[1] |
胡传鹏, 王非, 过继成思, 宋梦迪, 隋洁, 彭凯平. (2016). 心理学研究中的可重复性问题:从危机到契机. 心理科学进展, 24(9), 1504-1518.
doi: 10.3724/SP.J.1042.2016.01504
|
[2] |
温忠麟, 范息涛, 叶宝娟, 陈宇帅. (2016). 从效应量应有的性质看中介效应量的合理性. 心理学报, 48(4), 435-443.
|
[3] |
Anderson, S. F., Kelley, K., & Maxwell, S. E. (2017). Sample-size planning for more accurate statistical power: A method adjusting sample effect sizes for publication bias and uncertainty. Psychological Science, 28(11), 1547-1562.
doi: 10.1177/0956797617723724
pmid: 28902575
|
[4] |
Arend, M. G., & Schäfer, T. (2019). Statistical power in two-level models: A tutorial based on Monte Carlo simulation. Psychological Methods, 24(1), 1-19.
doi: 10.1037/met0000195
pmid: 30265048
|
[5] |
Asparouhov, T., & Muthén, B. (2021). Advances in Bayesian model fit evaluation for structural equation models. Structural Equation Modeling: A Multidisciplinary Journal, 28(1), 1-14.
doi: 10.1080/10705511.2020.1764360
URL
|
[6] |
Baird, R., & Maxwell, S. E. (2016). Performance of time-varying predictors in multilevel models under an assumption of fixed or random effects. Psychological Methods, 21(2), 175-188.
doi: 10.1037/met0000070
pmid: 26950731
|
[7] |
Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013). Random effects structure for confirmatory hypothesis testing: Keep it maximal. Journal of Memory and Language, 68, 255-278.
doi: 10.1016/j.jml.2012.11.001
URL
|
[8] |
Blozis, S. A., McTernan, M., Harring, J. R., & Zheng, Q. (2020). Two-part mixed-effects location scale models. Behavior Research Methods, 52(5), 1836-1847.
doi: 10.3758/s13428-020-01359-7
|
[9] |
Brauer, M., & Curtin, J. J. (2018). Linear mixed-effects models and the analysis of nonindependent data: A unified framework to analyze categorical and continuous independent variables that vary within-subjects and/or within-items. Psychological Methods, 23(3), 389-411.
doi: 10.1037/met0000159
pmid: 29172609
|
[10] |
Brunton-Smith, I., Sturgis, P., & Leckie, G. (2017). Detecting and understanding interviewer effects on survey data by using a cross-classified mixed effects location-scale model. Journal of the Royal Statistical Society: Series A (Statistics in Society), 180(2), 551-568.
|
[11] |
Brysbaert, M., & Stevens, M. (2018). Power analysis and effect size in mixed effects models: A tutorial. Journal of Cognition, 1(1), 9. https://doi.org/10.5334/joc.10
doi: 10.5334/joc.10
URL
pmid: 31517183
|
[12] |
Bürkner, P. C. (2017). brms: An R package for Bayesian multilevel models using Stan. Journal of Statistical Software, 80(1), 1-28.
|
[13] |
Courvoisier, D., Walls, T. A., Cheval, B., & Hedeker, D. (2019). A mixed-effects location scale model for time-to- event data: A smoking behavior application. Addictive Behaviors, 94, 42-49.
doi: S0306-4603(18)30961-4
pmid: 30181016
|
[14] |
Depaoli, S., & Clifton, J. P. (2015). A Bayesian approach to multilevel structural equation modeling with continuous and dichotomous outcomes. Structural Equation Modeling: A Multidisciplinary Journal, 22(3), 327-351.
doi: 10.1080/10705511.2014.937849
URL
|
[15] |
Faul, F., Erdfelder, E., Lang, A. -G., & Buchner, A. (2007). G* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175-191.
doi: 10.3758/BF03193146
URL
|
[16] |
Gelman, A., Meng, X. L., & Stern, H. (1996). Posterior predictive assessment of model fitness via realized discrepancies. Statistica Sinica, 6(4), 733-760.
