心理科学进展 ›› 2023, Vol. 31 ›› Issue (11): 2063-2077.doi: 10.3724/SP.J.1042.2023.02063
收稿日期:
2022-09-21
出版日期:
2023-11-15
发布日期:
2023-08-28
通讯作者:
蔡厚德, E-mail: caihoude@163.com
E-mail:caihoude@163.com
基金资助:
GAO Fei1, CAI Houde2(), QI Xingliang3
Received:
2022-09-21
Online:
2023-11-15
Published:
2023-08-28
摘要:
成人的大脑左侧VWFA对正字法信息更敏感, 而右侧FFA优先处理面孔信息。然而, 这种偏侧化互补模式的发展机制还亟待阐明。神经元再利用假设认为, 在文字阅读学习过程中, 文字识别会与面孔表征在左侧FG竞争神经加工资源, 导致文字识别出现VWFA的左侧化, 并推动了面孔识别FFA的右侧化。分布式半球组织的观点提出了神经计算加工三原则, 试图系统阐释文字与面孔偏侧化竞争性发展的多层次双向动态加工机制。近期, FG的结构分区与功能特征研究取得了一些新成果, 并据此构建了一个文字与面孔识别的多维度计算加工模型。因此, 有必要基于神经元再利用假设和分布式半球组织的观点, 并结合FG的结构与功能特征和近期研究证据, 以系统探讨文字与面孔识别的半球偏侧化互补模式竞争性发展的认知神经加工机制。未来研究应进一步探究文字与面孔竞争加工的皮层空间位置和功能神经组织学基础、汉字与面孔竞争的加工机制、面孔识别的右侧化发展机制以及数字和音符阅读学习导致大脑可塑性改变的机制。
中图分类号:
高飞, 蔡厚德, 齐星亮. (2023). 文字与面孔识别的半球偏侧化互补模式的竞争性发展机制. 心理科学进展 , 31(11), 2063-2077.
GAO Fei, CAI Houde, QI Xingliang. (2023). Mechanism of competitive development of hemispheric lateralization complementary pattern for word and face recognition. Advances in Psychological Science, 31(11), 2063-2077.
[1] | 齐星亮, 蔡厚德. (2019). 文字阅读学习的大脑可塑性机制. 心理科学, 42(5), 1127-1133. |
[2] | 张文芳. (2020). 幼儿文字与面孔专家化加工的关系及其影响因素 (博士论文). 中国科学院大学, 北京. |
[3] | Abboud, S., Maidenbaum, S., Dehaene, S., & Amedi, A. (2015). A number-form area in the blind. Nature Communications, 6(1), Article 6026. https://doi.org/10.1038/ncomms7026 |
[4] |
Adibpour, P., Dubois, J., & Dehaene-Lambertz, G. (2018). Right but not left hemispheric discrimination of faces in infancy. Nature Human Behaviour, 2(1), 67-79.
doi: 10.1038/s41562-017-0249-4 pmid: 30980049 |
[5] |
Ayzenberg, V., & Behrmann, M. (2022). Does the brain's ventral visual pathway compute object shape. Trends in Cognitive Sciences, 26(12), 1119-1132.
doi: 10.1016/j.tics.2022.09.019 URL |
[6] |
Behrmann, M., & Avidan, G. (2022). Face perception: Computational insights from phylogeny. Trends in Cognitive Sciences, 26(4), 350-363.
doi: 10.1016/j.tics.2022.01.006 pmid: 35232662 |
[7] |
Behrmann, M., & Plaut, D. C. (2013). Distributed circuits, not circumscribed centers, mediate visual recognition. Trends in Cognitive Sciences, 17(5), 210-219.
doi: 10.1016/j.tics.2013.03.007 pmid: 23608364 |
[8] |
Behrmann, M., & Plaut, D. C. (2014). Bilateral hemispheric processing of words and faces: Evidence from word impairments in prosopagnosia and face impairments in pure alexia. Cerebral Cortex, 24(4), 1102-1118.
doi: 10.1093/cercor/bhs390 URL |
[9] | Behrmann, M., & Plaut, D. C. (2015). A vision of graded hemispheric specialization. Annals of the New York Academy of Sciences, 1359, 30-46. |
[10] |
Behrmann, M., & Plaut, D. C. (2020). Hemispheric organization for visual object recognition: A theoretical account and empirical evidence. Perception, 49(4), 373-404.
