3059-3073.
doi: 10.1017/S0033291715001026 pmid: 26027740 |
[33] |
De Witte, S., Klooster, D., Dedoncker, J., Duprat, R., Remue, J., & Baeken, C. (2018). Left prefrontal neuronavigated electrode localization in tDCS: 10-20 EEG system versus MRI-guided neuronavigation. Psychiatry Research: Neuroimaging, 274, 1-6.
doi: 10.1016/j.pscychresns.2018.02.001 URL |
[34] |
Deng, Z.-D., Lisanby, S. H., & Peterchev, A. V. (2013). Electric field depth-focality tradeoff in transcranial magnetic stimulation: Simulation comparison of 50 coil designs. Brain Stimulation, 6(1), 1-13.
doi: 10.1016/j.brs.2012.02.005 URL |
[35] | Deng, J., Fang, W., Gong, Y., Bao, Y., Li, H., Su, S.,... Shi, L. (2021). Augmentation of fear extinction by theta-burst transcranial magnetic stimulation of the prefrontal cortex in humans. Journal of Psychiatry and Neuroscience, 46(2), E292-E302. |
[36] |
Diefenbach, G. J., Assaf, M., Goethe, J. W., Gueorguieva, R., & Tolin, D. F. (2016). Improvements in emotion regulation following repetitive transcranial magnetic stimulation for generalized anxiety disorder. Journal of Anxiety Disorders, 43, 1-7.
doi: S0887-6185(16)30143-8 pmid: 27467027 |
[37] |
Diefenbach, G. J., Bragdon, L., & Goethe, J. W. (2013). Treating anxious depression using repetitive transcranial magnetic stimulation. Journal of Affective Disorders, 151(1), 365-368.
doi: 10.1016/j.jad.2013.05.094 pmid: 23810361 |
[38] |
Dittert, N., Hüttner, S., Polak, T., & Herrmann, M. J. (2018). Augmentation of fear extinction by transcranial direct current stimulation (tDCS). Frontiers in Behavioral Neuroscience, 12, 76.
doi: 10.3389/fnbeh.2018.00076 pmid: 29922133 |
[39] |
Douw, L., Quaak, M., Fitzsimmons, S., de Wit, S. J., van der Werf, Y. D., van den Heuvel, O. A., & Vriend, C. (2020). Static and dynamic network properties of the repetitive transcranial magnetic stimulation target predict changes in emotion regulation in obsessive-compulsive disorder. Brain Stimulation, 13(2), 318-326.
doi: S1935-861X(19)30426-7 pmid: 31679906 |
[40] |
Downar, J., & Daskalakis, Z. J. (2013). New targets for rTMS in depression: A review of convergent evidence. Brain Stimulation, 6(3), 231-240.
doi: 10.1016/j.brs.2012.08.006 pmid: 22975030 |
[41] |
Elmasry, J., Loo, C., & Martin, D. (2015). A systematic review of transcranial electrical stimulation combined with cognitive training. Restorative Neurology Neuroscience, 33(3), 263-278.
doi: 10.3233/RNN-140473 URL |
[42] |
Etkin, A., Buchel, C., & Gross, J. J. (2015). The neural bases of emotion regulation. Nature Reviews Neuroscience, 16(11), 693-700.
doi: 10.1038/nrn4044 pmid: 26481098 |
[43] |
Etkin, A., & Wager, T. D. (2007). Functional neuroimaging of anxiety: A meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. American Journal of Psychiatry, 164(10), 1476-1488.
doi: 10.1176/appi.ajp.2007.07030504 pmid: 17898336 |
[44] |
Farnad, L., Ghasemian-Shirvan, E., Mosayebi-Samani, M., Kuo, M. F., & Nitsche, M. A. (2021). Exploring and optimizing the neuroplastic effects of anodal transcranial direct current stimulation over the primary motor cortex of older humans. Brain Stimulation, 14(3), 622-634.
doi: 10.1016/j.brs.2021.03.013 pmid: 33798763 |
[45] |
Feeser, M., Prehn, K., Kazzer, P., Mungee, A., & Bajbouj, M. (2014). Transcranial direct current stimulation enhances cognitive control during emotion regulation. Brain Stimulation, 7(1), 105-112.
doi: 10.1016/j.brs.2013.08.006 pmid: 24095257 |
[46] |
Fischer, D. B., Fried, P. J., Ruffini, G., Ripolles, O., Salvador, R., Banus, J.,... Fox, M. D. (2017). Multifocal tDCS targeting the resting state motor network increases cortical excitability beyond traditional tDCS targeting unilateral motor cortex. Neuroimage, 157, 34-44.
doi: S1053-8119(17)30459-7 pmid: 28572060 |
[47] |
Galderisi, S., Heinz, A., Kastrup, M., Beezhold, J., & Sartorius, N. J. W. p. (2015). Toward a new definition of mental health. World Psychiatry, 14(2), 231-233.
doi: 10.1002/wps.v14.2 URL |
[48] | Ganho-Ávila, A., Gonçalves Ó, F., Guiomar, R., Boggio, P. S., Asthana, M. K., Krypotos, A. M., & Almeida, J. (2019). The effect of cathodal tDCS on fear extinction: A cross- measures study. Public Library of Science, 14(9), e0221282. |
[49] |
Gershon, A. A., Dannon, P. N., & Grunhaus, L. (2003). Transcranial magnetic stimulation in the treatment of depression. American Journal of Psychiatry, 160(5), 835-845.
