心理科学进展 ›› 2022, Vol. 30 ›› Issue (6): 1242-1252.doi: 10.3724/SP.J.1042.2022.01242
张译允1(), 马媛媛1, 赵锦2, 周新林3,4,5, 邵园颖1
收稿日期:
2021-07-08
出版日期:
2022-06-15
发布日期:
2022-04-26
通讯作者:
张译允
E-mail:psyzxyun@163.com
基金资助:
ZHANG Yiyun1(), MA Yuanyuan1, ZHAO Jin2, ZHOU Xinlin3,4,5, SHAO Yuanying1
Received:
2021-07-08
Online:
2022-06-15
Published:
2022-04-26
Contact:
ZHANG Yiyun
E-mail:psyzxyun@163.com
摘要:
已有大量研究揭示了近似数量系统与计算流畅性的相关关系, 但缺少对二者关系原因的系统检验与论证。视觉形状知觉假设有别于传统的数量领域特异性解释, 认为对形状的快速知觉是近似数量系统与计算流畅性的共同认知机制, 即视觉形状的快速知觉能力可以解释二者之间的相关关系。近似数量系统和计算流畅性在加工过程中依赖对形状的快速知觉, 二者在加工过程中都涉及了复杂视觉刺激的快速处理。视觉形状知觉假设得到了一系列研究结果的支持, 但局限在视觉形状知觉与二者关系的探讨上, 视觉形状知觉在二者关系中作用的加工机制仍不清楚。未来研究需要结合多种研究方法和技术, 多角度深入探讨视觉形状知觉在二者关系中作用的认知与脑机制, 并将研究结果应用于数学课堂教学和计算困难的干预中。
中图分类号:
张译允, 马媛媛, 赵锦, 周新林, 邵园颖. (2022). 视觉形状知觉在近似数量系统和计算流畅性关系中的作用. 心理科学进展 , 30(6), 1242-1252.
ZHANG Yiyun, MA Yuanyuan, ZHAO Jin, ZHOU Xinlin, SHAO Yuanying. (2022). Role of visual form perception in the relationship between approximate number system and arithmetical fluency. Advances in Psychological Science, 30(6), 1242-1252.
[1] | 曾捷英, 周新林, 喻柏林. (2001). 变形汉字的结构方式和笔画数效应. 心理学报, 33(3), 204-208. |
[2] | 周新林, 曾捷英. (2002). 汉字通透性算法以及对结构方式效应的解释. 心理学报, 34(3), 248-253. |
[3] |
Ansari D., & Dhital B. (2006). Age-related changes in the activation of the intraparietal sulcus during nonsymbolic magnitude processing: An event-related functional magnetic resonance imaging study. Journal of Cognitive Neuroscience, 18(11), 1820-1828.
doi: 10.1162/jocn.2006.18.11.1820 URL |
[4] |
Bethany R.-J., Emily R. F., Kerry G. H., & Dale C. F. (2016). Early math trajectories: Low-income children's mathematics knowledge from ages 4 to 11. Child Development, 88(5), 1727-1742.
doi: 10.1111/cdev.12662 URL |
[5] |
Bonny J. W., & Lourenco S. F. (2013). The approximate number system and its relation to early math achievement: Evidence from the preschool years. Journal of Experimental Child Psychology, 114(3), 375-388.
doi: 10.1016/j.jecp.2012.09.015 URL |
[6] |
Bugden S., & Ansari D. (2016). Probing the nature of deficits in the 'Approximate Number System' in children with persistent developmental Dyscalculia. Developmental Science, 19(5), 817-833.
doi: 10.1111/desc.12324 URL |
[7] |
Bull R., & Johnston R. S. (1997). Children᾽s arithmetical difficulties: Contributions from processing speed, item identification, and short-term memory. Journal of Experimental Child Psychology, 65(1), 1-24.
pmid: 9126630 |
[8] |
Carr M., & Alexeev N. (2011). Fluency, accuracy, and gender predict developmental trajectories of arithmetic strategies. Journal of Educational Psychology, 103(3), 617- 631.
doi: 10.1037/a0023864 URL |
[9] |
Cavina-Pratesi C., Large M. E., & Milner A. D. (2015). Visual processing of words in a patient with visual form agnosia: A behavioural and fMRI study. Cortex, 64, 29-46.