|
[17] |
González, B. J., de Boeck, P., & Tuerlinckx, F. (2014). Linear mixed modelling for data from a double mixed factorial design with covariates: A case-study on semantic categorization response times. Journal of the Royal Statistical Society: Series C, 63(2), 289-302.
doi: 10.1111/rssc.12031
URL
|
[18] |
Halsey, L. G., Curran-Everett, D., Vowler, S. L., & Drummond, G. B. (2015). The fickle p value generates irreproducible results. Nature Methods, 12(3), 179-185.
doi: 10.1038/nmeth.3288
pmid: 25719825
|
[19] |
Hedeker, D., Mermelstein, R. J., & Demirtas, H. (2008). An application of a mixed-effects location scale model for analysis of ecological momentary assessment (EMA) data. Biometrics, 64(2), 627-634.
doi: 10.1111/j.1541-0420.2007.00924.x
pmid: 17970819
|
[20] |
Hedeker, D., Mermelstein, R. J., Demirtas, H., & Berbaum, M. L. (2016). A mixed-effects location-scale model for ordinal questionnaire data. Health Services and Outcomes Research Methodology, 16(3), 117-131.
pmid: 27570476
|
[21] |
Hoijtink, H., Mulder, J., van Lissa, C., & Gu, X. (2019). A tutorial on testing hypotheses using the Bayes factor. Psychological Methods, 24(5), 539-556.
doi: 10.1037/met0000201
pmid: 30742472
|
[22] |
Hox, J. J., Moerbeek, M., & van de Schoot, R. (2017). Multilevel analysis: Techniques and applications (3rd ed.). New York, Routledge.
|
[23] |
Judd, C. M., Westfall, J., & Kenny, D. A. (2012). Treating stimuli as a random factor in social psychology: A new and comprehensive solution to a pervasive but largely ignored problem. Journal of Personality & Social Psychology, 103(1), 54-69.
|
[24] |
Judd, C. M., Westfall, J., & Kenny, D. A. (2017). Experiments with more than one random factor: designs, analytic models, and statistical power. Annual Review of Psychology, 68(1), 601-625.
doi: 10.1146/psych.2017.68.issue-1
URL
|
[25] |
Lee, W. Y. (2018). Generalized linear mixed effect models with crossed random effects for experimental designs having non-repeated items: Model specification and selection (Unpublished doctorial dissertation). Vanderbilt University.
|
[26] |
Lin, X., Mermelstein, R. J., & Hedeker, D. (2018). A 3-level Bayesian mixed effects location scale model with an application to ecological momentary assessment data. Statistics in Medicine, 37(13), 2108-2119.
doi: 10.1002/sim.7627
pmid: 29484693
|
[27] |
Liu, X., & Wang, L. (2019). Sample size planning for detecting mediation effects: A power analysis procedure considering uncertainty in effect size estimates. Multivariate Behavioral Research, 54(6), 822-839.
doi: 10.1080/00273171.2019.1593814
pmid: 30983425
|
[28] |
Martínez-Huertas, J. Á., Olmos, R., & Ferrer, E. (2021). Model selection and model averaging for mixed-effects models with crossed random effects for subjects and items. Multivariate Behavioral Research, 59(4), 390-412.
|
[29] |
Matuschek, H., Kliegl, R., Vasishth, S., Baayen, H., & Bates, D. (2017). Balancing Type I error and power in linear mixed models. Journal of Memory and Language, 94, 305-315.
doi: 10.1016/j.jml.2017.01.001
URL
|
[30] |
Maxwell, S. E. (2004). The persistence of underpowered studies in psychological research: Causes, consequences, and remedies. Psychological Methods, 9(2), 147-163.
doi: 10.1037/1082-989X.9.2.147
pmid: 15137886
|
[31] |
Nosek, B. A., Hardwicke, T. E., Moshontz, H., Allard, A., Corker, K. S., Almenberg, A. D.,... Vazire, S. (2022). Replicability, robustness, and reproducibility in psychological science. Annual Review of Psychology, 73, 719-748.