doi: 10.1176/appi.ajp.160.5.835 pmid: 12727683 |
[50] |
Gilam, G., Abend, R., Gurevitch, G., Erdman, A., Baker, H., Ben-Zion, Z., & Hendler, T. (2018). Attenuating anger and aggression with neuromodulation of the vmPFC: A simultaneous tDCS-fMRI study. Cortex, 109, 156-170.
doi: S0010-9452(18)30309-5 pmid: 30343211 |
[51] |
Gordon, E. M., Laumann, T. O., Gilmore, A. W., Newbold, D. J., Greene, D. J., Berg, J. J.,... Dosenbach, N. U. F. (2017). Precision functional mapping of individual human brains. Neuron, 95(4), 791-807.
doi: S0896-6273(17)30613-X pmid: 28757305 |
[52] |
Grimm, S., Beck, J., Schuepbach, D., Hell, D., Boesiger, P., Bermpohl, F.,... Northoff, G. (2008). Imbalance between left and right dorsolateral prefrontal cortex in major depression is linked to negative emotional judgment: An fMRI study in severe major depressive disorder. Biological Psychiatry, 63(4), 369-376.
doi: 10.1016/j.biopsych.2007.05.033 pmid: 17888408 |
[53] |
Groenewold, N. A., Opmeer, E. M., de Jonge, P., Aleman, A., & Costafreda, S. G. (2013). Emotional valence modulates brain functional abnormalities in depression: Evidence from a meta-analysis of fMRI studies. Neuroscience & Biobehavioral Reviews, 37(2), 152-163.
doi: 10.1016/j.neubiorev.2012.11.015 URL |
[54] |
Gross, J. J. (1998). The emerging field of emotion regulation: An integrative review. Review of General Psychology, 2(3), 271-299.
doi: 10.1037/1089-2680.2.3.271 URL |
[55] |
Gross, J. J., & John, O. P. (2003). Individual differences in two emotion regulation processes: Implications for affect, relationships, and well-being. Journal of Personality and Social Psychology, 85(2), 348-362.
doi: 10.1037/0022-3514.85.2.348 pmid: 12916575 |
[56] | Gyurak, A., Gross, J. J., & Etkin, A. (2011). Explicit and implicit emotion regulation: A dual-process framework. Cognition & Emotion, 25(3), 400-412. |
[57] | Haeems, G. B. (2018). Emotion regulation in social anxiety disorder: Exploration and neuro-modulation of underlying neural mechanisms of cognitive reappraisal (Unpublished doctoral dissertation). University of Southampton. |
[58] |
Hajcak, G., MacNamara, A., & Olvet, D. M. (2010). Event- related potentials, emotion, and emotion regulation: An integrative review. Developmental Neuropsychology, 35(2), 129-155.
doi: 10.1080/87565640903526504 pmid: 20390599 |
[59] | Hansenne, M., & Weets, E. (2020). Anodal transcranial direct current stimulation (tDCS) over the left DLPFC improves emotion regulation. Polish Psychological Bulletin, 51(1), 37-43. |
[60] |
Hasson, U., Ghazanfar, A. A., Galantucci, B., Garrod, S., & Keysers, C. (2012). Brain-to-brain coupling: A mechanism for creating and sharing a social world. Trends in Cognitive Sciences, 16(2), 114-121.
doi: 10.1016/j.tics.2011.12.007 pmid: 22221820 |
[61] |
He, Z., Lin, Y., Xia, L., Liu, Z., Zhang, D., & Elliott, R. (2018). Critical role of the right VLPFC in emotional regulation of social exclusion: A tDCS study. Social Cognitive and Affective Neuroscience, 13(4), 357-366.
doi: 10.1093/scan/nsy026 pmid: 29618116 |
[62] |
He, Z., Liu, Z., Zhao, J., Elliott, R., & Zhang, D. (2020). Improving emotion regulation of social exclusion in depression-prone individuals: A tDCS study targeting right VLPFC. Psychological Medicine, 50(16), 2768-2779.
doi: 10.1017/S0033291719002915 URL |
[63] |
He, Z., Zhao, J., Shen, J., Muhlert, N., Elliott, R., & Zhang, D. (2020). The right VLPFC and downregulation of social pain: A TMS study. Human Brain Mapping, 41(5), 1362-1371.
doi: 10.1002/hbm.24881 pmid: 31789480 |
[64] |
Herwig, U., Lutz, J., Scherpiet, S., Scheerer, H., Kohlberg, J., Opialla, S.,... Bruhl, A. B. (2019). Training emotion regulation through real-time fMRI neurofeedback of amygdala activity. Neuroimage, 184, 687-696.
doi: S1053-8119(18)31940-2 pmid: 30287300 |
[65] |
Hill, A. T., Fitzgerald, P. B., & Hoy, K. E. (2016). Effects of anodal transcranial direct current stimulation on working memory: A systematic review and meta-analysis of findings from healthy and neuropsychiatric populations. Brain Stimulation, 9(2), 197-208.