doi: 10.1016/j.cortex.2014.09.017 pmid: 25461705 |
[10] |
Cheng D., Xiao Q., Chen Q., Cui J., & Zhou X. (2018). Dyslexia and dyscalculia are characterized by common visual perception deficits. Developmental Neuropsychology, 43(6), 497-507.
doi: 10.1080/87565641.2018.1481068 URL |
[11] | Cheng D., Xiao Q., Cui J., Chen C., Zeng J., Chen Q., & Zhou X. (2020). Short-term numerosity training promotes symbolic arithmetic in children with developmental dyscalculia: The mediating role of visual form perception. Developmental Science, 23(4), e12910. |
[12] |
Chen Q. X., & Li J. G. (2014). Association between individual differences in non-symbolic number acuity and math performance: A meta-analysis. Acta Psychologica, 148, 163-172.
doi: 10.1016/j.actpsy.2014.01.016 URL |
[13] |
Chu F. W., Vanmarle K., & Geary D. C. (2015). Early numerical foundations of young children's mathematical development. Journal of Experimental Child Psychology, 132, 205-212.
doi: 10.1016/j.jecp.2015.01.006 URL |
[14] |
Clark C. A. C., Pritchard V. E., & Woodward L. J. (2010). Preschool executive functioning abilities predict early mathematics achievement. Developmental Psychology, 46 (5), 1176-1191.
doi: 10.1037/a0019672 URL |
[15] |
Clayton S., Gilmore C., & Inglis M. (2015). Dot comparison stimuli are not all alike: The effect of different visual controls on ANS measurement. Acta Psychologica, 161, 177-184.
doi: 10.1016/j.actpsy.2015.09.007 pmid: 26408864 |
[16] | Cui J., Zhang Y., Cheng D., Li D., & Zhou X. (2017). Visual form perception can be a cognitive correlate of lower level math categories for teenagers. Frontiers in Psychology, 8, 1336. |
[17] |
Cui J., Zhang Y., Wan S., Chen C., Zeng J., & Zhou X. (2019). Visual form perception is fundamental for both reading comprehension and arithmetic computation. Cognition, 189, 141-154.
doi: 10.1016/j.cognition.2019.03.014 URL |
[18] | Dakin S. C., Tibber M. S., Greenwood J. A., Kingdom F. A. A., & Morgan M. J. (2011). A common visual metric for approximate number and density. Proceedings of the National Academy of Sciences of the United States of America, 108(49), 19552-19557. |
[19] |
Defever E., Reynvoet B., & Gebuis T. (2013). Task- and age-dependent effects of visual stimulus properties on children᾽s explicit numerosity judgments. Journal of Experimental Child Psychology, 116(2), 216-233.
doi: 10.1016/j.jecp.2013.04.006 pmid: 23860419 |
[20] |
Dehaene S., Dehaene-Lambertz G., & Cohen L. (1998). Abstract representations of numbers in the animal and human brain. Trends in Neurosciences, 21(8), 355-361.
pmid: 9720604 |
[21] |
Desco M., Navas-Sanchez F. J., Sanchez-Gonzalez J., Reig S., Robles O., Franco C., Guzman-De-Villoria J. A., Garcia- Barreno P., & Arango C. (2011). Mathematically gifted adolescents use more extensive and more bilateral areas of the fronto-parietal network than controls during executive functioning and fluid reasoning tasks. NeuroImage, 57(1), 281-292.
doi: 10.1016/j.neuroimage.2011.03.063 URL |
[22] |
de Smedt B., Noël M.-P., Gilmore C., & Ansari D. (2013). How do symbolic and non-symbolic numerical magnitude processing skills relate to individual differences in children's mathematical skills? A review of evidence from brain and behavior. Trends in Neuroscience and Education, 2(2), 48-55.
doi: 10.1016/j.tine.2013.06.001 URL |
[23] |
DeWind N. K., Park J., Woldorff M. G., & Brannon E. M. (2019). Numerical encoding in early visual cortex. Cortex, 114, 76-89.
doi: 10.1016/j.cortex.2018.03.027 URL |
[24] | Ekstrom R. B., French J. W., Harman H. H., & Dermen D. (1976). Manual for kit of factor-referenced cognitive tests. Princeton, NJ: Educational Testing Service. |
[25] |
Espy K. A., McDiarmid M. M., Cwik M. F., Stalets M. M., Hamby A., & Senn T. E. (2004). The contribution of executive functions to emergent mathematic skills in preschool children. Developmental Neuropsychology, 26(1), 465-486.
