[1] |
Adank, P., & Devlin, J. T. (2010). On-line plasticity in spoken sentence comprehension: Adapting to time-compressed speech. Neuroimage, 49(1), 1124-1132.
doi: 10.1016/j.neuroimage.2009.07.032
pmid: 19632341
|
[2] |
Assaneo, M. F., & Poeppel, D. (2018). The coupling between auditory and motor cortices is rate-restricted: Evidence for an intrinsic speech-motor rhythm. Science Advance, 4(2), Article eaao3842. https://doi.org/10.1126/sciadv.aao3842
|
[3] |
Borges, A. F. T., Giraud, A. L., Mansvelder, H. D., & Linkenkaer-Hansen, K. (2018). Scale-free amplitude modulation of neuronal oscillations tracks comprehension of accelerated speech. Journal of Neuroscience, 38(3), 710-722.
doi: 10.1523/JNEUROSCI.1515-17.2017
pmid: 29217685
|
[4] |
Brodbeck, C., Hong, L. E., & Simon, J. Z. (2018). Rapid transformation from auditory to linguistic representations of continuous speech. Current Biology, 28(24), 3976-3983.
doi: S0960-9822(18)31409-X
pmid: 30503620
|
[5] |
Cecere, R., Rees, G., & Romei, V. (2015). Individual differences in alpha frequency drive crossmodal illusory perception. Current Biology, 25(2), 231-235.
doi: S0960-9822(14)01495-X
pmid: 25544613
|
[6] |
Cheung, C., Hamiton, L. S., Johnson, K., & Chang, E. F. (2016). The auditory representation of speech sounds in human motor cortex. Elife, 5, Article e12577. https://doi.org/10.7554/eLife.12577
|
[7] |
Ding, N., Patel, A. D., Chen, L., Butler, H., Luo, C., & Poeppel, D. (2017). Temporal modulations in speech and music. Neuroscience and Biobehavioral Reviews, 81(Pt B),181-187.
doi: S0149-7634(16)30566-8
pmid: 28212857
|
[8] |
Ding, N., & Simon, J. Z. (2012). Emergence of neural encoding of auditory objects while listening to competing speakers. Proceedings of the National Academy of Sciences of the United States of America, 109(29), 11854-11859.
|
[9] |
Du, Y., Buchsbaum, B. R., Grady, C. L., & Alain, C. (2014). Noise Differentially impacts phoneme representations in the auditory and speech motor systems. Proceedings of the National Academy of Sciences of the United States of America, 111(19), 7126-7131.
|
[10] |
Dugué, L., Marque, P., & VanRullen, R. (2011). The phase of ongoing oscillations mediates the causal relation between brain excitation and visual perception. Journal of Neuroscience, 31(33), 11889-11893.
doi: 10.1523/JNEUROSCI.1161-11.2011
pmid: 21849549
|
[11] |
Dupoux, E., & Green, K. (1997). Perceptual adjustment to highly compressed speech: Effects of talker and rate changes. Journal of Experimental Psychology: Human Perception and Performance, 23(3), 914-927.
doi: 10.1037/0096-1523.23.3.914
URL
|
[12] |
Ghitza, O., & Greenberg, S. (2009). On the possible role of brain rhythms in speech perception: Intelligibility of time-compressed speech with periodic and aperiodic insertions of silence. Phonetica, 66(1-2), 113-126.
doi: 10.1159/000208934
pmid: 19390234
|
[13] |
Grabot, L., & Kayser, C. (2020). Alpha activity reflects the magnitude of an individual bias in human perception. Journal of Neuroscience, 40(17), 3443-3454.
doi: 10.1523/JNEUROSCI.2359-19.2020
pmid: 32179571
|
[14] |
Greenberg, S., Carvey, H., Hitchcock, L., & Chang, S. Y. (2003). Temporal properties of spontaneous speech-a syllable-centric perspective. Journal of Phonetics, 31(3-4), 465-485.
doi: 10.1016/j.wocn.2003.09.005
URL
|
[15] |
Hansen, N. E., Harel, A., Iyer, N., Simpson, B. D., & Wisniewski, M. G. (2019). Pre-stimulus brain state predicts auditory pattern identification accuracy. Neuroimage, 199, 512-520.
doi: S1053-8119(19)30446-X
pmid: 31129305
|
[16] |
Ho, H. T., Burr, D. C., Alais, D., & Morrone, M. C. (2019). Auditory perceptual history is propagated through alpha oscillations. Current Biology, 29(24), 4208-4217.
doi: S0960-9822(19)31381-8
pmid: 31761705
|
[17] |
Hyafil, A., Fontolan, L., Kabdebon, C., Gutkin, B., & Giraud, A. L. (2015). Speech encoding by coupled cortical theta and gamma oscillations. Elife, 4, Article e06213. https://doi.org/10.7554/eLife.06213
|
[18] |
Keitel, C., Keitel, A., Benwell, C. S. Y., Daube, C., Thut, G., & Gross, J. (2019). Stimulus-driven brain rhythms within the alpha band: The attentional-modulation conundrum. Journal of Neuroscience, 39(16), 3119-3129.
doi: 10.1523/JNEUROSCI.1633-18.2019
pmid: 30770401
|
[19] |
Leonard, M. K., Baud, M. O., Sjerps, M. J., & Chang, E. F. (2016). Perceptual restoration of masked speech in human cortex. Nature Communications, 7, Article 13619. https://doi.org/10.1038/ncomms13619
|
[20] |
Mathewson, K. E., Beck, D. M., Ro, T., Fabiani, M., & Gratton, G. (2009). Illuminating awareness: Investigating the temporal and spatial neural dynamics of metacontrast masking using the event-related optical signal. Journal of Vision, 9(8), 765.