doi: 10.1016/j.brs.2015.10.006 pmid: 26597929 |
[66] |
Hiser, J., & Koenigs, M. (2018). The multifaceted role of the ventromedial prefrontal cortex in emotion, decision making, social cognition, and psychopathology. Biological Psychiatry, 83(8), 638-647.
doi: S0006-3223(17)32203-5 pmid: 29275839 |
[67] |
Hofhansel, L., Regenbogen, C., Weidler, C., Habel, U., Raine, A., & Clemens, B. (2020). Stimulating the criminal brain: Different effects of prefrontal tDCS in criminal offenders and controls. Brain Stimulation, 13(4), 1117-1120.
doi: S1935-861X(20)30075-9 pmid: 32387538 |
[68] | Hsu, D., Yttredahl, A., & Sankar, A. (2018). Neuroimaging evidence for targeting abnormal responses to the social environment in major depressive disorder. Biological Psychiatry, 83(9), S27. |
[69] |
Hyde, J., Carr, H., Kelley, N., Seneviratne, R., Reed, C., Parlatini, V.,... Brandt, V. (2022). Efficacy of neurostimulation across mental disorders: Systematic review and meta- analysis of 208 randomized controlled trials. Molecular Psychiatry, 27(6), 2709-2719.
doi: 10.1038/s41380-022-01524-8 |
[70] |
Iannone, A., Cruz, A. P. d. M., Brasil-Neto, J. P., & Boechat-Barros, R. (2016). Transcranial magnetic stimulation and transcranial direct current stimulation appear to be safe neuromodulatory techniques useful in the treatment of anxiety disorders and other neuropsychiatric disorders. Arquivos de Neuro-Psiquiatria, 74(10), 829-835.
doi: S0004-282X2016001000829 pmid: 27759809 |
[71] | Kan, R. L. D., Zhang, B. B. B., Zhang, J. J. Q., & Kranz, G. S. (2020). Non-invasive brain stimulation for posttraumatic stress disorder: A systematic review and meta-analysis. Translational Psychiatry, 10(1), 168. |
[72] | Kedzior, K. K., Rajput, V., Price, G., Lee, J., & Martin- Iverson, M. J. B. p. (2012). Cognitive correlates of repetitive transcranial magnetic stimulation (rTMS) in treatment- resistant depression-a pilot study. BMC Psychiatry 12(1), 1-9. |
[73] |
Keeser, D., Meindl, T., Bor, J., Palm, U., Pogarell, O., Mulert, C., … Padberg, F. (2011). Prefrontal transcranial direct current stimulation changes connectivity of resting-state networks during fMRI. The Journal of Neuroscience, 31(43), 15284-15293.
doi: 10.1523/JNEUROSCI.0542-11.2011 URL |
[74] |
Keller, M., Zweerings, J., Klasen, M., Zvyagintsev, M., Iglesias, J., Mendoza Quinones, R., & Mathiak, K. (2021). fMRI neurofeedback-enhanced cognitive reappraisal training in depression: A double-blind comparison of left and right vlPFC regulation. Frontiers in Psychiatry, 12, 715898.
doi: 10.3389/fpsyt.2021.715898 URL |
[75] | Kirkovski, M., Rogasch, N. C., Saeki, T., Fitzgibbon, B. M., Enticott, P. G., & Fitzgerald, P. B. (2017). A combined TMS-EEG investigation of autism spectrum disorder. Brain Stimulation, 10(2), 424. |
[76] |
Koole, S. L. (2009). The psychology of emotion regulation: An integrative review. Cognition and Emotion, 23(1), 4-41.
doi: 10.1080/02699930802619031 URL |
[77] | Kosari, Z., Dadashi, M., Maghbouli, M., & Mostafavi, H. (2019). Comparing the effectiveness of neurofeedback and transcranial direct current stimulation on sleep quality of patients with migraine. Basic and Clinical Neuroscience, 10(6), 579. |
[78] |
Kragel, P. A., & LaBar, K. S. (2016). Decoding the nature of emotion in the brain. Trends in Cognitive Sciences, 20(6), 444-455.
doi: S1364-6613(16)30004-3 pmid: 27133227 |
[79] |
Kuo, M. F., Paulus, W., & Nitsche, M. A. (2014). Therapeutic effects of non-invasive brain stimulation with direct currents (tDCS) in neuropsychiatric diseases. Neuroimage, 85, 948-960.
doi: 10.1016/j.neuroimage.2013.05.117 URL |
[80] |
Lafleur, L. P., Tremblay, S., Whittingstall, K., & Lepage, J. F. (2016). Assessment of effective connectivity and plasticity with dual-Coil transcranial magnetic stimulation. Brain Stimulation, 9(3), 347-355.
doi: 10.1016/j.brs.2016.02.010 URL |
[81] | Lakatos, P., Gross, J., & Thut, G. (2019). A new unifying account of the roles of neuronal entrainment. Current Biology, 29(18), R890-R905. |
[82] |
Lantrip, C., Gunning, F. M., Flashman, L., Roth, R. M., & Holtzheimer, P. E. (2017). Effects of transcranial magnetic stimulation on the cognitive control of emotion: Potential antidepressant mechanisms. Journal of ECT, 33(2), 73-80.