doi: 10.1177/0301006619899049 pmid: 31980013 |
[11] | Bouhali, F., Mongelli, V., de Schotten, M. T., & Cohen, L. (2020). Reading music and words: The anatomical connectivity of musicians' visual cortex. Neuroimage, 212, Article 116666. https://doi.org/10.1016/j.neuroimage.2020.116666 |
[12] |
Cai, Q., Paulignan, Y., Brysbaert, M., Ibarrola, D., & Nazir, T. A. (2010). The left ventral occipito-temporal response to words depends on language lateralization but not on visual familiarity. Cereb Cortex, 20(5), 1153-1163.
doi: 10.1093/cercor/bhp175 pmid: 19684250 |
[13] | Canário, N., Jorge, L., & Castelo-Branco, M. (2020). Distinct mechanisms drive hemispheric lateralization of object recognition in the visual word form and fusiform face areas. Brain and Language, 210, Article 104860. https://doi.org/10.1016/j.bandl.2020.104860 |
[14] |
Cantlon, J. F., Pinel, P., Dehaene, S., & Pelphrey, K. A. (2011). Cortical representations of symbols, objects, and faces are pruned back during early childhood. Cerebral Cortex, 21(1), 191-199.
doi: 10.1093/cercor/bhq078 URL |
[15] | Caspers, J., Palomero-Gallagher, N., Caspers, S., Schleicher, A., Amunts, K., & Zilles, K. (2015). Receptor architecture of visual areas in the face and word-form recognition region of the posterior fusiform gyrus. Brain Structure and Function, 220(1), 205-219. |
[16] |
Caspers, J., Zilles, K., Eickhoff, S. B., Schleicher, A., Mohlberg, H., & Amunts, K. (2013). Cytoarchitectonical analysis and probabilistic mapping of two extrastriate areas of the human posterior fusiform gyrus. Brain Structure and Function, 218(2), 511-526.
doi: 10.1007/s00429-012-0411-8 URL |
[17] | Centanni, T. M., Norton, E. S., Park, A., Beach, S. D., Halverson, K., Ozernov-Palchik, O., ... Gabrieli, J. (2018). Early development of letter specialization in left fusiform is associated with better word reading and smaller fusiform face area. Developmental Science, 21(5), Article e12658. https://doi.org/10.1111/desc.12658 |
[18] |
Collingridge, G. L., Volianskis, A., Bannister, N., France, G., Hanna, L., Mercier, M., ... Jane, D. E. (2013). The NMDA receptor as a target for cognitive enhancement. Neuropharmacology, 64, 13-26.
doi: 10.1016/j.neuropharm.2012.06.051 pmid: 22796429 |
[19] |
Collins, E., Dundas, E., Gabay, Y., Plaut, D. C., & Behrmann, M. (2017). Hemispheric organization in disorders of development. Visual Cognition, 25(4-6), 416-429.
doi: 10.1080/13506285.2017.1370430 pmid: 30464702 |
[20] | Dai, R., Huang, Z., Weng, X., & He, S. (2022). Early visual exposure primes future cross-modal specialization of the fusiform face area in tactile face processing in the blind. Neuroimage, 253, Article 119062. https://doi.org/10.1016/j.neuroimage.2022.119062 |
[21] |
Davies-Thompson, J., Johnston, S., Tashakkor, Y., Pancaroglu, R., & Barton, J. J. (2016). The relationship between visual word and face processing lateralization in the fusiform gyri: A cross-sectional study. Brain Research, 1644, 88-97.
doi: 10.1016/j.brainres.2016.05.009 pmid: 27178362 |
[22] | de Heering, A., & Rossion, B. (2015). Rapid categorization of natural face images in the infant right hemisphere. Elife, 4, Article e06564. https://doi.org/10.7554/eLife.06564.001 |
[23] | Dehaene, S. (2005). Evolution of human cortical circuits for reading and arithmetic:The ‘‘neuronal recycling’’ hypothesis. In S.Dehaene, J. R.Duhamel, M.Hauser, & G.Rizzolatti (Eds.), From monkey brain to human brain (pp. 133-157). Cambridge, MA: MIT Press. |
[24] |
Dehaene, S., & Cohen, L. (2007). Cultural recycling of cortical maps. Neuron, 56(2), 384-398.
