心理科学进展 ›› 2023, Vol. 31 ›› Issue (12): 2337-2349.doi: 10.3724/SP.J.1042.2023.02337
收稿日期:
2023-03-23
出版日期:
2023-12-15
发布日期:
2023-09-11
通讯作者:
王伟军, E-mail: wangwj@ccnu.edu.cn
基金资助:
DONG Wanghao1, WANG Weijun1(), WANG Xingchao2, LI Wenqing3
Received:
2023-03-23
Online:
2023-12-15
Published:
2023-09-11
摘要:
短视频沉迷是一种个体因强迫性观看短视频, 导致明显的行为失控或注意力障碍, 并进一步造成人际、学习和/或工作适应困难的问题行为。随着短视频用户规模不断扩大与低龄化趋势, 短视频沉迷对用户身心健康的威胁引起了广泛关注。基于人机互动视角, 首先, 将短视频使用划分为“工具性”与“仪式性”两类。其次, 通过考量人机交互过程和用户易感特征, 构建了短视频沉迷的发生机制框架。最后, 从认知、情绪、动机和社会角度对短视频沉迷进行理论阐释。未来研究应重视短视频沉迷的发生机制, 关注引发沉迷的媒介特性与技术属性, 致力于促进短视频沉迷的预防与治理。
中图分类号:
董王昊, 王伟军, 王兴超, 李文清. (2023). 人机互动视角下短视频沉迷的发生机制. 心理科学进展 , 31(12), 2337-2349.
DONG Wanghao, WANG Weijun, WANG Xingchao, LI Wenqing. (2023). The occurrence mechanism of short video indulgence from the perspective of human-computer interaction. Advances in Psychological Science, 31(12), 2337-2349.
[1] | 崔妍. (2023-04-14). 合力防范青少年短视频沉迷. 人民日报. http://gd.people.com.cn/n2/2023/0414/c123932-40375947.html |
[2] | 方勇, 季为民, 沈杰, 杨斌艳, 季琳, 叶俊. (2022). 青少年蓝皮书:中国未成年人互联网运用报告(2022). 社会科学文献出版社. |
[3] | 李霞, 秦浩轩, 曾美红, 何玉雪, 马梦珍. (2021). 大学生短视频成瘾症状与人格的关系. 中国心理卫生杂志, 35(11), 925-928. |
[4] | 刘庆奇, 牛更枫, 范翠英, 周宗奎. (2017). 被动性社交网站使用与自尊和自我概念清晰性: 有调节的中介模型. 心理学报, 49(1), 60-71. |
[5] | 罗光福. (2022). 大学生短视频成瘾量表的编制与应用 (硕士学位论文). 长江大学, 湖北荆州. |
[6] | 毛峥, 姜永志. (2022). 神经质人格对问题性短视频使用的影响:孤独感和无聊倾向的链式中介作用. 中国健康心理学杂志, 31(3), 440-446. |
[7] | 秦浩轩. (2020). 大学生短视频成瘾的影响机制及干预对策研究(硕士学位论文). 江西科技师范大学, 南昌. |
[8] | QuestMobile. (2023). 中国移动互联网年度大报告. https://www.questmobile.com.cn/research/report/1627881652360417282 |
[9] | 威尔伯·施拉姆. (1984). 传播学概论 (陈亮等 译) (p.114). 新华出版社. |
[10] |
严万森, 刘苏姣, 张冉冉, 徐鹏. (2021). 强迫性特征在药物成瘾行为中的易感性及其前额叶-反奖赏系统神经基础. 心理科学进展, 29(8), 1345-1357.
doi: 10.3724/SP.J.1042.2021.01345 |
[11] | 张锦涛, 陈超, 刘凤娥, 邓林园, 方晓义. (2012). 同伴网络过度使用行为和态度、网络使用同伴压力与大学生网络成瘾的关系. 心理发展与教育, (6), 634-640. |
[12] | 中国互联网络信息中心(CNNIC). (2022). 第51次中国互联网络发展状况统计报告. https://www.cnnic.net.cn/NMediaFile/2023/0807/MAIN169137187130308PEDV637M.pdf |
[13] | Alvarez-Monjaras, M., Mayes, L. C., Potenza, M. N., & Rutherford, H. J. (2019). A developmental model of addictions: Integrating neurobiological and psychodynamic theories through the lens of attachment. Attachment & Human Development, 21(6), 616-637. |
[14] |
Bakshy, E., Messing, S., & Adamic, L. A. (2015). Exposure to ideologically diverse news and opinion on Facebook. Science, 348(6239), 1130-1132.