doi: 10.1097/YCT.0000000000000386 pmid: 28072659 |
[83] |
Levenson, R. W. (2014). The autonomic nervous system and emotion. Emotion Review, 6(2), 100-112.
doi: 10.1177/1754073913512003 URL |
[84] |
Li, S., Xie, H., Zheng, Z., Chen, W., Xu, F., Hu, X., & Zhang, D. (2022). The causal role of the bilateral ventrolateral prefrontal cortices on emotion regulation of social feedback. Human Brain Mapping, 43(9), 2898-2910.
doi: 10.1002/hbm.25824 pmid: 35261115 |
[85] |
Linhartová, P., Látalová, A., Kóša, B., Kašpárek, T., Schmahl, C., & Paret, C. (2019). fMRI neurofeedback in emotion regulation: A literature review. Neuroimage, 193, 75-92.
doi: S1053-8119(19)30178-8 pmid: 30862532 |
[86] | Liu, A., Vöröslakos, M., Kronberg, G., Henin, S., Krause, M. R., Huang, Y.,... Buzsáki, G. (2018). Immediate neurophysiological effects of transcranial electrical stimulation. Nature Communications, 9(1), 5092. |
[87] |
Liu, D., Liu, S., Liu, X., Zhang, C., Li, A., Jin, C.,... Zhang, X. (2018). Interactive brain activity: Review and progress on EEG-Based hyperscanning in social interactions. Frontiers in Psychology, 9, 1862.
doi: 10.3389/fpsyg.2018.01862 pmid: 30349495 |
[88] | Ma, X., Huang, Y., Liao, L., & Jin, Y. (2014). A randomized double-blinded sham-controlled trial of α electroencephalogram- guided transcranial magnetic stimulation for obsessive- compulsive disorder. Chinese Medical Journal, 127(04), 601-606. |
[89] |
Makovac, E., Thayer, J. F., & Ottaviani, C. (2017). A meta- analysis of non-invasive brain stimulation and autonomic functioning: Implications for brain-heart pathways to cardiovascular disease. Neuroscience & Biobehavioral Reviews, 74, 330-341.
doi: 10.1016/j.neubiorev.2016.05.001 URL |
[90] |
Mantovani, A., Simpson, H. B., Fallon, B. A., Rossi, S., & Lisanby, S. H. (2010). Randomized sham-controlled trial of repetitive transcranial magnetic stimulation in treatment- resistant obsessive-compulsive disorder. The International Journal of Neuropsychopharmacology, 13(2), 217-227.
doi: 10.1017/S1461145709990435 URL |
[91] |
Marins, T., Rodrigues, E., Bortolini, T., Melo, B., Moll, J., & Tovar-Moll, F. (2019). Structural and functional connectivity changes in response to short-term neurofeedback training with motor imagery. Neuroimage, 194, 283-290.
doi: S1053-8119(19)30204-6 pmid: 30898654 |
[92] |
Markovic, V., Vicario, C. M., Yavari, F., Salehinejad, M. A., & Nitsche, M. A. (2021). A systematic review on the effect of transcranial direct current and magnetic stimulation on fear memory and extinction. Frontiers in Human Neuroscience, 15, 655947.
doi: 10.3389/fnhum.2021.655947 URL |
[93] | Marques, L. M., Morello, L. Y. N., & Boggio, P. S. (2018). Ventrolateral but not dorsolateral prefrontal cortex tDCS effectively impact emotion reappraisal - effects on emotional experience and interbeat interval. Scientific Reports, 8(1), 15295. |
[94] |
Martin, D. M., Moffa, A., Nikolin, S., Bennabi, D., Brunoni, A. R., Flannery, W.,... Loo, C.,K. (2018). Cognitive effects of transcranial direct current stimulation treatment in patients with major depressive disorder: An individual patient data meta-analysis of randomised, sham-controlled trials. Neuroscience & Biobehavioral Reviews, 90, 137-145.
doi: 10.1016/j.neubiorev.2018.04.008 URL |
[95] |
Mauss, I. B., & Robinson, M. D. (2009). Measures of emotion: A review. Cognition and Emotion, 23(2), 209-237.
doi: 10.1080/02699930802204677 URL |
[96] | Mehić, E., Xu, J. M., Caler, C. J., Coulson, N. K., Moritz, C. T., & Mourad, P. D. (2014). Increased anatomical specificity of neuromodulation via modulated focused ultrasound. PloS One, 9(2), e86939. |
[97] |
Modak, A., & Fitzgerald, P. B. (2021). Personalising transcranial magnetic stimulation for depression using neuroimaging: A systematic review. The World Journal of Biological Psychiatry, 22(9), 647-669.
doi: 10.1080/15622975.2021.1907710 URL |
[98] |
Molavi, P., Aziziaram, S., Basharpoor, S., Atadokht, A., Nitsche, M. A., & Salehinejad, M. A. (2020). Repeated transcranial direct current stimulation of dorsolateral- prefrontal cortex improves executive functions, cognitive reappraisal emotion regulation, and control over emotional processing in borderline personality disorder: A randomized, sham-controlled, parallel-group study. Journal of Affective Disorders, 274, 93-102.