doi: 10.1016/j.neuron.2007.10.004 pmid: 17964253 |
[25] |
Dehaene, S., & Cohen, L. (2011). The unique role of the visual word form area in reading. Trends in Cognitive Sciences, 15(6), 254-262.
doi: 10.1016/j.tics.2011.04.003 pmid: 21592844 |
[26] |
Dehaene, S., Cohen, L., Morais, J., & Kolinsky, R. (2015). Illiterate to literate: Behavioural and cerebral changes induced by reading acquisition. Nature Reviews Neuroscience, 16(4), 234-244.
doi: 10.1038/nrn3924 pmid: 25783611 |
[27] |
Dehaene, S., Pegado, F., Braga, L. W., Ventura, P., Nunes Filho, G., Jobert, A., ... Cohen, L. (2010). How learning to read changes the cortical networks for vision and language. Science, 330(6009), 1359-1364.
doi: 10.1126/science.1194140 pmid: 21071632 |
[28] | Dehaene-Lambertz, G., Monzalvo, K., & Dehaene, S. (2018). The emergence of the visual word form: Longitudinal evolution of category-specific ventral visual areas during reading acquisition. PLOS Biology, 16(3), Article e2004103. https://doi.org/10.1371/journal.pbio.2004103 |
[29] |
Dundas, E. M., Plaut, D. C., & Behrmann, M. (2013). The joint development of hemispheric lateralization for words and faces. Journal of Experimental Psychology: General, 142(2), 348-358.
doi: 10.1037/a0029503 URL |
[30] |
Dundas, E. M., Plaut, D. C., & Behrmann, M. (2014). An ERP investigation of the co-development of hemispheric lateralization of face and word recognition. Neuropsychologia, 61, 315-323.
doi: 10.1016/j.neuropsychologia.2014.05.006 pmid: 24933662 |
[31] |
Dundas, E. M., Plaut, D. C., & Behrmann, M. (2015). Variable left-hemisphere language and orthographic lateralization reduces right-hemisphere face lateralization. Journal of Cognitive Neuroscience, 27(5), 913-925.
doi: 10.1162/jocn_a_00757 pmid: 25390197 |
[32] | Eggermann, E., & Feldmeyer, D. (2009). Cholinergic filtering in the recurrent excitatory microcircuit of cortical layer 4. Proceedings of the National Academy of Sciences, 106(28), 11753-11758. |
[33] | Feng, X., Monzalvo, K., Dehaene, S., & Dehaene-Lambertz, G. (2022). Evolution of reading and face circuits during the first three years of reading acquisition. Neuroimage, 259, Article 119394. https://doi.org/10.1016/j.neuroimage.2022.119394 |
[34] | Frässle, S., Krach, S., Paulus, F. M., & Jansen, A. (2016). Handedness is related to neural mechanisms underlying hemispheric lateralization of face processing. Scientific Reports, 6, Article 27153. https://doi.org/10.1038/srep27153 |
[35] |
Gathers, A. D., Bhatt, R., Corbly, C. R., Farley, A. B., & Joseph, J. E. (2004). Developmental shifts in cortical loci for face and object recognition. NeuroReport, 15(10), 1549-1553.
pmid: 15232281 |
[36] | Gerlach, C., Kuhn, C. D., Poulsen, M., Andersen, K. B., Lissau, C. H., & Starrfelt, R. (2022). Lateralization of word and face processing in developmental dyslexia and developmental prosopagnosia. Neuropsychologia, 170, https://doi.org/10.1016/j.neuropsychologia.2022.108208 |
[37] |
Gerrits, R., Van der Haegen, L., Brysbaert, M., & Vingerhoets, G. (2019). Laterality for recognizing written words and faces in the fusiform gyrus covaries with language dominance. Cortex, 117, 196-204.
doi: S0010-9452(19)30122-4 pmid: 30986634 |
[38] |
Golarai, G., Ghahremani, D. G., Whitfield-Gabrieli, S., Reiss, A., Eberhardt, J. L., Gabrieli, J. D., & Grill-Spector, K. (2007). Differential development of high-level visual cortex correlates with category-specific recognition memory. Nature Neuroscience, 10(4), 512-522.
pmid: 17351637 |
[39] |
Golarai, G., Liberman, A., & Grill-Spector, K. (2017). Experience shapes the development of neural substrates of face processing in human ventral temporal cortex. Cereb Cortex, 27(2), 1229-1244.
