心理科学进展 ›› 2023, Vol. 31 ›› Issue (9): 1665-1675.doi: 10.3724/SP.J.1042.2023.01665
收稿日期:
2021-11-17
出版日期:
2023-09-15
发布日期:
2023-05-31
通讯作者:
王立卉
E-mail:lihui.wang@sjtu.edu.cn
基金资助:
Received:
2021-11-17
Online:
2023-09-15
Published:
2023-05-31
Contact:
WANG Lihui
E-mail:lihui.wang@sjtu.edu.cn
摘要:
在反应控制的研究中, 长期以来的理论观点认为只有干扰当前目标的效应器会出现抑制效应。总结近年研究发现, 在反应控制过程中, 不仅干扰效应器出现了抑制效应, 与任务无关的效应器和任务要求效应器均出现了抑制效应; 与反应控制相关的抑制效应不仅仅局限于涉及反应冲突的任务, 而是广泛存在于涉及反应执行的任务, 即整个运动系统在多个情境下呈现抑制的全局性。双加工模型认为对不同效应器的抑制由不同脑区控制, 聚光灯模型则认为不同效应器的抑制源于同一个系统, 后者与计算神经科学领域的归一化模型一致。反应控制中抑制效应的全局性特征有助于从协同性和整体性的角度思考认知加工。同时, 当前研究对抑制效应全局性出现的条件也存在一些争论。未来研究应区分不同效应器, 结合计算模型阐明各效应器之间的协同作用机制、各效应器在运动皮层的计算机制, 以及这些机制异常与心理精神疾病人群反应控制失调的关系。
中图分类号:
王立卉. (2023). 反应控制中运动系统抑制效应的全局性:证据、机制和争论. 心理科学进展 , 31(9), 1665-1675.
WANG Lihui. (2023). The global Inhibitory effect within the motor system in response control: Evidence, mechanism and controversy. Advances in Psychological Science, 31(9), 1665-1675.
[1] |
胡传鹏, 孔祥祯, Wagenmakers, E. -J., Ly, A., 彭凯平. (2018). 贝叶斯因子及其在JASP中的实现. 心理科学进展, 26(6), 951-965.
doi: 10.3724/SP.J.1042.2018.00951 |
[2] |
苏波波, 郑美红. (2019). 物质相关线索对成瘾者反应抑制的影响. 心理科学进展, 27(11), 1863-1874.
doi: 10.3724/SP.J.1042.2019.01863 |
[3] | 王琰, 蔡厚德. (2010). 反应抑制的心理加工模型与神经机制. 心理科学进展, 18(2), 220-229. |
[4] |
赵鑫, 刘晓婷, 昝香怡, 周爱保. (2015). 吸烟对反应抑制的影响:证据、原因和争论. 心理科学进展, 23(6), 1031-1040.
doi: 10.3724/SP.J.1042.2015.01031 |
[5] | Aron, A. R. (2011). From reactive to proactive and selective control: Developing a richer model for stopping inappropriate responses. Biological Psychiatry, 69(12), e55-e68. |
[6] |
Aron, A. R., Herz, D. M., Brown, P., Forstmann, B. U., & Zaghloul, K.. (2016). Frontosubthalamic circuits for control of action and cognition. Journal of Neuroscience, 36(45), 11489-11495.
pmid: 27911752 |
[7] |
Aron, A. R. & Verbruggen, F. (2008). Stop the presses: Dissociating a selective from a global mechanism for stopping. Psychological Science, 19(11), 1146-1153.
doi: 10.1111/j.1467-9280.2008.02216.x pmid: 19076487 |
[8] |
Baca, S. M., Marin-Burgin, A., Wagenaar, D. A., & Kristan, W. B. Jr. (2008). Widespread inhibition proportional to excitation controls the gain of a leech behavioral circuit. Neuron, 57(2), 276-289.