doi: 10.1016/j.jad.2020.05.007 URL |
[99] |
Mondino, M., Haesebaert, F., Poulet, E., Suaud-Chagny, M.-F., & Brunelin, J. (2015). Fronto-temporal transcranial direct current stimulation (tDCS) reduces source-monitoring deficits and auditory hallucinations in patients with schizophrenia. Schizophrenia Research, 161(2-3), 515-516.
doi: 10.1016/j.schres.2014.10.054 pmid: 25468175 |
[100] |
Morawetz, C., Riedel, M. C., Salo, T., Berboth, S., Eickhoff, S. B., Laird, A. R., & Kohn, N. (2020). Multiple large-scale neural networks underlying emotion regulation. Neuroscience & Biobehavioral Reviews, 116, 382-395.
doi: 10.1016/j.neubiorev.2020.07.001 URL |
[101] | Mungee, A., Burger, M., & Bajbouj, M. (2016). No effect of cathodal transcranial direct current stimulation on fear memory in healthy human subjects. Brain Sciences, 6(4), 55. |
[102] |
Myers-Schulz, B., & Koenigs, M. (2012). Functional anatomy of ventromedial prefrontal cortex: Implications for mood and anxiety disorders. Molecular Psychiatry, 17(2), 132-141.
doi: 10.1038/mp.2011.88 pmid: 21788943 |
[103] | Najafabadi, A. J., Oh, H., Imani, H., & Godde, B. (2021). Effect of neurofeedback training combined with transcranial direct current stimulation on primary insomnia. Bremen, IRC-Library: Information Resource Center der Jacobs University Bremen. |
[104] | Nitsche, M. A., & Paulus, W. (2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. The Journal of Physiology, 527(Pt 3), 633. |
[105] |
Nitsche, M. A., & Paulus, W. (2001). Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology, 57(10), 1899-1901.
doi: 10.1212/wnl.57.10.1899 pmid: 11723286 |
[106] |
Niven, K. (2017). The four key characteristics of interpersonal emotion regulation. Current Opinion in Psychology, 17, 89-93.
doi: S2352-250X(17)30027-1 pmid: 28950980 |
[107] |
Notzon, S., Steinberg, C., Zwanzger, P., & Junghöfer, M. (2018). Modulating emotion perception: Opposing effects of inhibitory and excitatory prefrontal cortex stimulation. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 3(4), 329-336.
doi: 10.1016/j.bpsc.2017.12.007 URL |
[108] |
Novembre, G., & Iannetti, G. D. (2021). Hyperscanning alone cannot prove causality. Multibrain stimulation can. Trends in Cognitive Sciences, 25(2), 96-99.
doi: 10.1016/j.tics.2020.11.003 pmid: 33293210 |
[109] |
Pan, Y., Novembre, G., Song, B., Zhu, Y., & Hu, Y. (2021). Dual brain stimulation enhances interpersonal learning through spontaneous movement synchrony. Social Cognitive and Affective Neuroscience, 16(1-2), 210-221.
doi: 10.1093/scan/nsaa080 pmid: 32591830 |
[110] | Papoutsi, M., Magerkurth, J., Josephs, O., Pepes, S., Ibitoye, T., Reilmann, R.,... Tabrizi, S. J. (2018). HD brain-train: Enhancing neural plasticity using real-time fMRI neurofeedback training. Journal of Neurology, Neurosurgery & Psychiatry, 89, A102. |
[111] |
Parsons, R. G., & Ressler, K. J. (2013). Implications of memory modulation for post-traumatic stress and fear disorders. Nature Neuroscience, 16(2), 146-153.
doi: 10.1038/nn.3296 pmid: 23354388 |
[112] |
Pavlova, E. L., Menshikova, A. A., Semenov, R. V., Bocharnikova, E. N., Gotovtseva, G. N., Druzhkova, T. A.,... Guekht, A. B. (2018). Transcranial direct current stimulation of 20-and 30-minutes combined with sertraline for the treatment of depression. Progress in Neuro- Psychopharmacology and Biological Psychiatry, 82, 31-38.
doi: 10.1016/j.pnpbp.2017.12.004 URL |
[113] |
Plewnia, C., Schroeder, P. A., & Wolkenstein, L. (2015). Targeting the biased brain: Non-invasive brain stimulation to ameliorate cognitive control. Lancet Psychiatry, 2(4), 351-356.
doi: 10.1016/S2215-0366(15)00056-5 pmid: 26360088 |
[114] |
Ray-Yol, E., & Altan-Atalay, A. (2022). Interpersonal emotion regulation and psychological distress: What is the function of negative mood regulation expectancies in this relationship? Psychological Reports, 125(1), 280-293.
doi: 10.1177/0033294120968086 URL |
[115] |
Rêgo, G. G., Lapenta, O. M., Marques, L. M., Costa, T. L., Leite, J., Carvalho, S.,... Boggio, P. S. (2015). Hemispheric dorsolateral prefrontal cortex lateralization in the regulation of empathy for pain. Neuroscience Letters, 594, 12-16.
