ISSN 1671-3710
CN 11-4766/R
主办:中国科学院心理研究所
出版:科学出版社

心理科学进展 ›› 2015, Vol. 23 ›› Issue (11): 1879-1885.doi: 10.3724/SP.J.1042.2015.01879

• 研究构想 • 上一篇    下一篇

基于多传感器数据的航空管制员情境意识的计算

周 勇1;曾 艳2;杨家忠1;石 荣1;王泉川1   

  1. (1中国民航飞行学院航空人因与工效学实验室, 广汉 618307)
    (2中国民航飞行学院计算机学院, 广汉 618307)
  • 收稿日期:2014-09-09 出版日期:2015-11-15 发布日期:2015-11-15
  • 通讯作者: 杨家忠, E-mail: jiazhongyang@msn.com
  • 基金资助:

    国家自然科学基金项目(31300853, 31070915)。

A Computational Approach to Air Traffic Controller Situation Awareness Based on Multi-sensor Data

ZHOU Yong1; ZENG Yan2; YANG Jiazhong1; SHI Rong1; WANG Quangchuan1   

  1. (1 Aviation Human Factors and Ergonomics Lab, Civil Aviation Flight College of China, Guanghan 618307, China)
    (2 Department of Computer Science, Civil Aviation Flight College of China, Guanghan 618307, China)
  • Received:2014-09-09 Online:2015-11-15 Published:2015-11-15
  • Contact: YANG Jiazhong, E-mail: jiazhongyang@msn.com

摘要:

航空管制人员保持良好的情境意识是确保空中交通以安全、高效方式运行的必要条件。如果在管制员工作过程中, 能准确监测其情境意识状态, 并在情境意识丧失前给予及时告警, 那么将会极大地提高管制绩效和减少空中两机相撞的概率。目前, 国外评价管制员情境意识的方法虽然不少, 但这些方法基本都是诊断性质和回溯性质的, 无法对管制员的情境意识进行监测或预警。管制员的情境意识受个体差异、任务等多种因素的影响, 同时, 其也可以由某些指标来表征, 如某些作业绩效指标和生理指标。为了能够实现对航空管制员情境意识的准确监控及告警, 拟通过雷达管制模拟实验、心理测量、专家评定等方法采集多传感器数据, 分别建立基于表征指标和基于影响变量的情境意识计算模型, 并比较其预测性能。该研究结果可为管制员情境意识的实时监测提供支持。

关键词: 情境意识, 多传感器数据, 实时人因工程, 航空管制员, 人的因素

Abstract:

Good situation awareness (SA) is highly important for air traffic controllers (ATCos) to maintain the safe, orderly and expeditious flow of air traffic. If ATCos’ situation awareness can be accurately monitored and alerted before it has been lost, it will be highly possible to improve ATCos’ performance and prevent accidents. At present, many ways exist to evaluate ATCos’ situation awareness, but they are basically diagnostic and retrospective methods, early warning and forecasting cannot be achieved. ATCos’ situation awareness could be affected by many factors, but it can be demonstrated by some performance and physiological indicators. In order to improve the prediction accuracy of SA, multi-sensor data which are relevant to ATCos’ situation awareness will be collected by radar control simulation experiment, psychological measurement, and expert ratings. The ultimate aim of the research is to establish SA computational models by two different approaches, which address demonstration indicators and contributing variables of the above multi-sensor data respectively. An evaluation of the two prediction Models will also be made. The research results are expected to provide supports for monitoring ATCos’ situation awareness.

Key words: situation awareness, multi-sensor data, real-time human factor engineering, air traffic controllers, human factors