doi: 10.1126/science.aaa1160 pmid: 25953820 |
[15] |
Baym, N. K., Zhang, Y. B., & Lin, M. C. (2004). Social interactions across media: Interpersonal communication on the internet, telephone and face-to-face. New Media & Society, 6(3), 299-318.
doi: 10.1177/1461444804041438 URL |
[16] | Bhandari, A., & Bimo, S. (2020). TikTok and the “algorithmized self”: A new model of online interaction. AoIR Selected Papers of Internet Research. 10.5210/spir.v2020i0.11172. |
[17] |
Bobadilla, J., Ortega, F., Hernando, A., & Gutiérrez, A. (2013). Recommender systems survey. Knowledge-Based Systems, 46, 109-132.
doi: 10.1016/j.knosys.2013.03.012 URL |
[18] |
Boczkowski, P. J., Matassi, M., & Mitchelstein, E. (2018). How young users deal with multiple platforms: The role of meaning-making in social media repertoires. Journal of Computer-mediated Communication, 23(5), 245-259.
doi: 10.1093/jcmc/zmy012 URL |
[19] |
Brand, M., Wegmann, E., Stark, R., Müller, A., Wölfling, K., Robbins, T. W., & Potenza, M. N. (2019). The Interaction of Person-Affect-Cognition-Execution (I-PACE) model for addictive behaviors: Update, generalization to addictive behaviors beyond internet-use disorders, and specification of the process character of addictive behaviors. Neuroscience & Biobehavioral Reviews, 104, 1-10.
doi: 10.1016/j.neubiorev.2019.06.032 URL |
[20] |
Brand, M., Young, K. S., Laier, C., Wölfling, K., & Potenza, M. N. (2016). Integrating psychological and neurobiological considerations regarding the development and maintenance of specific Internet-use disorders: An Interaction of Person-Affect-Cognition-Execution (I-PACE) model. Neuroscience & Biobehavioral Reviews, 71, 252-266.
doi: 10.1016/j.neubiorev.2016.08.033 URL |
[21] | Chaney, A. J., Stewart, B. M., & Engelhardt, B. E. (2018, September). How algorithmic confounding in recommendation systems increases homogeneity and decreases utility. Proceedings of the 12th ACM conference on recommender systems (pp. 224-232). https://dl.acm.org/doi/abs/10.1145/3240323.3240370 |
[22] |
Chen, W., Fan, C. Y., Liu, Q. X., Zhou, Z. K., & Xie, X. C. (2016). Passive social network site use and subjective well-being: A moderated mediation model. Computers in Human Behavior, 64, 507-514.
doi: 10.1016/j.chb.2016.04.038 URL |
[23] | Chen, Y., Li, M., Guo, F., & Wang, X. (2022). The effect of short-form video addiction on users’ attention. Behaviour & Information Technology. Advance online publication. DOI: 10.1080/0144929X.2022.2151512 |
[24] | Chou, T. J., & Ting, C. C. (2003). The role of flow experience in cyber-game addiction. CyberPsychology & Behavior, 6(6), 663-675. |
[25] | Cinelli, M., de Francisci Morales, G., Galeazzi, A., Quattrociocchi, W., & Starnini, M. (2021). The echo chamber effect on social media. Proceedings of the National Academy of Sciences, 118(9), e2023301118. |
[26] | Czikszentmihalyi, M. (1990). Flow: The psychology of optimal experience (pp. 75-77). New York: Harper & Row. |
[27] |
de Neys, W., & Glumicic, T. (2008). Conflict monitoring in dual process theories of thinking. Cognition, 106(3), 1248-1299.