doi: 10.1016/j.neuron.2007.11.028 pmid: 18215624 |
[9] |
Badry, R., Mima, T., Aso, T., Nakatsuka, M., Abe, M., Fathi, D., … Fukuyama, H. (2009). Suppression of human cortico-motoneuronal excitability during the stop-signal task. Clinical Neurophysiology, 120(9), 1717-1723.
doi: 10.1016/j.clinph.2009.06.027 pmid: 19683959 |
[10] |
Bari, A., & Robbins, T. W. (2013). Inhibition and impulsivity: Behavioral and neural basis of response control. Progress in Neurobiology, 108, 44-79.
doi: 10.1016/j.pneurobio.2013.06.005 pmid: 23856628 |
[11] |
Benikos, N., Johnstone, S. J., & Roodenrys, S. J. (2013). Short-term training in the Go/Nogo task: Behavioural and neural changes depend on task demands. International Journal of Psychophysiology, 87(3), 301-312.
doi: 10.1016/j.ijpsycho.2012.12.001 pmid: 23247193 |
[12] | Benjamin, D. J., Berger, J. O., Johannesson, M., Nosek, B. A., Wagenmakers, E. -J., Berk, R., … Johnson, V. E. (2018). Redefine statistical significance. Nature Human Behavior, 2(1), 6-10. |
[13] |
Bestmann, S., & Duque, J. (2016). Transcranial magnetic stimulation: Decomposing the processes underlying action preparation. The Neuroscientist, 22(4), 392-405.
doi: 10.1177/1073858415592594 URL |
[14] |
Bestmann, S., & Krakauer, J. W. (2015). The uses and interpretations of the motor-evoked potential for understanding behaviour. Experimental Brain Research, 233(3), 679-689.
doi: 10.1007/s00221-014-4183-7 pmid: 25563496 |
[15] |
Botvinick, M., & Braver, T. (2015). Motivation and cognitive control: From behavior to neural mechanism. Annual Reviews of Psychology, 66, 83-113.
doi: 10.1146/psych.2015.66.issue-1 URL |
[16] |
Boucher, L., Palmeri, T. J., Logan, G. D., & Schall, J. D. (2007). Inhibitory control in mind and brain: An interactive race model of countermanding saccades. Psychological Review, 114(2), 376-397.
doi: 10.1037/0033-295X.114.2.376 pmid: 17500631 |
[17] |
Bowley, C., Faricy, C., Hegarty, B., Johnstone, S. J., Smith, J. L., Kelly, P. J., & Rushby, J. A. (2013). The effects of inhibitory control training on alcohol consumption, implicit alcohol-related cognitions and brain electrical activity. International Journal of Psychophysiology, 89(3), 342-348.
doi: 10.1016/j.ijpsycho.2013.04.011 pmid: 23623953 |
[18] |
Braver, T. S. (2012). The variable nature of cognitive control: A dual mechanisms framework. Trends in Cognitive Sciences, 16(2), 106-113.
doi: 10.1016/j.tics.2011.12.010 pmid: 22245618 |
[19] |
Bundt, C., Abrahamse, E. L., Braem, S., Brass, M., & Notebaert, W. (2016). Reward anticipation modulates primary motor cortex excitability during task preparation. Neuroimage, 142, 483-488.
doi: S1053-8119(16)30320-2 pmid: 27397625 |
[20] | Cahart, M., Amad, A., Draper, S. B., Lowry, R. G., Marino, L., Carey, C., … Williams, S. C. R. (2022). The effect of learning to drum on behavior and brain function in autistic adolescents. Proceedings of National Academy of Sciences of the U. S. A., 119(23), Article e2106244119. https://doi.org/10.1073/pnas.2106244119 |
[21] | Cai, W., Oldenkamp, C. L., & Aron, A. R. (2012). Stopping speech suppresses the task-irrelevant hand. Brain & Language, 120(3), 412-415. |
[22] |
Carandini, M., & Heeger, D. J. (2012). Normalization as a canonical neural computation. Nature Reviews Neuroscience, 13, 51-62.