doi: 10.1016/j.neulet.2015.03.042 pmid: 25805457 |
[116] |
Riva, P., Romero Lauro, J, L., DeWall, C. N., & Bushman, B. J. (2012). Buffer the pain away: Stimulating the right ventrolateral prefrontal cortex reduces pain following social exclusion. Psychological Science, 23(12), 1473-1475.
doi: 10.1177/0956797612450894 pmid: 23132013 |
[117] |
Riva, P., Romero Lauro, L. J., Vergallito, A., DeWall, C. N., & Bushman, B. J. (2015). Electrified emotions: Modulatory effects of transcranial direct stimulation on negative emotional reactions to social exclusion. Social Neuroscience, 10(1), 46-54.
doi: 10.1080/17470919.2014.946621 pmid: 25139575 |
[118] |
Rive, M. M., Van Rooijen, G., Veltman, D. J., Phillips, M. L., Schene, A. H., & Ruhé, H. G. (2013). Neural correlates of dysfunctional emotion regulation in major depressive disorder. A systematic review of neuroimaging studies. Neuroscience & Biobehavioral Reviews, 37(10), 2529-2553.
doi: 10.1016/j.neubiorev.2013.07.018 URL |
[119] |
Rodrigues, P. A., Zaninotto, A. L., Neville, I. S., Hayashi, C. Y., Brunoni, A. R., Teixeira, M. J., & Paiva, W. S. (2019). Transcranial magnetic stimulation for the treatment of anxiety disorder. Neuropsychiatric Disease and Treatment, 15, 2743-2761.
doi: 10.2147/NDT.S201407 pmid: 31576130 |
[120] |
Rosa, M. A., & Lisanby, S. H. (2012). Somatic treatments for mood disorders. Neuropsychopharmacology, 37(1), 102-116.
doi: 10.1038/npp.2011.225 pmid: 21976043 |
[121] |
Roth, Y., Amir, A., Levkovitz, Y., & Zangen, A. (2007). Three-dimensional distribution of the electric field induced in the brain by transcranial magnetic stimulation using figure-8 and deep H-coils. Journal of Clinical Neurophysiology, 24(1), 31-38.
doi: 10.1097/WNP.0b013e31802fa393 pmid: 17277575 |
[122] | Ruffini, G., de Lara, C. M.-R., Martinez-Zalacain, I., Ripolles, O., Subira, M., Via, E.,... Cardoner, N. (2017). Optimized multielectrode tDCS modulates corticolimbic networks. Brain Stimulation, 10(1), e14. |
[123] |
Ruffini, G., Fox, M. D., Ripolles, O., Miranda, P. C., & Pascual-Leone, A. (2014). Optimization of multifocal transcranial current stimulation for weighted cortical pattern targeting from realistic modeling of electric fields. Neuroimage, 89, 216-225.
doi: 10.1016/j.neuroimage.2013.12.002 pmid: 24345389 |
[124] | Sanguinetti, J., & Allen, J. J. (2017). Transcranial ultrasound improves mood and affects resting state functional connectivity in healthy volunteers. Brain Stimulation: Basic, Translational, and Clinical Research in Neuromodulation, 10(2), 426. |
[125] |
Saunders, N., Downham, R., Turman, B., Kropotov, J., Clark, R., Yumash, R., & Szatmary, A. (2015). Working memory training with tDCS improves behavioral and neurophysiological symptoms in pilot group with post-traumatic stress disorder (PTSD) and with poor working memory. Neurocase, 21(3), 271-278.
doi: 10.1080/13554794.2014.890727 pmid: 24579831 |
[126] | Shin, L. M., Rauch, S. L., & Pitman, R. K. (2006). Amygdala, medial prefrontal cortex, and hippocampal function in PTSD. Annals of the New York Academy of Sciences, 1071(1), 67-79. |
[127] |
Smits, F. M., Schutter, D., van Honk, J., & Geuze, E. (2020). Does non-invasive brain stimulation modulate emotional stress reactivity? Social Cognitive and Affective Neuroscience, 15(1), 23-51.
doi: 10.1093/scan/nsaa011 pmid: 31993648 |
[128] |
Stefani, A., Peppe, A., Pierantozzi, M., Galati, S., Moschella, V., Stanzione, P., & Mazzone, P. (2009). Multi-target strategy for Parkinsonian patients: The role of deep brain stimulation in the centromedian-parafascicularis complex. Brain Research Bulletin, 78(2-3), 113-118.
doi: 10.1016/j.brainresbull.2008.08.007 pmid: 18812214 |
[129] |
Sydnor, V. J., Cieslak, M., Duprat, R., Deluisi, J., Flounders, M. W., Long, H.,... Oathes, D. J. (2022). Cortical- subcortical structural connections support transcranial magnetic stimulation engagement of the amygdala. Science Advances, 8(25). doi: 10.1126/sciadv.abn580
doi: 10.1126/sciadv.abn580 |
[130] |
Tendler, A., Barnea Ygael, N., Roth, Y., & Zangen, A. (2016). Deep transcranial magnetic stimulation (dTMS)-beyond depression. Expert Review of Medical Devices, 13(10), 987-1000.