doi: 10.1093/cercor/bhv314 pmid: 26683171 |
[40] |
Gomez, J., Barnett, M., & Grill-Spector, K. (2019). Extensive childhood experience with Pokemon suggests eccentricity drives organization of visual cortex. Nature Human Behaviour, 3(6), 611-624.
doi: 10.1038/s41562-019-0592-8 |
[41] |
Gomez, J., Barnett, M. A., Natu, V., Mezer, A., Palomero- Gallagher, N., Weiner, K. S., ... Grill-Spector, K. (2017). Microstructural proliferation in human cortex is coupled with the development of face processing. Science, 355(6320), 68-71.
doi: 10.1126/science.aag0311 pmid: 28059764 |
[42] | Gomez, J., Natu, V., Jeska, B., Barnett, M., & Grill-Spector, K. (2018). Development differentially sculpts receptive fields across early and high-level human visual cortex. Nature Communications, 9(1), Article 788. https://doi.org/10.1038/s41467-018-03166-3 |
[43] |
Gomez, J., Pestilli, F., Witthoft, N., Golarai, G., Liberman, A., Poltoratski, S., ... Grill-Spector, K. (2015). Functionally defined white matter reveals segregated pathways in human ventral temporal cortex associated with category-specific processing. Neuron, 85(1), 216-227.
doi: S0896-6273(14)01136-2 pmid: 25569351 |
[44] |
Grand, R. L., Mondloch, C. J., Maurer, D., & Brent, H. P. (2003). Expert face processing requires visual input to the right hemisphere during infancy. Nature Neuroscience, 6(10), 1108-1112.
doi: 10.1038/nn1121 pmid: 12958600 |
[45] |
Grill-Spector, K., & Malach, R. (2004). The human visual cortex. Annual Review of Neuroscience, 27, 649-677.
pmid: 15217346 |
[46] |
Grill-Spector, K., & Weiner, K. S. (2014). The functional architecture of the ventral temporal cortex and its role in categorization. Nature Reviews Neuroscience, 15(8), 536-548.
doi: 10.1038/nrn3747 pmid: 24962370 |
[47] |
Grossi, D., Soricelli, A., Ponari, M., Salvatore, E., Quarantelli, M., Prinster, A., & Trojano, L. (2014). Structural connectivity in a single case of progressive prosopagnosia: The role of the right inferior longitudinal fasciculus. Cortex, 56, 111-120.
doi: 10.1016/j.cortex.2012.09.010 pmid: 23099263 |
[48] |
Grotheer, M., Herrmann, K.-H., & Kovács, G. (2016). Neuroimaging evidence of a bilateral representation for visually presented numbers. Journal of Neuroscience, 36(1), 88-97.
doi: 10.1523/JNEUROSCI.2129-15.2016 pmid: 26740652 |
[49] |
Hadders-Algra, M. (2022). Human face and gaze perception is highly context specific and involves bottom-up and top-down neural processing. Neuroscience and Biobehavioral Reviews, 132, 304-323.
doi: 10.1016/j.neubiorev.2021.11.042 URL |
[50] |
Hannagan, T., Amedi, A., Cohen, L., Dehaene-Lambertz, G., & Dehaene, S. (2015). Origins of the specialization for letters and numbers in ventral occipitotemporal cortex. Trends in Cognitive Sciences, 19(7), 374-382.
doi: 10.1016/j.tics.2015.05.006 pmid: 26072689 |
[51] |
Hasson, U., Levy, I., Behrmann, M., Hendler, T., & Malach, R. (2002). Eccentricity bias as an organizing principle for human high-order object areas. Neuron, 34(3), 479-490.
doi: 10.1016/s0896-6273(02)00662-1 pmid: 11988177 |
[52] |
Hernandez, A. E., Claussenius-Kalman, H. L., Ronderos, J., Castilla-Earls, A. P., Sun, L., Weiss, S. D., & Young, D. R. (2019). Neuroemergentism: A framework for studying cognition and the brain. Journal of Neurolinguistics, 49, 214-223.
doi: 10.1016/j.jneuroling.2017.12.010 pmid: 30636843 |
[53] |
Inamizu, S., Yamada, E., Ogata, K., Uehara, T., Kira, J.-I., & Tobimatsu, S. (2020). Neuromagnetic correlates of hemispheric specialization for face and word recognition. Neuroscience Research, 156, 108-116.