pmid: 17631876 |
[28] |
Doñamayor, N., Ebrahimi, C., Garbusow, M., Wedemeyer, F., Schlagenhauf, F., & Heinz, A. (2021). Instrumental and pavlovian mechanisms in alcohol use disorder. Current Addiction Reports, 8, 156-180.
doi: 10.1007/s40429-020-00333-9 |
[29] |
Dong, W., Li, S., & Wang, X. (2022). Parental phubbing and chinese adolescents’ SNSs addiction: Loneliness as a mediator and self-esteem as a moderator. Current Psychology, 42, 16560-16572.
doi: 10.1007/s12144-022-04066-y |
[30] |
Elahi, M., Jannach, D., Skjærven, L., Knudsen, E., Sjøvaag, H., Tolonen, K.,... Trattner, C. (2022). Towards responsible media recommendation. AI and Ethics, 2(1), 103-114.
doi: 10.1007/s43681-021-00107-7 |
[31] |
Everitt, B. J., & Robbins, T. W. (2005). Neural systems of reinforcement for drug addiction: From actions to habits to compulsion. Nature Neuroscience, 8(11), 1481-1489.
doi: 10.1038/nn1579 pmid: 16251991 |
[32] | Fang, J., Wang, Z., & Hao, B. (2019). Analysis of “Anesthesia” Mechanism in Mobile Short Video Applications. The First International Symposium on Management and Social Sciences (ISMSS 2019) (pp. 348-351). Atlantis Press. |
[33] | Feng, Y., Li, L., & Zhao, A. (2022). A cognitive-emotional model from mobile short-form video addiction to intermittent discontinuance: The moderating role of neutralization. International Journal of Human-Computer Interaction. Advance online publication. DOI: 10.1080/10447318.2022.2147714 |
[34] |
Geschke, D., Lorenz, J., & Holtz, P. (2019). The triple-filter bubble: Using agent‐based modelling to test a meta- theoretical framework for the emergence of filter bubbles and echo chambers. British Journal of Social Psychology, 58(1), 129-149.
doi: 10.1111/bjso.12286 pmid: 30311947 |
[35] |
Griffiths, M. (2000). Internet addiction-time to be taken seriously? Addiction Research, 8(5), 413-418.
doi: 10.3109/16066350009005587 URL |
[36] |
Gillespie, N. A., Kendler, K. S., Prescott, C. A., Aggen, S. H., Gardner, C. O., Jr., Jacobson, K., & Neale, M. C. (2007). Longitudinal modeling of genetic and environmental influences on self-reported availability of psychoactive substances: Alcohol, cigarettes, marijuana, cocaine and stimulants. Psychological Medicine, 37(7), 947-959.
pmid: 17445283 |
[37] |
Gillespie, N. A., Neale, M. C., & Kendler, K. S. (2009). Pathways to cannabis abuse: A multi-stage model from cannabis availability, cannabis initiation and progression to abuse. Addiction, 104(3), 430-438.
doi: 10.1111/j.1360-0443.2008.02456.x pmid: 19207351 |
[38] |
Hahn, E., Reuter, M., Spinath, F. M., & Montag, C. (2017). Internet addiction and its facets: The role of genetics and the relation to self-directedness. Addictive Behaviors, 65, 137-146.
doi: S0306-4603(16)30375-6 pmid: 27816039 |
[39] | Henden, E. (2017). Addiction, compulsion, and weakness of the will:A dual-process perspective. In N. Heather & G. Segal (Eds.), Addiction and choice: Rethinking the relationship (pp. 116-132). Oxford, UK: Oxford University Press. |
[40] |
Hernández, C., Ottenberger, D. R., Moessner, M., Crosby, R. D., & Ditzen, B. (2019). Depressed and swiping my problems for later: The moderation effect between procrastination and depressive symptomatology on internet addiction. Computers in Human Behavior, 97, 1-9.
doi: 10.1016/j.chb.2019.02.027 URL |
[41] |
Ho, R. C., Zhang, M. W., Tsang, T. Y., Toh, A. H., Pan, F., Lu, Y.,... Mak, K. K. (2014). The association between internet addiction and psychiatric co-morbidity: A meta-analysis. BMC Psychiatry, 14(1), 1-10.