doi: 10.1080/17434440.2016.1233812 URL |
[131] |
Tzabazis, A., Aparici, C. M., Rowbotham, M. C., Schneider, M. B., Etkin, A., & Yeomans, D. C. (2013). Shaped magnetic field pulses by multi-coil repetitive transcranial magnetic stimulation (rTMS) differentially modulate anterior cingulate cortex responses and pain in volunteers and fibromyalgia patients. Molecular Pain, 9, 33.
doi: 10.1186/1744-8069-9-33 pmid: 23819466 |
[132] |
Urgesi, C., Mattiassi, A. D., Buiatti, T., & Marini, A. (2016). Tell it to a child! A brain stimulation study of the role of left inferior frontal gyrus in emotion regulation during storytelling. Neuroimage, 136, 26-36.
doi: 10.1016/j.neuroimage.2016.05.039 pmid: 27188219 |
[133] |
Valencia, A. L., & Froese, T. (2020). What binds us? Inter-brain neural synchronization and its implications for theories of human consciousness. Neuroscience of Consciousness, 2020(1). doi:10.1093/nc/niaa010.
doi: 10.1093/nc/niaa010 |
[134] | van Dam, W. O., & Chrysikou, E. G. (2021). Effects of unilateral tDCS over left prefrontal cortex on emotion regulation in depression: Evidence from concurrent functional magnetic resonance imaging. Cognitive, Affective, & Behavioral Neuroscience, 21(1), 14-34. |
[135] |
Van Erp, T. G., Walton, E., Hibar, D. P., Schmaal, L., Jiang, W., Glahn, D. C.,... Turner, J. A. (2018). Cortical brain abnormalities in 4474 individuals with schizophrenia and 5098 control subjects via the enhancing neuro imaging genetics through meta analysis (ENIGMA) consortium. Biological Psychiatry, 84(9), 644-654.
doi: S0006-3223(18)31517-8 pmid: 29960671 |
[136] | Van't Wout, M., Longo, S. M., Reddy, M. K., Philip, N. S., Bowker, M. T., & Greenberg, B. D. (2017). Transcranial direct current stimulation may modulate extinction memory in posttraumatic stress disorder. Brain and Behavior, 7(5), e00681. |
[137] |
van't Wout, M., Mariano, T. Y., Garnaat, S. L., Reddy, M. K., Rasmussen, S. A., & Greenberg, B. D. (2016). Can transcranial direct current stimulation augment extinction of conditioned fear? Brain Stimulation, 9(4), 529-536.
doi: 10.1016/j.brs.2016.03.004 pmid: 27037186 |
[138] |
Vergallito, A., Riva, P., Pisoni, A., & Lauro, L. J. R. (2018). Modulation of negative emotions through anodal tDCS over the right ventrolateral prefrontal cortex. Neuropsychologia, 119, 128-135.
doi: S0028-3932(18)30423-8 pmid: 30089234 |
[139] |
Wang, H., Wang, K., Xue, Q., Peng, M., Yin, L., Gu, X.,... Wang, Y. (2022). Transcranial alternating current stimulation for treating depression: A randomized controlled trial. Brain, 145(1), 83-91.
doi: 10.1093/brain/awab252 pmid: 35353887 |
[140] |
Watts, B. V., Landon, B., Groft, A., & Young-Xu, Y. (2012). A sham controlled study of repetitive transcranial magnetic stimulation for posttraumatic stress disorder. Brain Stimulation, 5(1), 38-43.
doi: 10.1016/j.brs.2011.02.002 pmid: 22264669 |
[141] |
Winker, C., Rehbein, M. A., Sabatinelli, D., Dohn, M., Maitzen, J., Wolters, C. H., … Junghofer, M. (2018). Noninvasive stimulation of the ventromedial prefrontal cortex modulates emotional face processing. Neuroimage, 175, 388-401.
doi: S1053-8119(18)30277-5 pmid: 29605579 |
[142] |
Wolkenstein, L., & Plewnia, C. (2013). Amelioration of cognitive control in depression by transcranial direct current stimulation. Biological Psychiatry, 73(7), 646-651.
doi: 10.1016/j.biopsych.2012.10.010 pmid: 23219367 |
[143] |
Woods, A. J., Antal, A., Bikson, M., Boggio, P. S., Brunoni, A. R., Celnik, P.,... Nitsche, M. A. (2016). A technical guide to tDCS, and related non-invasive brain stimulation tools. Clinical Neurophysiology, 127(2), 1031-1048.
doi: S1388-2457(15)01088-3 pmid: 26652115 |
[144] |
Yu, L., Long, Q., Tang, Y., Yin, S., Chen, Z., Zhu, C., & Chen, A. (2021). Improving emotion regulation through real-time neurofeedback training on the right dorsolateral prefrontal cortex: Evidence from behavioral and brain network analyses. Frontiers in Human Neuroscience, 15, 620342.
doi: 10.3389/fnhum.2021.620342 URL |
[145] |
Zaki, J., & Williams, W. C. (2013). Interpersonal emotion regulation. Emotion, 13(5), 803-810.
doi: 10.1037/a0033839 pmid: 24098929 |
[146] |
Zhang, D., Ao, X., Zheng, Z., Shen, J., Zhang, Y., & Gu, R. (2022). Modulating social feedback processing by deep TMS targeting the medial prefrontal cortex: Behavioral and electrophysiological manifestations. Neuroimage, 250, 118967.
