ISSN 1671-3710
CN 11-4766/R
主办:中国科学院心理研究所
出版:科学出版社

• •    

字母位置编码的模型对比及其效应解释

李璜夏, 陈新炜, 药盼盼   

  • 收稿日期:2024-08-26 修回日期:2024-12-04 接受日期:2024-12-17
  • 基金资助:
    中外语言交流合作中心国际中文教育研究课题(23YH33B)

Comparison of Models in Letter Position Encoding

  • Received:2024-08-26 Revised:2024-12-04 Accepted:2024-12-17

摘要: 在视觉词汇识别过程中,字母的位置信息发挥了重要的作用。过去几十年间,关于字母位置编码的研究极大地推动了各种理论框架的发展,这些理论旨在解释不同的实验效应及其背后的认知加工机制。文章系统介绍了关于字母位置编码的六个理论模型,包括重叠模型(the Overlap Model)、开放双字母组模型(the Open-Bigram Model)、序列编码模型(the SERIOL Model)、空间编码模型(the Spatial Coding Model)、贝叶斯读者模型(the Bayesian Reader)以及N-字母组位置编码模型(PONG: the Positional Ordering of N-Grams)。这些模型涵盖了从重叠编码到序列和空间编码等不同的认知加工机制,代表了字母位置编码领域中的重要理论框架。文章从模型结构、理论基础、词汇识别逻辑、跨语言适应性解释以及常见效应解释等方面进行对比分析,并且对模型尚未能解释的效应进行了总结。基于对这些模型的分析总结,未来模型建构可以整合更多实证研究结果以及不同类型的实验数据,以增强模型解释力度。此外,考虑到跨语言因素以及第二语言的研究成果,探究字母位置加工及相关模型的跨语言一致性将是一个有价值的研究方向。

关键词: 字母位置编码模型, 词汇识别, 转置效应, 模型对比

Abstract: Letter position information plays a crucial role in visual word recognition. Over the past decades, research on letter position encoding has significantly advanced various theoretical frameworks to explain experimental findings and their underlying cognitive mechanisms. This article systematically introduces six major computational models of letter position encoding, including the Overlap Model, the Open-bigram Model, the SERIOL Model, the Spatial Coding Model, the Bayesian Reader, and the Positional Ordering of N-Grams (PONG) Model. These models encompass various cognitive processing mechanisms, ranging from overlap encoding to sequence and spatial encoding, and represent important theoretical frameworks in the field of letter position encoding. We compare these models in terms of their structures, theoretical foundations, lexical recognition logic, cross-linguistic adaptability explanations, and explanations of some common effects. Additionally, this article highlights the limitations of these models by summarizing the impacts they failed to explain. Based on these comparisons, future model development could benefit from integrating more empirical research findings and diverse types of experimental data to enhance explanatory power. Furthermore, considering cross-linguistic factors and the findings from second language studies, further explorations of cross-linguistic consistency will be a valuable direction for future research.

Key words: computational models of letter position encoding, word recognition, transposition effect, model comparison