doi: 10.1186/1471-244X-14-1 URL |
[42] | Hogarth, L., Balleine, B. W., Corbit, L. H., & Killcross, S. (2013). Associative learning mechanisms underpinning the transition from recreational drug use to addiction. Annals of the New York Academy of Sciences, 1282(1), 12-24. |
[43] |
Hsu, W. Y., Lin, S. S., Chang, S. M., Tseng, Y. H., & Chiu, N. Y. (2015). Examining the diagnostic criteria for Internet addiction: Expert validation. Journal of the Formosan Medical Association, 114(6), 504-508.
doi: 10.1016/j.jfma.2014.03.010 URL |
[44] |
Huang, Q., Hu, M., & Zhang, N. (2022). A techno- psychological approach to understanding problematic use of short-form video applications: The role of flow. Frontiers in Psychology, 13, 971589.
doi: 10.3389/fpsyg.2022.971589 URL |
[45] |
Kang, I., Shin, M. M., & Park, C. (2013). Internet addiction as a manageable resource: A focus on social network services. Online Information Review, 37(1), 28-41.
doi: 10.1108/14684521311311612 URL |
[46] |
Katz, E., Blumler, J. G., & Gurevitch, M. (1973). Uses and gratifications research. The Public Opinion Quarterly, 37(4), 509-523.
doi: 10.1086/268109 URL |
[47] |
Kayiş, A. R., Satici, S. A., Yilmaz, M. F., Şimşek, D., Ceyhan, E., & Bakioğlu, F. (2016). Big five-personality trait and internet addiction: A meta-analytic review. Computers in Human Behavior, 63, 35-40.
doi: 10.1016/j.chb.2016.05.012 URL |
[48] |
Kennett, J., Matthews, S., & Snoek, A. (2013). Pleasure and addiction. Frontiers in Psychiatry, 4, 117.
doi: 10.3389/fpsyt.2013.00117 pmid: 24093020 |
[49] |
Koob, G. F., & Volkow, N. D. (2010). Neurocircuitry of addiction. Neuropsychopharmacology, 35(1), 217-238.
doi: 10.1038/npp.2009.110 pmid: 19710631 |
[50] |
Kwak, K. T., Choi, S. K., & Lee, B. G. (2014). SNS flow, SNS self-disclosure and post hoc interpersonal relations change: Focused on Korean Facebook user. Computers in Human Behavior, 31, 294-304.
doi: 10.1016/j.chb.2013.10.046 URL |
[51] |
Lavoie, R., & Zheng, Y. (2023). Smartphone use, flow and wellbeing: A case of Jekyll and Hyde. Computers in Human Behavior, 138, 107442.
doi: 10.1016/j.chb.2022.107442 URL |
[52] | Lee, Z. W., Cheung, C. M., & Chan, T. K. (2014). Explaining the development of the excessive use of massively multiplayer online games: A positive-negative reinforcement perspective. 2014 47th Hawaii International Conference on System Sciences (pp. 668-677). IEEE. |
[53] |
Lei, H., Li, S., Chiu, M. M., & Lu, M. (2018). Social support and Internet addiction among mainland Chinese teenagers and young adults: A meta-analysis. Computers in Human Behavior, 85, 200-209.
doi: 10.1016/j.chb.2018.03.041 URL |
[54] |
Leung, L. (2020). Exploring the relationship between smartphone activities, flow experience, and boredom in free time. Computers in Human Behavior, 103, 130-139.
doi: 10.1016/j.chb.2019.09.030 URL |
[55] |
Leung, L., & Chen, C. (2021). A review of media addiction research from 1991 to 2016. Social Science Computer Review, 39(4), 648-665.
doi: 10.1177/0894439318791770 URL |
[56] |
Li, S., Ren, P., Chiu, M. M., Wang, C., & Lei, H. (2021). The relationship between self-control and internet addiction among students: A meta-analysis. Frontiers in Psychology, 12, 735755.