doi: 10.1038/nrn3136 |
[23] |
Chambers, C. D., Garavan, H., & Bellgrove, M. A. (2009). Insights into the neural basis of response inhibition from cognitive and clinical neuroscience. Neuroscience & Biobehavioral Reviews, 33(5), 631-646.
doi: 10.1016/j.neubiorev.2008.08.016 URL |
[24] |
Chance, F. S., Abbott, L. F., & Reyes, A. D. (2002). Gain modulation from background synaptic input. Neuron, 35(4), 773-782.
doi: 10.1016/s0896-6273(02)00820-6 pmid: 12194875 |
[25] |
Coxon, J. P., Stinear, C. M., & Byblow, W. D. (2006). Intracortical inhibition during volitional inhibition of prepared action. Journal of Neurophysiology, 95(6), 3371-3383.
doi: 10.1152/jn.01334.2005 pmid: 16495356 |
[26] | Denison, R. N., Carrasco, M., & Heeger, D. J. (2021). A dynamic normalization model of temporal attention. Nature Human Behavior, 5(12), 1674-1685. |
[27] |
Duque, J., Greenhouse, I., Labruna, L., & Ivry, R. B. (2017). Physiological markers of motor inhibition during human behavior. Trends in Neurosciences, 40(4), 219-236.
doi: S0166-2236(17)30027-9 pmid: 28341235 |
[28] |
Duque, J., Labruna, L., Verset, S., Olivier, E., & Ivry, R. B. (2012). Dissociating the role of prefrontal and premotor cortices in controlling inhibitory mechanisms during motor preparation. Journal of Neuroscience, 32(3), 806-816.
doi: 10.1523/JNEUROSCI.4299-12.2012 pmid: 22262879 |
[29] |
Duque, J., Lew, D., Mazzocchio, R., Olivier, E., & Ivry, R. (2010). Evidence for two concurrent inhibitory mechanisms during response preparation. Journal of Neuroscience, 30(10), 3793-3802.
doi: 10.1523/JNEUROSCI.5722-09.2010 pmid: 20220014 |
[30] | Enge, S., Behnke, A., Fleischhauer, M., Kuttler, L., Kliegel, M., & Strobel, A. (2014). No evidence for true training and transfer effects after inhibitory control training in young healthy adults. Journal of Experimental Psychology: Learning, Memory, & Cognition, 40(4), 987-1001. |
[31] |
Fisher, R. J., Nakamura, Y., Bestmann, S., Rothwell, J. C., & Bostock, H. (2002). Two phases of intracortical inhibition revealed by transcranial magnetic threshold tracking. Experimental Brain Research, 143(2), 240-248.
doi: 10.1007/s00221-001-0988-2 pmid: 11880900 |
[32] |
Freeman, S. M., & Aron, A. R. (2016). Withholding a reward-driven action: Studies of the rise and fall of motor activation and the effect of cognitive depletion. Journal of Cognitive Neuroscience, 28(2), 237-251.
doi: 10.1162/jocn_a_00893 pmid: 26469745 |
[33] |
Freeman, S. M., Razhas, I., & Aron, A. R. (2014). Top-down response suppression mitigates action tendencies triggered by a motivating stimulus. Current Biology, 24(2), 212-216.
doi: 10.1016/j.cub.2013.12.019 pmid: 24412209 |
[34] |
Greenhouse, I., Sias, A., Labruna, L., & Ivry, R. B. (2015). Nonspecific inhibition of the motor system during response preparation. Journal of Neuroscience, 35(30), 10675-10684.
doi: 10.1523/JNEUROSCI.1436-15.2015 pmid: 26224853 |
[35] |
Huang, X., Chen, Y. Y., Shen, Y., Cao, X., Li, A., Liu, Q., … Yuan, T. F. (2017). Methamphetamine abuse impairs motor cortical plasticity and function. Molecular Psychiatry, 22(9), 1274-1281.