doi: 10.1207/s15326942dn2601_6 URL |
[26] |
Feigenson L., Dehaene S., & Spelke E. (2004). Core systems of number. Trends in Cognitive Sciences, 8(7), 307-314.
pmid: 15242690 |
[27] |
Fuhs M. W., Hornburg C. B., & McNeil N. M. (2016). Specific early number skills mediate the association between executive functioning skills and mathematics achievement. Developmental Psychology, 52(8), 1217-1235.
doi: 10.1037/dev0000145 URL |
[28] |
Fuhs M. W., & McNeil N. M. (2013). ANS acuity and mathematics ability in preschoolers from low-income homes: Contributions of inhibitory control. Developmental Science, 16(1), 136-148.
doi: 10.1111/desc.12013 URL |
[29] |
Gebuis T., & Reynvoet B. (2012). Continuous visual properties explain neural responses to non-symbolic number. Psychophysiology, 49(11), 1649-1659.
doi: 10.1111/j.1469-8986.2012.01461.x URL |
[30] |
Gebuis T., & Reynvoet B. (2014). The neural mechanism underlying ordinal numerosity processing. Journal of Cognitive Neuroscience, 26(5), 1013-1020.
doi: 10.1162/jocn_a_00541 pmid: 24345168 |
[31] | Gilmore C., Attridge N., Clayton S., Cragg L., Johnson S., Marlow N., Simms V., & Inglis M. (2013). Individual differences in inhibitory control, not non-verbal number acuity, correlate with mathematics achievement. PloS ONE, 8(6), e67374. |
[32] |
Gilmore C. K., McCarthy S. E., & Spelke E. S. (2010). Non- symbolic arithmetic abilities and mathematics achievement in the first year of formal schooling. Cognition, 115(3), 394- 406.
doi: 10.1016/j.cognition.2010.02.002 URL |
[33] |
Guillaume M., Nys J., Mussolin C., & Content A. (2013). Differences in the acuity of the approximate number system in adults: The effect of mathematical ability. Acta Psychologica, 144(3), 506-512.
doi: 10.1016/j.actpsy.2013.09.001 pmid: 24096088 |
[34] |
Halberda J., Ly R., Wilmer J. B., Naiman D. Q., & Germine L. (2012). Number sense across the lifespan as revealed by a massive Internet-based sample. Proceedings of the National Academy of Sciences of the United States of America, 109(28), 11116-11120.
doi: 10.1073/pnas.1200196109 pmid: 22733748 |
[35] |
Halberda J., Mazzocco M. M., & Feigenson L. (2008). Individual differences in non-verbal number acuity correlate with maths achievement. Nature, 455(7213), 665-668.
doi: 10.1038/nature07246 URL |
[36] |
Hauser M. D., Carey S., & Hauser L. B. (2000). Spontaneous number representation in semi-free-ranging rhesus monkeys. Proceedings. Biological Sciences, 267(1445), 829-833.
doi: 10.1098/rspb.2000.1078 URL |
[37] |
Henik A., Gliksman Y., Kallai A., & Leibovich T. (2017). Size perception and the foundation of numerical processing. Current Directions in Psychological Science, 26(1), 45- 51.
doi: 10.1177/0963721416671323 URL |
[38] |
Holloway I. D., & Ansari D. (2009). Mapping numerical magnitudes onto symbols: The numerical distance effect and individual differences in children’s mathematics achievement. Journal of Experimental Child Psychology, 103(1), 17-29.
doi: 10.1016/j.jecp.2008.04.001 pmid: 18513738 |
[39] |
Hyde D. C., Khanum S., & Spelke E. S. (2014). Brief non- symbolic, approximate number practice enhances subsequent exact symbolic arithmetic in children. Cognition, 131(1), 92-107.
doi: 10.1016/j.cognition.2013.12.007 URL |
[40] |
Inglis M., Attridge N., Batchelor S., & Gilmore C. (2011). Non-verbal number acuity correlates with symbolic mathematics achievement: But only in children. Psychonomic Bulletin & Review, 18(6), 1222-1229.
doi: 10.3758/s13423-011-0154-1 URL |
[41] |
Inglis M., & Gilmore C. (2014). Indexing the approximate number system. Acta Psychologica, 145, 147-155.