|
[21] |
Mesgarani, N., & Chang, E. F. (2012). Selective cortical representation of attended speaker in multi-talker speech perception. Nature, 485(7397), 233-236.
doi: 10.1038/nature11020
|
[22] |
Molinaro, N., Lizarazu, M., Baldin, V., Pérez-Navarro, J., Lallier, M., & Ríos-López, P. (2021). Speech-brain phase coupling is enhanced in low contextual semantic predictability conditions. Neuropsychologia, 156, 107830.
doi: 10.1016/j.neuropsychologia.2021.107830
URL
|
[23] |
Mukamel, R., Nir, Y., Harel, M., Arieli, A., Malach, R., & Fried, I. (2011). Invariance of firing rate and field potential dynamics to stimulus modulation rate in human auditory cortex. Human Brain Mapping, 32(8), 1181-1193.
doi: 10.1002/hbm.21100
pmid: 20665720
|
[24] |
Neuling, T., Rach, S., Wagner, S., Wolters, C. H., & Herrmann, C. S. (2012). Good vibrations: Oscillatory phase shapes perception. Neuroimage, 63(2), 771-778.
doi: 10.1016/j.neuroimage.2012.07.024
pmid: 22836177
|
[25] |
Nourski, K. V., Reale, R. A., Oya, H., Kawasaki, H., Kovach, C. K., Chen, H.,... Brugge, J. F. (2009). Temporal envelope of time-compressed speech represented in the human auditory cortex. Journal of Neuroscience, 29(49), 15564-15574.
doi: 10.1523/JNEUROSCI.3065-09.2009
pmid: 20007480
|
[26] |
Park, H., Ince, R. A. A., Schyns, P. G., Thut, G., & Gross, J. (2018). Representational interactions during audiovisual speech entrainment: Redundancy in left posterior superior temporal gyrus and synergy in left motor cortex. PLoS Biology, 16(8), Article e2006558. https://doi.org/10.1371/journal.pbio.2006558
|
[27] |
Peelle, J. E., McMillan, C., Moore, P., Grossman, M., & Wingfield, A. (2004). Dissociable patterns of brain activity during comprehension of rapid and syntactically complex speech: Evidence from fMRI. Brain and Language, 91(3), 315-325.
pmid: 15533557
|
[28] |
Peelle, J. E., Troiani, V., Wingfield, A., & Grossman, M. (2010). Neural processing during older adults' comprehension of spoken sentences: Age differences in resource allocation and connectivity. Cerebral Cortex, 20(4), 773-782.
doi: 10.1093/cercor/bhp142
URL
|
[29] |
Pefkou, M., Arnal, L. H., Fontolan, L., & Giraud, A. L. (2017). θ-band and β-band neural activity reflects independent syllable tracking and comprehension of time-compressed speech. Journal of Neuroscience, 37(33), 7930-7938.
doi: 10.1523/JNEUROSCI.2882-16.2017
pmid: 28729443
|
[30] |
Reynolds, M. E., & Givens, J. (2001). Presentation rate in comprehension of natural and synthesized speech. Perceptual and Motor Skills, 92(3 Pt 2), 958-968.
pmid: 11565939
|
[31] |
Ronconi, L., & Melcher, D. (2017). The role of oscillatory phase in determining the temporal organization of perception: Evidence from sensory entrainment. Journal of Neuroscience, 37(44), 10636-10644.
doi: 10.1523/JNEUROSCI.1704-17.2017
pmid: 28972130
|
[32] |
Samaha, J., & Postle, B. R. (2015). The speed of alpha-band oscillations predicts the temporal resolution of visual perception. Current Biology, 25(22), 2985-2990.
doi: 10.1016/j.cub.2015.10.007
pmid: 26526370
|
[33] |
Shahin, A. J., & Pitt, M. A. (2012). Alpha activity marking word boundaries mediates speech segmentation. European Journal of Neuroscience, 36(12), 3740-3748.
doi: 10.1111/ejn.12008
pmid: 23020238
|
[34] |
Shen, L., Han, B., Chen, L., & Chen, Q. (2019). Perceptual inference employs intrinsic alpha frequency to resolve perceptual ambiguity. PLoS Biology, 17(3), Article e3000025. https://doi.org/10.1371/journal.pbio.3000025
|
[35] |
Vagharchakian, L., Dehaene-Lambertz, G., Pallier, C., & Dehaene, S. (2012). A temporal bottleneck in the language comprehension network. Journal of Neuroscience, 32(26), 9089-9102.
doi: 10.1523/JNEUROSCI.5685-11.2012
pmid: 22745508
|
[36] |
Wilson, S. M., Saygin, A. P., Sereno, M. I., & Iacoboni, M. (2004). Listening to speech activates motor areas involved in speech production. Nature Neuroscience, 7(7), 701-702.
doi: 10.1038/nn1263
pmid: 15184903
|
[37] |
Zion Golumbic, E. M., Ding, N., Bickel, S., Lakatos, P., Schevon, C. A., McKhann, G. M.,... Schroeder, C. E. (2013). Mechanisms underlying selective neuronal tracking of attended speech at a "cocktail party". Neuron, 77(5), 980-991.
doi: 10.1016/j.neuron.2012.12.037
pmid: 23473326
|
[38] |
Zou, J., Feng, J., Xu, T., Jin, P., Luo, C., Zhang, J.,... Ding, N. (2019). Auditory and language contributions to neural encoding of speech features in noisy environments. Neuroimage, 192, 66-75.
doi: S1053-8119(19)30143-0
pmid: 30822469
|