doi: 10.1038/mp.2017.143 pmid: 28831198 |
[36] |
Klein, P. A., Petitjean, C., Olivier, E., & Duque, J. (2014). Top-down suppression of incompatible motor activations during response selection under conflict. Neuroimage, 86, 138-149
doi: 10.1016/j.neuroimage.2013.08.005 URL |
[37] |
Labruna, L., Lebon, F., Duque, J., Klein, P. A., Cazare, C., & Ivry, R. B. (2014). Generic inhibition of the selected movement and constrained inhibition of nonselected movements during response preparation. Journal of Cognitive Neuroscience, 26(2), 269-278.
doi: 10.1162/jocn_a_00492 pmid: 24047388 |
[38] | Logan, G. D. (1994). On the ability to inhibit thought and action:A users’ guide to the stop signal paradigm. In D. Dagenbach & T. H. Carr (Eds.), Inhibitory processes in attention, memory, & language (pp. 189-239). San Diego: Academic Press. |
[39] |
Louie, K., Khaw, M. W., & Glimcher, P. W. (2013). Normalization is a general neural mechanism for context- dependent decision making. Proceedings of National Academy of Sciences of the U. S. A., 110(15), 6139-6144.
doi: 10.1073/pnas.1217854110 URL |
[40] |
Majid, D. S. A., Cai, W., George, J. S., Verbruggen, F., & Aron, A. R. (2012). Transcranial magnetic stimulation reveals dissociable mechanisms for global versus selective corticomotor suppression underlying the stopping of action. Cerebral Cortex, 22(2), 363-371.
doi: 10.1093/cercor/bhr112 URL |
[41] | Miyazaki, A., Okuyama, T., Mori, H., Sato, K., Ichiki, M., & Nouchi, R. (2020). Drum communication program intervention in older adults with cognitive impairment and dementia at nursing home: Preliminary evidence from pilot randomized controlled trial. Frontiers in Aging Neuroscience, 12, Article 142. https://doi.org/10.3389/fnagi.2020.00142 |
[42] |
Ohshiro, T., Angelaki, D. E., & DeAngelis, G. C. (2017). A neural signature of divisive normalization at the level of multisensory integration in primate cortex. Neuron, 95(2), 399-411.
doi: S0896-6273(17)30595-0 pmid: 28728025 |
[43] |
Quoilin, C., Wilhelm, E., Maurage, P., de Timary, P., & Duque, J. (2018). Deficient inhibition in alcohol- dependence: Let’s consider the role of the motor system! Neuropsychopharmacology, 43(9), 1851-1858.
doi: 10.1038/s41386-018-0074-0 |
[44] |
Reynolds, J. H., & Heeger, D. J. (2009). The normalization model of attention. Neuron, 61(2), 168-185.
doi: 10.1016/j.neuron.2009.01.002 pmid: 19186161 |
[45] | Ridderinkhof, K. R. (2002). Activation and suppression in conflict tasks:Empirical clarification through distributional analyses. In W. Prinz & B. Hommel (Eds.), Mechanisms in perception and action (pp. 494-519). Oxford: Oxford University Press. |
[46] |
Salinas, E., & Sejnowski, T. J. (2001). Gain modulation in the central nervous system: Where behavior, neurophysiology, and computation meet. The Neuroscientist, 7(5), 430-440.
doi: 10.1177/107385840100700512 URL |
[47] |
Salzer, Y., de Hollander, G., & Forstmann, B. U. (2017). Sensory neural pathways revisited to unravel the temporal dynamics of the Simon effect: A model-based cognitive neuroscience approach. Neuroscience & Biobehavioral Reviews, 77, 48-57.