doi: S0168-0102(19)30613-3 pmid: 31730780 |
[54] |
Johnson, M. H. (2005). Subcortical face processing. Nature Reviews Neuroscience, 6(10), 766-774.
pmid: 16276354 |
[55] |
Johnson, M. H., Senju, A., & Tomalski, P. (2015). The two-process theory of face processing: Modifications based on two decades of data from infants and adults. Neuroscience and Biobehavioral Reviews, 50, 169-179.
doi: 10.1016/j.neubiorev.2014.10.009 pmid: 25454353 |
[56] |
Kanjlia, S., Lane, C., Feigenson, L., & Bedny, M. (2016). Absence of visual experience modifies the neural basis of numerical thinking. Proceedings of the National Academy of Sciences, 113(40), 11172-11177.
doi: 10.1073/pnas.1524982113 URL |
[57] | Kim, H., Kim, G., & Lee, S.-H. (2019). Effects of individuation and categorization on face representations in the visual cortex. Neuroscience Letters, 708, Article 134344. https://doi.org/10.1016/j.neulet.2019.134344 |
[58] |
Klein, E., Suchan, J., Moeller, K., Karnath, H.-O., Knops, A., Wood, G., ... Willmes, K. (2016). Considering structural connectivity in the triple code model of numerical cognition: Differential connectivity for magnitude processing and arithmetic facts. Brain Structure and Function, 221(2), 979-995.
doi: 10.1007/s00429-014-0951-1 URL |
[59] | Leleu, A., Rekow, D., Poncet, F., Schaal, B., Durand, K., Rossion, B., & Baudouin, J.-Y. (2020). Maternal odor shapes rapid face categorization in the infant brain. Developmental Science, 23(2), Article e12877. https://doi.org/10.1111/desc.12877 |
[60] | Lerma-Usabiaga, G., Carreiras, M., & Paz-Alonso, P. M. (2018). Converging evidence for functional and structural segregation within the left ventral occipitotemporal cortex in reading. Proceedings of the National Academy of Sciences, 115(42), E9981-E9990. |
[61] | Li, H., Liang, Y., Yue, Q., Zhang, L., Ying, K., & Mei, L. (2021). The contributions of the left fusiform subregions to successful encoding of novel words. Brain and Cognition, 148, Article 105690. https://doi.org/10.1016/j.bandc.2021.105690 |
[62] |
Li, S., Lee, K., Zhao, J., Yang, Z., He, S., & Weng, X. (2013). Neural competition as a developmental process: Early hemispheric specialization for word processing delays specialization for face processing. Neuropsychologia, 51(5), 950-959.
doi: 10.1016/j.neuropsychologia.2013.02.006 pmid: 23462239 |
[63] |
Liu, T. T., Nestor, A., Vida, M. D., Pyles, J. A., Patterson, C., Yang, Y., ... Behrmann, M. (2018). Successful reorganization of category-selective visual cortex following occipito- temporal lobectomy in childhood. Cell Reports, 24(5), 1113-1122.
doi: 10.1016/j.celrep.2018.06.099 URL |
[64] |
Lochy, A., de Heering, A., & Rossion, B. (2019). The non- linear development of the right hemispheric specialization for human face perception. Neuropsychologia, 126, 10-19.
doi: 10.1016/j.neuropsychologia.2017.06.029 URL |
[65] | Lochy, A., Schiltz, C., & Rossion, B. (2020). The right hemispheric dominance for face perception in preschool children depends on the visual discrimination level. Developmental Science, 23(3), Article e12914. https://doi.org/10.1111/desc.12914 |
[66] | Lorenz, S., Weiner, K. S., Caspers, J., Mohlberg, H., Schleicher, A., Bludau, S., ... Amunts, K. (2017). Two new cytoarchitectonic areas on the human mid-fusiform gyrus. Cerebral Cortex, 27(1), 373-385. |
[67] |
Mongelli, V., Dehaene, S., Vinckier, F., Peretz, I., Bartolomeo, P., & Cohen, L. (2017). Music and words in the visual cortex: The impact of musical expertise. Cortex, 86, 260-274.