doi: 10.1016/j.actpsy.2013.11.009 URL |
[42] |
Izard V., Dehaene-Lambertz G., & Dehaene S. (2008). Distinct cerebral pathways for object identity and number in human infants. PLoS Biology, 6(2), e11.
doi: 10.1371/journal.pbio.0060011 URL |
[43] | Katzin N., Katzin D., Rosén A., Henik A., & Salti M. (2020). Putting the world in mind: The case of mental representation of quantity. Cognition, 195, 104088. |
[44] | Keller L., & Libertus M. (2015). Inhibitory control may not explain the link between approximation and math abilities in kindergarteners from middle class families. Frontiers in Psychology, 6, 685. |
[45] |
Kolkman M. E., Kroesbergen E. H., & Leseman P. P. M. (2013). Early numerical development and the role of non- symbolic and symbolic skills. Learning and Instruction, 25, 95-103.
doi: 10.1016/j.learninstruc.2012.12.001 URL |
[46] | Korkman M., Kirk U., & Kemp S. (2007). NEPSY-II: Clinical and interpretive, manual. San Antonio, TX: The Psychological Corporation. |
[47] | Kuhl U., Friederici A. D., Skeide M. A., & Consortium L. (2020). Early cortical surface plasticity relates to basic mathematical learning. NeuroImage, 204, Article 116235. |
[48] |
Kuo L.-J., Li Y., Sadoski M., & Kim T.-J. (2014). Acquisition of Chinese characters: The effects of character properties and individual differences among learners. Contemporary Educational Psychology, 39(4), 287-300.
doi: 10.1016/j.cedpsych.2014.07.001 URL |
[49] |
Kurdek L. A., & Sinclair R. J. (2001). Predicting reading and mathematics achievement in fourth-grade children from kindergarten readiness scores. Journal of Educational Psychology, 93(3), 451-455.
doi: 10.1037/0022-0663.93.3.451 URL |
[50] |
Libertus M. E., Feigenson L., & Halberda J. (2011). Preschool acuity of the approximate number system correlates with school math ability. Developmental Science, 14(6), 1292-1300.
doi: 10.1111/j.1467-7687.2011.01080.x pmid: 22010889 |
[51] |
Libertus M. E., Feigenson L., & Halberda J. (2013). Is approximate number precision a stable predictor of math ability? Learning and Individual Differences, 25, 126-133.
pmid: 23814453 |
[52] |
Libertus M. E., Odic D., & Halberda J. (2012). Intuitive sense of number correlates with math scores on college- entrance examination. Acta Psychologica, 141(3), 373-379.
doi: 10.1016/j.actpsy.2012.09.009 pmid: 23098904 |
[53] |
Li M., Cheng D., Lu Y., & Zhou X. (2020). Neural association between non-verbal number sense and arithmetic fluency. Human Brain Mapping, 41(18), 5128-5140.
doi: 10.1002/hbm.25179 URL |
[54] |
Lindskog M., Winman A., & Juslin P. (2014). The association between higher education and approximate number system acuity. Frontiers in Psychology, 5, 462.
doi: 10.3389/fpsyg.2014.00462 pmid: 24904478 |
[55] |
Liu J., Zhang H., Chen C. S., Chen H., Cui J. X., & Zhou X. L. (2017). The neural circuits for arithmetic principles. NeuroImage, 147, 432-446.
doi: 10.1016/j.neuroimage.2016.12.035 URL |
[56] |
Lonnemann J., Linkersdorfer J., Hasselhorn M., & Lindberg S. (2011). Symbolic and non-symbolic distance effects in children and their connection with arithmetic skills. Journal of Neurolinguistics, 24(5), 583-591.
doi: 10.1016/j.jneuroling.2011.02.004 URL |
[57] |
Lourenco S. F., Bonny J. W., Fernandez E. P., & Rao S. (2012). Nonsymbolic number and cumulative area representations contribute shared and unique variance to symbolic math competence. Proceedings of the National Academy of Sciences of the United States of America, 109(46), 18737- 18742.
doi: 10.1073/pnas.1207212109 pmid: 23091023 |
[58] |
Lyons I. M., & Beilock S. L. (2011). Numerical ordering ability mediates the relation between number-sense and arithmetic competence. Cognition, 121(2), 256-261.