doi: 10.1016/j.neubiorev.2017.02.023 URL |
[48] | Shen, Y., Cao, X., Shan, C., Dai, W., & Yuan, T. F. (2017). Heroin addiction impairs human cortical plasticity. Biological Psychiatry, 81(7), e49-e50. |
[49] |
van Campen, A.D., Keuken, M. C., van den Wildenberg, W. P. M.,& Ridderinkhof, K. R. (2014). TMS over M1 reveals expression and selective suppression of conflicting action impulses. Journal of Cognitive Neuroscience, 26(1), 1-15.
doi: 10.1162/jocn_a_00482 pmid: 24047384 |
[50] |
van den Wildenberg, W. P. M., Burle, B., Vidal, F., van der Molen, M. W., Ridderinkhof, K. R.., & Hasbroucq, T. (2010). Mechanisms and dynamics of cortical motor inhibition in the stop-signal paradigm: A TMS study. Journal of Cognitive Neuroscience, 22(2), 225-239.
doi: 10.1162/jocn.2009.21248 pmid: 19400674 |
[51] |
Wagenmakers, E., Love, J., Marsmann, M., Jamil, T., Ly, A., Verhagen, J., … Morey, R. D. (2018). Bayesian inference for psychology. Part II: Example applications with JASP. Psychonomic Bulletin & Review, 25(1), 58-76.
doi: 10.3758/s13423-017-1323-7 URL |
[52] |
Wang, L., Chang, W., Krebs, R. M., Boehler, C. N., Theeuwes, J., & Zhou, X. (2019). Neural dynamics of reward-induced response activation and inhibition. Cerebral Cortex, 29(9), 3961-3976.
doi: 10.1093/cercor/bhy275 |
[53] |
Wang, L., Luo, X., Yuan, T. F., & Zhou, X. (2021). Reward facilitates response conflict resolution via global motor inhibition: Electromyography evidence. Psychophysiology, 58(10), e13896. https://doi.org/10.1111/psyp.13896
doi: 10.1111/psyp.v58.10 URL |
[54] | Wang, Y., Braver, T. S., Yin, S., Hu, X., Wang, X., & Chen, A. (2019). Reward improves response inhibition by enhancing attentional capture. Social Cognitive & Affective Neuroscience, 14(1), 35-45. |
[55] |
Wessel, J. R., & Aron, A. R. (2017). On the globality of motor suppression: Unexpected events and their influence on behavior and cognition. Neuron, 93(2), 259-280.
doi: S0896-6273(16)30955-2 pmid: 28103476 |
[56] |
Wessel, J. R., Reynoso, H. S., & Aron, A. R. (2013). Saccade suppression exerts global effects on the motor system. Journal of Neurophysiology, 110(4), 883-890.
doi: 10.1152/jn.00229.2013 pmid: 23699058 |
[57] |
Xu, J., Westrick, Z., & Ivry, R. B. (2015). Selective inhibition of a multicomponent response can be achieved without cost. Journal of Neurophysiology, 113(2), 455-465.
doi: 10.1152/jn.00101.2014 pmid: 25339712 |
[58] |
Zhu, P., Frank, T., & Friedrich, R. W. (2013). Equalization of odor representations by a network of electrically coupled inhibitory interneurons. Nature Neuroscience, 16(11), 1678-1686.
doi: 10.1038/nn.3528 pmid: 24077563 |
[1] | 蔡笑, 张清芳. 言语运动系统中前馈和反馈控制整合加工的作用机制 *[J]. 心理科学进展, 2020, 28(4): 588-603. |
[2] | 李恒. “前”、“后”轴上的内隐时空映射及其影响因素 *[J]. 心理科学进展, 2018, 26(6): 975-983. |
[3] | 陈杰, 刘雷, 王蓉, 沈海洲. 音乐训练对执行功能的影响[J]. 心理科学进展, 2017, 25(11): 1854-1864. |
[4] | 顾力雄;陈琦. 认知灵活性理论、超文本和Internet网络教学[J]. 心理科学进展, 1998, 6(3): 25-29. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||