doi: S0010-9452(16)30147-2 pmid: 27317491 |
[68] |
Monzalvo, K., Fluss, J., Billard, C., Dehaene, S., & Dehaene-Lambertz, G. (2012). Cortical networks for vision and language in dyslexic and normal children of variable socio-economic status. Neuroimage, 61(1), 258-274.
doi: 10.1016/j.neuroimage.2012.02.035 pmid: 22387166 |
[69] | Moret-Tatay, C., Baixauli Fortea, I., & Grau Sevilla, M. D. (2020). Challenges and insights for the visual system: Are face and word recognition two sides of the same coin. Journal of Neurolinguistics, 56, Article 100941. https://doi.org/10.1016/j.jneuroling.2020.100941 |
[70] |
Nordt, M., Gomez, J., Natu, V., Jeska, B., Barnett, M., & Grill-Spector, K. (2019). Learning to read increases the informativeness of distributed ventral temporal responses. Cerebral Cortex, 29(7), 3124-3139.
doi: 10.1093/cercor/bhy178 URL |
[71] | Nordt, M., Gomez, J., Natu, V. S., Rezai, A. A., Finzi, D., Kular, H., & Grill-Spector, K. (2021). Cortical recycling in high-level visual cortex during childhood development. Nature Human Behavior, 5(12), 1686-1697. |
[72] |
O'Hearn, K., Schroer, E., Minshew, N., & Luna, B. (2010). Lack of developmental improvement on a face memory task during adolescence in autism. Neuropsychologia, 48(13), 3955-3960.
doi: 10.1016/j.neuropsychologia.2010.08.024 pmid: 20813119 |
[73] |
Op de Beeck, H. P., Pillet, I., & Ritchie, J. B. (2019). Factors determining where category-selective areas emerge in visual cortex. Trends in Cognitive Sciences, 23(9), 784-797.
doi: S1364-6613(19)30158-5 pmid: 31327671 |
[74] | Pegado, F., Comerlato, E., Ventura, F., Jobert, A., Nakamura, K., Buiatti, M., ... Dehaene, S. (2014). Timing the impact of literacy on visual processing. Proceedings of the National Academy of Sciences, 111(49), E5233-E5242. |
[75] |
Powell, L. J., Kosakowski, H. L., & Saxe, R. (2018). Social origins of cortical face areas. Trends in Cognitive Sciences, 22(9), 752-763.
doi: S1364-6613(18)30149-9 pmid: 30041864 |
[76] | Pyles, J. A., Verstynen, T. D., Schneider, W., & Tarr, M. J. (2013). Explicating the face perception network with white matter connectivity. PLoS ONE, 8(4), Article e61611. https://doi.org/10.1371/journal.pone.0061611 |
[77] | Rekow, D., Baudouin, J.-Y., Poncet, F., Damon, F., Durand, K., Schaal, B., ... Leleu, A. (2021). Odor-driven face-like categorization in the human infant brain. Proceedings of the National Academy of Sciences, 118(21), Article e2014979118. https://doi.org/10.1073/pnas.2014979118 |
[78] | Rekow, D., Leleu, A., Poncet, F., Damon, F., Rossion, B., Durand, K., ... Baudouin, J.-Y. (2020). Categorization of objects and faces in the infant brain and its sensitivity to maternal odor: Further evidence for the role of intersensory congruency in perceptual development. Cognitive Development, 55, Article 100930. https://doi.org/10.1016/j.cogdev.2020.100930 |
[79] |
Roberts, D. J., Ralph, M. A. L., Kim, E., Tainturier, M.-J., Beeson, P. M., Rapcsak, S. Z., & Woollams, A. M. (2015). Processing deficits for familiar and novel faces in patients with left posterior fusiform lesions. Cortex, 72, 79-96.
doi: S0010-9452(15)00060-X pmid: 25837867 |
[80] |
Roberts, D. J., Woollams, A. M., Kim, E., Beeson, P. M., Rapcsak, S. Z., & Ralph, M. A. L. (2013). Efficient visual object and word recognition relies on high spatial frequency coding in the left posterior fusiform gyrus: Evidence from a case-series of patients with ventral occipito-temporal cortex damage. Cerebral Cortex, 23(11), 2568-2580.