doi: 10.3389/fpsyg.2021.735755 URL |
[57] | Liang, X. (2021). Research on how to perceive their behavior for international high school students based on using TikTok with semi-structured interview. 2021 6th International Conference on Social Sciences and Economic Development (ICSSED 2021) (pp. 796-799). Atlantis Press. |
[58] |
Lindgren, K. P., Hendershot, C. S., Ramirez, J. J., Bernat, E., Rangel-Gomez, M., Peterson, K. P., & Murphy, J. G. (2019). A dual process perspective on advances in cognitive science and alcohol use disorder. Clinical Psychology Review, 69, 83-96.
doi: S0272-7358(17)30400-2 pmid: 29680185 |
[59] |
Liu, C. C., & Chang, I. C. (2016). Model of online game addiction: The role of computer-mediated communication motives. Telematics and Informatics, 33(4), 904-915.
doi: 10.1016/j.tele.2016.02.002 URL |
[60] |
Liu, Y., Ni, X., & Niu, G. (2021). Perceived stress and short-form video application addiction: A moderated mediation model. Frontiers in Psychology, 12, 747656.
doi: 10.3389/fpsyg.2021.747656 URL |
[61] |
Lortie, C. L., & Guitton, M. J. (2013). Internet addiction assessment tools: Dimensional structure and methodological status. Addiction, 108(7), 1207-1216.
doi: 10.1111/add.12202 pmid: 23651255 |
[62] | Lu, X., & Lu, Z. (2019). Fifteen seconds of fame:A qualitative study of Douyin, a short video sharing mobile application in China. Social Computing and Social Media. Design, Human Behavior and Analytics: 11th International Conference, SCSM 2019, Held as Part of the 21st HCI International Conference, HCII 2019, Orlando, FL, USA, July 26-31, 2019, Proceedings, Part I 21 (pp. 233-244). Springer International Publishing. |
[63] |
Luigjes, J., Lorenzetti, V., de Haan, S., Youssef, G. J., Murawski, C., Sjoerds, Z.,... Yücel, M. (2019). Defining compulsive behavior. Neuropsychology Review, 29(1), 4-13.
doi: 10.1007/s11065-019-09404-9 pmid: 31016439 |
[64] |
Masciantonio, A., Bourguignon, D., Bouchat, P., Balty, M., & Rimé, B. (2021). Don’t put all social network sites in one basket: Facebook, Instagram, Twitter, TikTok, and their relations with well-being during the COVID-19 pandemic. PloS One, 16(3), e0248384.
doi: 10.1371/journal.pone.0248384 URL |
[65] | Michailidis, L., Balaguer-Ballester, E., & He, X. (2018). Flow and immersion in video games: The aftermath of a conceptual challenge. Frontiers in Psychology, 9, 393107. |
[66] |
Mu, H., Jiang, Q., Xu, J., & Chen, S. (2022). Drivers and consequences of short-form video (SFV) addiction amongst adolescents in China: Stress-coping theory perspective. International Journal of Environmental Research and Public Health, 19(21), 14173.
doi: 10.3390/ijerph192114173 URL |
[67] |
Nong, W., He, Z., Ye, J. H., Wu, Y. F., Wu, Y. T., Ye, J. N., & Sun, Y. (2023). The relationship between short video flow, addiction, serendipity, and achievement motivation among Chinese vocational school students: The post-epidemic era context. Healthcare, 11(4), 462.
doi: 10.3390/healthcare11040462 URL |
[68] | Omar, B., & Dequan, W. (2020). Watch, share or create: The influence of personality traits and user motivation on TikTok mobile video usage. International Association of Online Engineering. Retrieved October 21, 2022 from https://www.learntechlib.org/p/216454/ |
[69] |
Pan, W., Mu, Z., Zhao, Z., & Tang, Z. (2023). Female users' TikTok use and body image: Active versus passive use and social comparison processes. Cyberpsychology, Behavior, and Social Networking, 26(1), 3-10.
doi: 10.1089/cyber.2022.0169 URL |
[70] | Pearson, A. D., Young, C. M., Shank, F., & Neighbors, C. (2021). Flow mediates the relationship between problematic smartphone use and satisfaction with life among college students. Journal of American College Health, 71(4), 1018-1026. DOI: 10.1080/07448481.2021.1910274 |
[71] |
Qin, Y., Omar, B., & Musetti, A. (2022). The addiction behavior of short-form video app TikTok: The information quality and system quality perspective. Frontiers in Psychology, 13, 932805.