doi: 10.1016/j.cognition.2011.07.009 pmid: 21855058 |
[59] |
Malone S. A., Pritchard V. E., Heron-Delaney M., Burgoyne K., Lervag A., & Hulme C. (2019). The relationship between numerosity discrimination and arithmetic skill reflects the approximate number system and cannot be explained by inhibitory control. Journal of Experimental Child Psychology, 184, 220-231.
doi: 10.1016/j.jecp.2019.02.009 URL |
[60] |
Mazzocco M. M., Feigenson L., & Halberda J. (2011). Impaired acuity of the approximate number system underlies mathematical learning disability (dyscalculia). Child Development, 82(4), 1224-1237.
doi: 10.1111/j.1467-8624.2011.01608.x pmid: 21679173 |
[61] |
McCrink K., & Wynn K. (2004). Large-number addition and subtraction by 9-month-old infants. Psychological Science, 15(11), 776-781.
pmid: 15482450 |
[62] |
Meyer M. L., Salimpoor V. N., Wu S. S., Geary D. C., & Menon V. (2010). Differential contribution of specific working memory components to mathematics achievement in 2nd and 3rd graders. Learning and Individual Differences, 20(2), 101-109.
pmid: 21660238 |
[63] |
Milner A. D., Perrett D. I., Johnston R. S., Benson P. J., Jordan T. R., Heeley D. W., Bettucci D., Mortara F., Mutani R., & Terazzi E. (1991). Perception and action in 'visual form agnosia'. Brain, 114 (Pt 1B), 405-428.
doi: 10.1093/brain/114.1.405 URL |
[64] |
Mundy E., & Gilmore C. K. (2009). Children’s mapping between symbolic and nonsymbolic representations of number. Journal of Experimental Child Psychology, 103(4), 490-502.
doi: 10.1016/j.jecp.2009.02.003 URL |
[65] |
Mussolin C., Mejias S., & Noel M.-P. (2010). Symbolic and nonsymbolic number comparison in children with and without dyscalculia. Cognition, 115(1), 10-25.
doi: 10.1016/j.cognition.2009.10.006 URL |
[66] |
Norris J. E., Clayton S., Gilmore C., Inglis M., & Castronovo J. (2018). The measurement of approximate number system acuity across the lifespan is compromised by congruency effects. Quarterly Journal of Experimental Psychology, 72(5), 1037-1046.
doi: 10.1177/1747021818779020 URL |
[67] |
Odic D., Lisboa J. V., Eisinger R., Olivera M. G., Maiche A., & Halberda J. (2016). Approximate number and approximate time discrimination each correlate with school math abilities in young children. Acta Psychologica, 163, 17-26.
doi: 10.1016/j.actpsy.2015.10.010 URL |
[68] |
Park J., Bermudez V., Roberts R. C., & Brannon E. M. (2016). Non-symbolic approximate arithmetic training improves math performance in preschoolers. Journal of Experimental Child Psychology, 152, 278-293.
doi: 10.1016/j.jecp.2016.07.011 URL |
[69] |
Park J., & Brannon E. M. (2013). Training the approximate number system improves math proficiency. Psychological Science, 24(10), 2013-2019.
doi: 10.1177/0956797613482944 URL |
[70] |
Park J., & Brannon E. M. (2014). Improving arithmetic performance with number sense training: An investigation of underlying mechanism. Cognition, 133(1), 188-200.
doi: 10.1016/j.cognition.2014.06.011 URL |
[71] |
Piazza M., Facoetti A., Trussardi A. N., Berteletti I., Conte S., Lucangeli D., Dehaene S., & Zorzi M. (2010). Developmental trajectory of number acuity reveals a severe impairment in developmental dyscalculia. Cognition, 116(1), 33-41.
doi: 10.1016/j.cognition.2010.03.012 URL |
[72] |
Picon E., Dramkin D., & Odic D. (2019). Visual illusions help reveal the primitives of number perception. Journal of Experimental Psychology: General, 148(10), 1675-1687.
doi: 10.1037/xge0000553 URL |
[73] |
Polspoel B., Peters L., Vandermosten M., & de Smedt B. (2017). Strategy over operation: Neural activation in subtraction and multiplication during fact retrieval and procedural strategy use in children. Human Brain Mapping, 38(9), 4657-4670.