doi: 10.1093/cercor/bhs224 URL |
[81] | Sabsevitz, D. S., Middlebrooks, E. H., Tatum, W., Grewal, S. S., Wharen, R., & Ritaccio, A. L. (2020). Examining the function of the visual word form area with stereo EEG electrical stimulation: A case report of pure alexia. Cortex, 129, 112-118. |
[82] |
Saygin, Z. M., Osher, D. E., Norton, E. S., Youssoufian, D. A., Beach, S. D., Feather, J., ... Kanwisher, N. (2016). Connectivity precedes function in the development of the visual word form area. Nature Neuroscience, 19(9), 1250-1255.
doi: 10.1038/nn.4354 pmid: 27500407 |
[83] | Sehyr, Z. S., Midgley, K. J., Holcomb, P. J., Emmorey, K., Plaut, D. C., & Behrmann, M. (2020). Unique N170 signatures to words and faces in deaf ASL signers reflect experience-specific adaptations during early visual processing. Neuropsychologia, 141, Article 107414. https://doi.org/10.1016/j.neuropsychologia.2020.107414 |
[84] |
Shum, J., Hermes, D., Foster, B. L., Dastjerdi, M., Rangarajan, V., Winawer, J., ... Parvizi, J. (2013). A brain area for visual numerals. The Journal of Neuroscience, 33(16), 6709-6715.
doi: 10.1523/JNEUROSCI.4558-12.2013 URL |
[85] | Skagenholt, M., Skagerlund, K., & Traff, U. (2021). Neurodevelopmental differences in child and adult number processing: An fMRI-based validation of the triple code model. Developmental Cognitive Neuroscience, 48, Article 100933. https://doi.org/10.1016/j.dcn.2021.100933 |
[86] | Skagenholt, M., Skagerlund, K., & Träff, U. (2022). Neurodevelopmental differences in task-evoked number network connectivity: Comparing symbolic and nonsymbolic number discrimination in children and adults. Developmental Cognitive Neuroscience, 58, Article 101159. https://doi.org/10.1016/j.dcn.2022.101159 |
[87] | Skagenholt, M., Träff, U., Västfjäll, D., & Skagerlund, K. (2018). Examining the triple code model in numerical cognition: An fMRI study. PLoS ONE, 13(6), Article e0199247. https://doi.org/10.1371/journal.pone.0199247 |
[88] |
Stewart, L., Henson, R., Kampe, K., Walsh, V., Turner, R., & Frith, U. (2003). Brain changes after learning to read and play music. Neuroimage, 20(1), 71-83.
doi: 10.1016/s1053-8119(03)00248-9 pmid: 14527571 |
[89] |
Susilo, T., Wright, V., Tree, J. J., & Duchaine, B. (2015). Acquired prosopagnosia without word recognition deficits. Cognitive Neuropsychology, 32(6), 321-339.
doi: 10.1080/02643294.2015.1081882 pmid: 26402384 |
[90] |
Thiebaut de Schotten, M., Cohen, L., Amemiya, E., Braga, L. W., & Dehaene, S. (2014). Learning to read improves the structure of the arcuate fasciculus. Cerebral Cortex, 24(4), 989-995.
doi: 10.1093/cercor/bhs383 URL |
[91] |
Thomas, C., Avidan, G., Humphreys, K., Jung, K.-J., Gao, F., & Behrmann, M. (2009). Reduced structural connectivity in ventral visual cortex in congenital prosopagnosia. Nature Neuroscience, 12(1), 29-31.
doi: 10.1038/nn.2224 pmid: 19029889 |
[92] | van Vugt, F. T., Hartmann, K., Altenmüller, E., Mohammadi, B., & Margulies, D. S. (2021). The impact of early musical training on striatal functional connectivity. Neuroimage, 238, Article 118251. https://doi.org/10.1016/j.neuroimage.2021.118251 |
[93] |
Vuontela, V., Jiang, P., Tokariev, M., Savolainen, P., Ma, Y., Aronen, E. T., ... Carlson, S. (2013). Regulation of brain activity in the fusiform face and parahippocampal place areas in 7-11-year-old children. Brain and Cognition, 81(2), 203-214.
doi: 10.1016/j.bandc.2012.11.003 pmid: 23262175 |
[94] |
Weiner, K. S. (2019). The mid-fusiform sulcus (sulcus sagittalis gyri fusiformis). Anatomical Record, 302(9), 1491-1503.