doi: 10.1146/psych.2022.73.issue-1
URL
|
[32] |
Park, J., & Pek, J. (2022). Conducting Bayesian-classical hybrid power analysis with R package hybridpower. Multivariate Behavioral Research. https://doi.org/10.1080/00273171.2022.2038056
|
[33] |
Pek, J., & Park, J. (2019). Complexities in power analysis: Quantifying uncertainties with a Bayesian-classical hybrid approach. Psychological Methods, 24(5), 590-605.
doi: 10.1037/met0000208
pmid: 30816728
|
[34] |
Rast, P., & Ferrer, E. (2018). A mixed-effects location scale model for dyadic interactions. Multivariate Behavioral Research, 53(5), 756-775.
doi: 10.1080/00273171.2018.1477577
pmid: 30395725
|
[35] |
Schultzberg, M., & Muthén, B. (2018). Number of subjects and time points needed for multilevel time-series analysis: A simulation study of dynamic structural equation modeling. Structural Equation Modeling: A Multidisciplinary Journal, 25(4), 495-515.
doi: 10.1080/10705511.2017.1392862
URL
|
[36] |
Spiegelhalter, D. J., Best, N. G., Carlin, B. P., & van der Linde, A. (2002). Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society. Series B (Statistical Methodology), 64(4), 583-639.
doi: 10.1111/1467-9868.00353
URL
|
[37] |
Thoemmes, F., MacKinnon, D. P., & Reiser, M. R. (2010). Power analysis for complex mediational designs using Monte Carlo methods. Structural Equation Modeling, 17(3), 510-534.
doi: 10.1080/10705511.2010.489379
URL
|
[38] |
van Erp, S., & Browne, W. J. (2021). Bayesian multilevel structural equation modeling: An investigation into robust prior distributions for the doubly latent categorical model. Structural Equation Modeling: A Multidisciplinary Journal, 28(6), 875-893.
doi: 10.1080/10705511.2021.1915146
URL
|
[39] |
Walters, R. W., Hoffman, L., & Templin, J. (2018). The power to detect and predict individual differences in intra-individual variability using the mixed-effects location-scale model. Multivariate Behavioral Research, 53(3), 360-374.
doi: 10.1080/00273171.2018.1449628
pmid: 29565691
|
[40] |
Wasserstein, R. L., & Lazar, N. A. (2016). The ASA statement on p-values: Context, process, and purpose. The American Statistician, 70(2), 129-133.
doi: 10.1080/00031305.2016.1154108
URL
|
[41] |
Williams, D. R., Martin, S. R., Liu, S., & Rast, P. (2020). Bayesian multivariate mixed-effects location scale modeling of longitudinal relations among affective traits, states, and physical activity. European Journal of Psychological Assessment, 36(6), 981-997.
doi: 10.1027/1015-5759/a000624
pmid: 34764628
|
[42] |
Williams, D. R., Martin, S. R., & Rast, P. (2022). Putting the individual into reliability: Bayesian testing of homogeneous within-person variance in hierarchical models. Behavior Research Methods, 54(3), 1272-1290.
doi: 10.3758/s13428-021-01646-x
|
[43] |
Williams, D. R., Mulder, J., Rouder, J. N., & Rast, P. (2021). Beneath the surface: Unearthing within-person variability and mean relations with Bayesian mixed models. Psychological Methods, 26(1), 74-89.
doi: 10.1037/met0000270
URL
|
[44] |
Williams, D. R., Zimprich, D. R., & Rast, P. (2019). A Bayesian nonlinear mixed-effects location scale model for learning. Behavior Research Methods, 51(5), 1968-1986.
doi: 10.3758/s13428-019-01255-9
pmid: 31069713
|
[45] |
Zhang, Z. (2014). Monte Carlo based statistical power analysis for mediation models: Methods and software. Behavior Research Methods, 46(4), 1184-1198.
doi: 10.3758/s13428-013-0424-0
pmid: 24338601
|