doi: 10.1016/j.neuroimage.2022.118967 URL |
[147] |
Zhang, D., Xu, F., Xie, H., Guo, T., Li, S., & Chen, Y. (2021). The role of dorsolateral prefrontal cortex on voluntary forgetting of negative social feedback in depressed patients: A TMS study. Acta Psychologica Sinica, 53(10), 1094-1104.
doi: 10.3724/SP.J.1041.2021.01094 |
[148] | Zhang, Q., Li, X., Liu, X., Liu, S., Zhang, M., Liu, Y., … Wang, K. (2022). The effect of non-invasive brain stimulation on the downregulation of negative emotions: A meta-analysis. Brain Sciences, 12(6), 786. |
[149] |
Zhang, X., Liu, B., Li, Y., Duan, G., Hou, J., & Wu, D. (2021). Multi-target and multi-session transcranial direct current stimulation in patients with prolonged disorders of consciousness: A controlled study. Frontiers in Neuroscience, 15, 641951.
doi: 10.3389/fnins.2021.641951 URL |
[150] |
Zhao, J., Mo, L., Bi, R., He, Z., Chen, Y., Xu, F., … Zhang, D. (2021). The VLPFC versus the DLPFC in downregulating social pain using reappraisal and distraction strategies. Journal of Neuroscience, 41(6), 1331-1339.
doi: 10.1523/JNEUROSCI.1906-20.2020 pmid: 33443069 |
[151] | Zhou, S., & Fang, Y. (2022). Efficacy of non-invasive brain stimulation for refractory obsessive-compulsive disorder: A meta-analysis of randomized controlled trials. Brain Sciences, 12(7), 943. |
[152] |
Ziemann, U., Paulus, W., Nitsche, M. A., Pascual-Leone, A., Byblow, W. D., Berardelli, A.,... Rothwell, J. C. (2008). Consensus: Motor cortex plasticity protocols. Brain Stimulation, 1(3), 164-182.
doi: 10.1016/j.brs.2008.06.006 pmid: 20633383 |
[1] | 高伟, 李艳萍, 黄悦媛, 袁加锦. 目标与情境转换对情绪调节灵活性的作用机制[J]. 心理科学进展, 2025, 33(2): 202-211. |
[2] | 常茜芮, 何蔚祺. 网络游戏成瘾者的情绪加工异常[J]. 心理科学进展, 2024, 32(7): 1152-1163. |
[3] | 詹紫薇, 王梦梦, 索涛, 蒋艳菊. “一个连续过程”与“三个阶段”:抑郁青少年情绪失调的原因探析[J]. 心理科学进展, 2024, 32(6): 928-938. |
[4] | 冯攀, 赵恒越, 姜雨矇, 张悦彤, 冯廷勇. 催产素影响条件化恐惧情绪加工的认知机制及神经基础[J]. 心理科学进展, 2024, 32(4): 557-567. |
[5] | 董婉欣, 于文汶, 谢慧, 张丹丹. 人际情绪调节的认知神经基础[J]. 心理科学进展, 2024, 32(1): 131-137. |
[6] | 叶伟豪, 于美琪, 张利会, 高琪, 傅明珠, 卢家楣. 精准的意义:负性情绪粒度的作用机制与干预[J]. 心理科学进展, 2023, 31(6): 1030-1043. |
[7] | 王雪珂, 冯廷勇. “冷”/“热”执行功能缺陷影响ADHD儿童核心症状的作用机制[J]. 心理科学进展, 2023, 31(11): 2106-2128. |
[8] | 郭志华, 卢宏亮, 黄鹏, 朱霞. 经颅直流电刺激对健康人群反应抑制的影响[J]. 心理科学进展, 2022, 30(9): 2034-2052. |
[9] | 武晓菲, 肖风, 罗劲. 创造性认知重评在情绪调节中的迁移效应及其神经基础[J]. 心理科学进展, 2022, 30(3): 477-485. |
[10] | 姚海娟, 王琦, 李兆卿. 情绪调节中的认知重评创造力[J]. 心理科学进展, 2022, 30(3): 601-612. |
[11] | 冯攀, 杨可, 冯廷勇. 催产素影响恐惧习得和消退的认知神经机制[J]. 心理科学进展, 2022, 30(2): 365-374. |
[12] | 朱传林, 刘电芝, 罗文波. 情绪体验影响估算策略运用的认知与脑机制[J]. 心理科学进展, 2022, 30(12): 2639-2649. |
[13] | 胡小勇, 杜棠艳, 李兰玉, 王甜甜. 低社会经济地位影响自我调节的神经机制[J]. 心理科学进展, 2022, 30(10): 2278-2290. |
[14] | 黄于飞, 史攀, 陈旭. 依恋对情绪调节过程的影响[J]. 心理科学进展, 2022, 30(1): 77-84. |
[15] | 严万森, 刘苏姣, 张冉冉, 徐鹏. 强迫性特征在药物成瘾行为中的易感性及其前额叶-反奖赏系统神经基础[J]. 心理科学进展, 2021, 29(8): 1345-1357. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 1885
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 1167
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||