doi: 10.1002/hbm.23691 pmid: 28626967 |
[74] |
Price G. R., Holloway I., Räsänen P., Vesterinen M., & Ansari D. (2007). Impaired parietal magnitude processing in developmental dyscalculia. Current Biology, 17(24), R1042-R1043.
doi: 10.1016/j.cub.2007.10.013 URL |
[75] |
Price G. R., Palmer D., Battista C., & Ansari D. (2012). Nonsymbolic numerical magnitude comparison: Reliability and validity of different task variants and outcome measures, and their relationship to arithmetic achievement in adults. Acta Psychologica, 140(1), 50-57.
doi: 10.1016/j.actpsy.2012.02.008 URL |
[76] | Qu C., Szkudlarek E., & Brannon E. M. (2021). Approximate multiplication in young children prior to multiplication instruction. Journal of Experimental Child Psychology, 207, 105-116. |
[77] |
Robinson K. M., & Dubé A. K. (2013). Children’s additive concepts: Promoting understanding and the role of inhibition. Learning and Individual Differences, 23, 101-107.
doi: 10.1016/j.lindif.2012.07.016 URL |
[78] |
Rosner J. (1973). Language arts and arithmetic achievement, and specifically related perceptual skills. American Educational Research Journal, 10(1), 59-68.
doi: 10.3102/00028312010001059 URL |
[79] |
Rourke B. P., & Finlayson M. A. J. (1978). Neuropsychological significance of variations in patterns of academic performance: Verbal and visual-spatial abilities. Journal of Abnormal Child Psychology, 6(1), 121-133.
pmid: 632453 |
[80] |
Salthouse T. A., & Coon V. E. (1994). Interpretation of differential deficits: The case of aging and mental arithmetic. Journal of Experimental Psychology: Learning, Memory, and Cognition, 20(5), 1172-1182.
doi: 10.1037/0278-7393.20.5.1172 URL |
[81] | Schneider M., Beeres K., Coban L., Merz S., Schmidt S., Stricker J., & Smedt B. D. (2017). Associations of non- symbolic and symbolic numerical magnitude processing with mathematical competence: A meta-analysis. Developmental Science, 20(3), e12372. |
[82] | Schneider W. J., & Mcgrew K. S. (2012). The Cattell- Horn-Carroll model of intelligence. Contemporary intellectual assessment: Theories, tests, and issues. The Guilford Press. |
[83] |
Sigmundsson H., Anholt S. K., & Talcott J. B. (2010). Are poor mathematics skills associated with visual deficits in temporal processing? Neuroscience Letters, 469(2), 248- 250.
doi: 10.1016/j.neulet.2009.12.005 pmid: 19995594 |
[84] | Starr A., Libertus M. E., & Brannon E. M. (2013). Number sense in infancy predicts mathematical abilities in childhood. Proceedings of the National Academy of Sciences of the United States of America, 110(45), 18116-18120. |
[85] |
Suárez-Pellicioni M., & Booth J. R. (2018). Fluency in symbolic arithmetic refines the approximate number system in parietal cortex. Human Brain Mapping, 39(10), 3956- 3971.
doi: 10.1002/hbm.24223 pmid: 30024084 |
[86] |
Tibber M. S., Greenwood J. A., & Dakin S. C. (2012). Number and density discrimination rely on a common metric: Similar psychophysical effects of size, contrast, and divided attention. Journal of Vision, 12(6), 8.
doi: 10.1167/12.6.8 pmid: 22665458 |
[87] |
Tinelli F., Anobile G., Gori M., Aagten-Murphy D., Bartoli M., Burr D. C., Cioni G., & Morrone M. C. (2015). Time, number and attention in very low birth weight children. Neuropsychologia, 73, 60-69.
doi: 10.1016/j.neuropsychologia.2015.04.016 URL |
[88] | Tokita M., & Ishiguchi A. (2013). Effects of perceptual variables on numerosity comparison in 5-6-year-olds and adults. Frontiers in Psychology, 4, 431. |
[89] |
van Marle K., Chu F. W., Li Y., & Geary D. C. (2014). Acuity of the approximate number system and preschoolers᾽ quantitative development. Developmental Science, 17(4), 492-505.
doi: 10.1111/desc.12143 URL |
[90] |
Vansteensel M. J., Bleichner M. G., Freudenburg Z. V., Hermes D., Aarnoutse E. J., Leijten F. S. S., Ferrier C. H., Jansma J. M., & Ramsey N. F. (2014). Spatiotemporal characteristics of electrocortical brain activity during mental calculation. Human Brain Mapping, 35(12), 5903- 5920.