doi: 10.1002/ar.24041 |
[95] |
Weiner, K. S., Barnett, M. A., Lorenz, S., Caspers, J., Stigliani, A., Amunts, K., ... Grill-Spector, K. (2017). The cytoarchitecture of domain-specific regions in human high-level visual cortex. Cerebral Cortex, 27(1), 146-161.
doi: 10.1093/cercor/bhw361 URL |
[96] |
Weiner, K. S., Barnett, M. A., Witthoft, N., Golarai, G., Stigliani, A., Kay, K. N., ... Grill-Spector, K. (2018). Defining the most probable location of the parahippocampal place area using cortex-based alignment and cross-validation. Neuroimage, 170, 373-384.
doi: S1053-8119(17)30333-6 pmid: 28435097 |
[97] |
Weiner, K. S., Golarai, G., Caspers, J., Chuapoco, M. R., Mohlberg, H., Zilles, K., ... Grill-Spector, K. (2014). The mid-fusiform sulcus: A landmark identifying both cytoarchitectonic and functional divisions of human ventral temporal cortex. Neuroimage, 84, 453-465.
doi: 10.1016/j.neuroimage.2013.08.068 pmid: 24021838 |
[98] |
Weiner, K. S., Natu, V. S., & Grill-Spector, K. (2018). On object selectivity and the anatomy of the human fusiform gyrus. Neuroimage, 173, 604-609.
doi: S1053-8119(18)30137-X pmid: 29471101 |
[99] |
Weiner, K. S., Yeatman, J. D., & Wandell, B. A. (2017). The posterior arcuate fasciculus and the vertical occipital fasciculus. Cortex, 97, 274-276.
doi: S0010-9452(16)30050-8 pmid: 27132243 |
[100] |
Weiner, K. S., & Zilles, K. (2016). The anatomical and functional specialization of the fusiform gyrus. Neuropsychologia, 83, 48-62.
doi: S0028-3932(15)30080-4 pmid: 26119921 |
[101] |
Wong, Y. K., & Gauthier, I. (2010). A multimodal neural network recruited by expertise with musical notation. Journal of Cognitive Neuroscience, 22(4), 695-713.
doi: 10.1162/jocn.2009.21229 pmid: 19320551 |
[102] |
Woodhead, Z. V., Wise, R. J., Sereno, M., & Leech, R. (2011). Dissociation of sensitivity to spatial frequency in word and face preferential areas of the fusiform gyrus. Cerebral Cortex, 21(10), 2307-2312.
doi: 10.1093/cercor/bhr008 URL |
[103] | Yakovlev, P. I., & Lecours, A. R. (1967). The myelogenetic cycles of regional maturation of the brain. In A.Minkowski (Eds.), Regional development of the brain in early life (pp. 3-70). Oxford: Blackwell Science. |
[104] | Yeatman, J. D., Dougherty, R. F., Ben-Shachar, M., & Wandell, B. A. (2012). Development of white matter and reading skills. Proceedings of the National Academy of Sciences, 109(44), E3045-E3053. |
[105] |
Yeatman, J. D., & White, A. L. (2021). Reading: The confluence of vision and language. Annual Review of Vision Science, 7, 487-517.
doi: 10.1146/annurev-vision-093019-113509 pmid: 34166065 |
[106] |
Yeo, D. J., Wilkey, E. D., & Price, G. R. (2017). The search for the number form area: A functional neuroimaging meta-analysis. Neuroscience and Biobehavioral Reviews, 78, 145-160.
doi: S0149-7634(17)30032-5 pmid: 28467892 |
[107] |
Zhao, P., Li, S., Zhao, J., Gaspar, C. M., & Weng, X. (2015). Training by visual identification and writing leads to different visual word expertise N170 effects in preliterate Chinese children. Developmental Cognitive Neuroscience, 15, 106-116.
doi: 10.1016/j.dcn.2015.09.002 pmid: 26409757 |
[1] | 齐星亮, 蔡厚德. 镜像等效或守恒及其打破:从行为到认知神经机制的研究证据[J]. 心理科学进展, 2021, 29(10): 1855-1865. |
[2] | 王小娟;舒华;杨剑峰. 大脑视觉词形区及其在阅读神经网络中的作用[J]. 心理科学进展, 2010, 18(8): 1199-1207. |
[3] | 单春雷;李静薇;翁旭初. 视觉词形加工:从脑区到神经通路[J]. 心理科学进展, 2008, 16(3): 441-445. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||