心理科学进展 ›› 2023, Vol. 31 ›› Issue (1): 145-158.doi: 10.3724/SP.J.1042.2023.00145
• 研究方法 • 上一篇
收稿日期:
2022-04-06
出版日期:
2023-01-15
发布日期:
2022-10-13
通讯作者:
顾昕
E-mail:guxin57@hotmail.com
基金资助:
Received:
2022-04-06
Online:
2023-01-15
Published:
2022-10-13
Contact:
GU Xin
E-mail:guxin57@hotmail.com
摘要:
高维数据爆发的背景下, 心理学研究目前急需变量相对重要性评估的有效方法。相对重要性评估的关键是选择合适的评估指标和统计推断方法。相对重要性的评估指标种类繁多, 优势分析和相对权重是重点推荐的相对重要性评估指标。相对重要性的统计推断方法适用情境不同, Bootstrap抽样是推断单变量重要性和两变量重要性差异的常用方法, 而贝叶斯检验是评估多变量重要性次序的新方法。线性回归模型之外, 相对重要性研究已拓展到Logistic回归模型、结构方程模型、多水平模型等, 但适用数据类型仍较为有限。相对重要性评估已广泛应用于心理学实证研究, 但存在不恰当的指标解释和方法选择问题。为此, 结合具体例子说明变量相对重要性的评估过程。
中图分类号:
朱训, 顾昕. (2023). 变量相对重要性评估的方法选择及应用. 心理科学进展 , 31(1), 145-158.
ZHU Xun, GU Xin. (2023). Evaluation of predictors’ relative importance: Methods and applications. Advances in Psychological Science, 31(1), 145-158.
变量 | 考试成绩 | 学科能力 | 复习时长 | 焦虑程度 |
---|---|---|---|---|
考试成绩 | 1.00 | |||
学科能力 | 0.80 | 1.00 | ||
复习时长 | 0.40 | 0.50 | 1.00 | |
焦虑程度 | 0.00 | 0.20 | 0.10 | 1.00 |
表1 变量的相关系数矩阵
变量 | 考试成绩 | 学科能力 | 复习时长 | 焦虑程度 |
---|---|---|---|---|
考试成绩 | 1.00 | |||
学科能力 | 0.80 | 1.00 | ||
复习时长 | 0.40 | 0.50 | 1.00 | |
焦虑程度 | 0.00 | 0.20 | 0.10 | 1.00 |
子集 | ||||
---|---|---|---|---|
0 | 0.64 | 0.16 | 0.00 | |
0.64 | 0.00 | 0.03 | ||
0.16 | 0.48 | 0.00 | ||
0.00 | 0.67 | 0.16 | ||
0.57 | 0.08 | 0.01 | ||
0.64 | 0.03 | |||
0.67 | 0.00 | |||
0.16 | 0.51 | |||
0.51 | 0.00 | 0.03 | ||
总平均 | 0.57 | 0.08 | 0.01 |
表2 优势分析结果
子集 | ||||
---|---|---|---|---|
0 | 0.64 | 0.16 | 0.00 | |
0.64 | 0.00 | 0.03 | ||
0.16 | 0.48 | 0.00 | ||
0.00 | 0.67 | 0.16 | ||
0.57 | 0.08 | 0.01 | ||
0.64 | 0.03 | |||
0.67 | 0.00 | |||
0.16 | 0.51 | |||
0.51 | 0.00 | 0.03 | ||
总平均 | 0.57 | 0.08 | 0.01 |
效应 | 自变量 | 百分比(% R2) | |
---|---|---|---|
独特效应 | 学科能力 | 0.51 | 76 |
复习时长 | 0.00 | 0 | |
焦虑程度 | 0.03 | 4 | |
共同效应 | 学科能力-复习时长 | 0.16 | 24 |
学科能力-焦虑程度 | -0.03 | -4 | |
复习时长-焦虑程度 | 0.00 | 0 | |
学科能力-复习时长-焦虑程度 | 0.00 | 0 | |
总 | 0.67 | 100 |
表3 共性分析结果
效应 | 自变量 | 百分比(% R2) | |
---|---|---|---|
独特效应 | 学科能力 | 0.51 | 76 |
复习时长 | 0.00 | 0 | |
焦虑程度 | 0.03 | 4 | |
共同效应 | 学科能力-复习时长 | 0.16 | 24 |
学科能力-焦虑程度 | -0.03 | -4 | |
复习时长-焦虑程度 | 0.00 | 0 | |
学科能力-复习时长-焦虑程度 | 0.00 | 0 | |
总 | 0.67 | 100 |
指标 | 非负 | 方差解释 | 比较变量组 | |
---|---|---|---|---|
√ | × | × | × | |
√ | × | × | × | |
× | × | √ | × | |
√ | √ | × | √ | |
× | √ | √ | √ | |
√ | √ | √ | √ | |
√ | √ | √ | √ | |
√ | √ | √ | √ | |
√ | √ | √ | √ |
表4 相对重要性指标对比
指标 | 非负 | 方差解释 | 比较变量组 | |
---|---|---|---|---|
√ | × | × | × | |