doi: 10.1002/hbm.22593 pmid: 25044370 |
[91] |
Viarouge A., Houde O., & Borst G. (2019). Evidence for the role of inhibition in numerical comparison: A negative priming study in 7- to 8-year-olds and adults. Journal of Experimental Child Psychology, 186, 131-141.
doi: S0022-0965(19)30028-1 pmid: 31254911 |
[92] |
Wang C. J., Xu T. Y., Geng F. J., Hu Y. Z., Wang Y. Q., Liu H. F., & Chen F. Y. (2019). Training on abacus-based mental calculation enhances visuospatial working memory in children. Journal of Neuroscience, 39(33), 6439-6448.
doi: 10.1523/JNEUROSCI.3195-18.2019 URL |
[93] |
Wang L., Sun Y., & Zhou X. (2016). Relation between approximate number system acuity and mathematical achievement: The influence of fluency. Frontiers in Psychology, 7, 1966.
doi: 10.3389/fpsyg.2016.01966 pmid: 28066291 |
[94] |
Wang L., Tasi H., & Yang H. (2012). Cognitive inhibition in students with and without dyslexia and dyscalculia. Research in Developmental Disabilities, 33(5), 1453- 1461.
doi: 10.1016/j.ridd.2012.03.019 URL |
[95] | Wilkey E. D., & Ansari D. (2020). Challenging the neurobiological link between number sense and symbolic numerical abilities. Annals of the New York Academy of Sciences, 1464(1), 76-98. |
[96] |
Xu F. (2003). Numerosity discrimination in infants: Evidence for two systems of representations. Cognition, 89(1), B15-B25.
doi: 10.1016/S0010-0277(03)00050-7 URL |
[97] |
Xu F., & Spelke E. S. (2000). Large number discrimination in 6-month-old infants. Cognition, 74(1), B1-b11.
doi: 10.1016/s0010-0277(99)00066-9 pmid: 10594312 |
[98] | Zhang H., Wee C. Y., Poh J. S., Wang Q., Shek L. P., Chong Y. S., Fortier M. V., Meaney M. J., Broekman B., & Qiu A. (2019). Fronto-parietal numerical networks in relation with early numeracy in young children. Brain Structure & Function, 224(1), 263-275. |
[99] |
Zhang Y., Chen C., Liu H., Cui J., & Zhou X. (2016). Both non-symbolic and symbolic quantity processing are important for arithmetical computation but not for mathematical reasoning. Journal of Cognitive Psychology, 28(7), 807-824.
doi: 10.1080/20445911.2016.1205074 URL |
[100] |
Zhang Y., Liu T., Chen C., & Zhou X. (2019). Visual form perception supports approximate number system acuity and arithmetic fluency. Learning and Individual Differences, 71, 1-12.
doi: 10.1016/j.lindif.2019.02.008 URL |
[101] |
Zhou X., Chen C., Zang Y., Dong Q., Chen C., Qiao S., & Gong Q. (2007). Dissociated brain organization for single- digit addition and multiplication. Neuroimage, 35(2), 871- 880.
doi: 10.1016/j.neuroimage.2006.12.017 URL |
[102] | Zhou X., & Cheng D. (2015). When and why numerosity processing is associated with developmental dyscalculia. In S. Chinn (Ed.), The Routledge international handbook of dyscalculia and mathematical learning difficulties (pp. 78-89). New York: Routledge. |
[103] |
Zhou X., Hu Y., Yuan L., Gu T., & Li D. (2020). Visual form perception predicts 3-year longitudinal development of mathematical achievement. Cognitive Processing, 21(4), 521-532.
doi: 10.1007/s10339-020-00980-w URL |
[104] | Zhou X., Wei W., Zhang Y., Cui J., & Chen C. (2015). Visual perception can account for the close relation between numerosity processing and computational fluency. Frontiers in Psychology, 6, 1364. |
[1] | 梁笑, 康静梅, 王丽娟. 个体近似数量系统与其数学能力之间的关系:发展研究的证据[J]. 心理科学进展, 2021, 29(5): 827-837. |
[2] | 李红霞;司继伟;陈泽建;张堂正. 人类的近似数量系统[J]. 心理科学进展, 2015, 23(4): 562-570. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||