doi: 10.3389/fpsyg.2022.932805 URL |
[72] |
Rubin, A. M., & Perse, E. M. (1987). Audience activity and soap opera involvement: A uses and effects investigation. Human Communication Research, 14(2), 246-268.
doi: 10.1111/hcre.1987.14.issue-2 URL |
[73] |
Ryan, T., Chester, A., Reece, J., & Xenos, S. (2014). The uses and abuses of Facebook: A review of Facebook addiction. Journal of Behavioral Addictions, 3(3), 133-148.
doi: 10.1556/JBA.3.2014.016 pmid: 25317337 |
[74] | Saunders, C., & Over, D. E. (2009). In two minds about rationality. In: J. S. B. T. Evans & K. Frankish, (Eds.). In two minds: Dual processes and beyond (pp. 317-334). Oxford: New York. |
[75] |
Scherr, S., & Wang, K. (2021). Explaining the success of social media with gratification niches: Motivations behind daytime, nighttime, and active use of TikTok in China. Computers in Human Behavior, 124, 106893.
doi: 10.1016/j.chb.2021.106893 URL |
[76] |
Schneider, L. A., King, D. L., & Delfabbro, P. H. (2017). Family factors in adolescent problematic internet gaming: A systematic review. Journal of Behavioral Addictions, 6(3), 321-333.
doi: 10.1556/2006.6.2017.035 pmid: 28762279 |
[77] |
Seo, D., & Ray, S. (2019). Habit and addiction in the use of social networking sites: Their nature, antecedents, and consequences. Computers in Human Behavior, 99, 109-125.
doi: 10.1016/j.chb.2019.05.018 URL |
[78] |
Smith, T., & Short, A. (2022). Needs affordance as a key factor in likelihood of problematic social media use: Validation, latent profile analysis and comparison of TikTok and Facebook problematic use measures. Addictive Behaviors, 129, 107259.
doi: 10.1016/j.addbeh.2022.107259 URL |
[79] |
Solomon, R. L., & Corbit, J. D. (1974). An opponent-process theory of motivation: I. Temporal dynamics of affect. Psychological Review, 81(2), 119-145.
pmid: 4817611 |
[80] |
Su, C., Zhou, H., Gong, L., Teng, B., Geng, F., & Hu, Y. (2021). Viewing personalized video clips recommended by TikTok activates default mode network and ventral tegmental area. NeuroImage, 237, 118136.
doi: 10.1016/j.neuroimage.2021.118136 URL |
[81] |
Tao, R., Huang, X., Wang, J., Zhang, H., Zhang, Y. & Li, M. (2010). Proposed diagnostic criteria for internet addiction. Addiction, 105(3), 556-564.
doi: 10.1111/j.1360-0443.2009.02828.x pmid: 20403001 |
[82] | Tian, X., Bi, X., & Chen, H. (2023). How short-form video features influence addiction behavior? Empirical research from the opponent process theory perspective. Information Technology & People, 36(1), 387-408. |
[83] |
Turel, O., & Serenko, A. (2012). The benefits and dangers of enjoyment with social networking websites. European Journal of Information Systems, 21(5), 512-528.
doi: 10.1057/ejis.2012.1 URL |
[84] |
van Rooij, A., & Prause, N. (2014). A critical review of “Internet addiction” criteria with suggestions for the future. Journal of Behavioral Addictions, 3(4), 203-213.
doi: 10.1556/JBA.3.2014.4.1 URL |
[85] |
Volkow, N. D., Michaelides, M., & Baler, R. (2019). The neuroscience of drug reward and addiction. Physiological Reviews, 99(4), 2115-2140.
doi: 10.1152/physrev.00014.2018 pmid: 31507244 |
[86] | Wang, J., Sheng, J., & Wang, H. (2019). The association between mobile game addiction and depression, social anxiety, and loneliness. Frontiers in Public Health, 7, 476493. |
[87] |
Wang, Y. (2020). Humor and camera view on mobile short-form video apps influence user experience and technology-adoption intent, an example of TikTok (DouYin). Computers in Human Behavior, 110, 106373.
doi: 10.1016/j.chb.2020.106373 URL |
[88] |
Williams, R., & Edge, D. (1996). The social shaping of technology. Research Policy, 25(6), 865-899.
doi: 10.1016/0048-7333(96)00885-2 URL |
[89] |
Witmer, B. G., & Singer, M. J. (1998). Measuring presence in virtual environments: A presence questionnaire. Presence, 7(3), 225-240.
doi: 10.1162/105474698565686 URL |
[90] | Wu, L. (2020). Comparative analysis of video stories and user behaviors on WeChat and Tik Tok. 2020 3rd International Conference on Humanities Education and Social Sciences (ICHESS 2020) (pp. 329-333). Atlantis Press. |
[91] |
Wu, Y., Wang, X., Hong, S., Hong, M., Pei, M., & Su, Y. (2021). The relationship between social short-form videos and youth’s well-being: It depends on usage types and content categories. Psychology of Popular Media. 10(4), 467-477.
doi: 10.1037/ppm0000292 URL |
[92] |
Xu, X. Y., & Tayyab, S. M. U. (2021). How the intensity of the immersive experience impels the extent of Social Streaming App dependency? An empirical assessment with mediation and moderation effects. Telematics and Informatics, 63, 101661.
doi: 10.1016/j.tele.2021.101661 URL |
[93] |
Yang, S., Lu, Y., Wang, B., & Zhao, L. (2014). The benefits and dangers of flow experience in high school students’ internet usage: The role of parental support. Computers in Human Behavior, 41, 504-513.
doi: 10.1016/j.chb.2014.09.039 URL |
[94] |
Yao, N., Chen, J., Huang, S., Montag, C., & Elhai, J. D. (2023). Depression and social anxiety in relation to problematic TikTok use severity: The mediating role of boredom proneness and distress intolerance. Computers in Human Behavior, 145, 107751.
doi: 10.1016/j.chb.2023.107751 URL |
[95] |
Ye, J. H., Wu, Y. T., Wu, Y. F., Chen, M. Y., & Ye, J. N. (2022). Effects of short video addiction on the motivation and well-being of Chinese vocational college students. Frontiers in Public Health, 10, 847672.
doi: 10.3389/fpubh.2022.847672 URL |
[96] | Zea, Q., & Jung, H. (2019). Learning and sharing creative skills with short videos: A case study of user behavior in Tiktok and Bilibili. International Association of Societies of Design Research (IASDR), Design Revolution. |
[97] |
Zenone, M., Ow, N., & Barbic, S. (2021). TikTok and public health: A proposed research agenda. BMJ Global Health, 6(11), e007648.
doi: 10.1136/bmjgh-2021-007648 URL |
[98] |
Zhang, M., & Liu, Y. (2021). A commentary of TikTok recommendation algorithms in MIT Technology Review 2021. Fundamental Research, 1(6), 846-847.
doi: 10.1016/j.fmre.2021.11.015 URL |
[99] |
Zhang, N., Hazarika, B., Chen, K., & Shi, Y. (2023). A cross-national study on the excessive use of short-video applications among college students. Computers in Human Behavior, 145, 107752.
doi: 10.1016/j.chb.2023.107752 URL |
[100] |
Zhang, X., Wu, Y., & Liu, S. (2019). Exploring short-form video application addiction: Socio-technical and attachment perspectives. Telematics and Informatics, 42, 101243.
doi: 10.1016/j.tele.2019.101243 URL |
[101] | Zhao, Z. (2021). Analysis on the “Douyin (Tiktok) Mania” phenomenon based on recommendation algorithms. E3S Web of Conferences (Vol. 235, p. 03029). EDP Sciences. |
[102] |
Zhou, T. (2013). The effect of flow experience on user adoption of mobile TV. Behaviour and Information Technology, 32(3), 263-272.
doi: 10.1080/0144929X.2011.650711 URL |
[1] | 邓士昌, 林子涵, 陆昱谦, 李象千. 智能时代的新玩伴:儿童与机器人的互动特征及其对儿童发展的影响[J]. 心理科学进展, 2023, 31(12): 2319-2336. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||