√ | × | × | × | |
× | × | √ | × | |
√ | √ | × | √ | |
× | √ | √ | √ | |
√ | √ | √ | √ | |
√ | √ | √ | √ | |
√ | √ | √ | √ | |
√ | √ | √ | √ |
支持假设的证据 | |
---|---|
1~3 | 不明显 |
3~20 | 积极的 |
20~150 | 强 |
>150 | 非常强 |
表5 贝叶斯因子标准
支持假设的证据 | |
---|---|
1~3 | 不明显 |
3~20 | 积极的 |
20~150 | 强 |
>150 | 非常强 |
变量 | |||||
---|---|---|---|---|---|
1.00 | |||||
0.68 | 1.00 | 0.57 | |||
0.30 | 0.36 | 1.00 | 0.06 | ||
0.50 | 0.59 | 0.24 | 1.00 | 0.15 |
表6 相关系数与标准化回归系数估计值
变量 | |||||
---|---|---|---|---|---|
1.00 | |||||
0.68 | 1.00 | 0.57 | |||
0.30 | 0.36 | 1.00 | 0.06 | ||
0.50 | 0.59 | 0.24 | 1.00 | 0.15 |
变量 | 估计值 | 标准误 | 百分位置信区间 | BCa置信区间 | Wald统计量 | |
---|---|---|---|---|---|---|
0.32 | 0.05 | [0.23,0.40] | [0.23,0.40] | 7.10 | 0.000 | |
0.04 | 0.02 | [0.01,0.08] | [0.01,0.08] | 2.13 | 0.017 | |
0.12 | 0.03 | [0.07,0.18] | [0.07,0.18] | 4.27 | 0.000 |
表7 一般优势指标、标准误、置信区间和Wald检验
变量 | 估计值 | 标准误 | 百分位置信区间 | BCa置信区间 | Wald统计量 | |
---|---|---|---|---|---|---|
0.32 | 0.05 | [0.23,0.40] | [0.23,0.40] | 7.10 | 0.000 | |
0.04 | 0.02 | [0.01,0.08] | [0.01,0.08] | 2.13 | 0.017 | |
0.12 | 0.03 | [0.07,0.18] | [0.07,0.18] | 4.27 | 0.000 |
0.44 | 5.77 | 0.00 | 0.00 | 0.00 | 0.00 | |
0.01 | 5.54 | 0.00 | 0.00 | 0.00 | 0.00 |
表8 贝叶斯统计推断
0.44 | 5.77 | 0.00 | 0.00 | 0.00 | 0.00 | |
0.01 | 5.54 | 0.00 | 0.00 | 0.00 | 0.00 |
[1] | 方杰, 温忠麟, 张敏强, 孙配贞. (2014). 基于结构方程模型的多重中介效应分析. 心理科学, 37(3), 735-741. |
[2] | 胡传鹏, 孔祥祯, Wagenmakers, E. J., Ly, A., 彭凯平. (2018). 贝叶斯因子及其在JASP中的实现. 心理科学进展, 26(6), 951-965. |
[3] | 胡咏梅, 元静. (2021). 学校投入与家庭投入哪个更重要?——回应由《科尔曼报告》引起的关于学校与家庭作用之争. 华东师范大学学报 (教育科学版), 39(1), 1-25. |
[4] | 宋勃东, 李永娟, 董好叶, 方平, 王岩. (2015). 无惧失败预测幸福: 成就动机对心理幸福感的预测作用. 心理科学, 38(1), 203-208. |
[5] | 胥彦, 李超平. (2019). 领导风格与敬业度关系的元分析. 心理科学进展, 27(8), 1363-1383. |
[6] | 张纯霞, 冯廷勇. (2018). 冲动性对学习拖延的影响——自我控制的中介作用. 心理学进展, 8(2), 272-282. |
[7] | 周浩, 龙立荣. (2014). 分配制度公平对员工分配公平感的影响: 中国组织情境下的实证研究. 心理与行为研究, 12(5), 675-681. |
[8] |
Ainsworth, S., & Oldfield, J. (2019). Quantifying teacher resilience: Context matters. Teaching and Teacher Education, 82, 117-128.
doi: 10.1016/j.tate.2019.03.012 |
[9] |
Azen, R., & Budescu, D. V. (2003). The dominance analysis approach for comparing predictors in multiple regression. Psychological Methods, 8(2), 129-148.
pmid: 12924811 |
[10] | Azen, R., & Budescu, D. V. (2006). Comparing predictors in multivariate regression models: An extension of dominance analysis. Journal of Educational and Behavioral Statistics, 31(2), 157-180. |
[11] | Azen, R., & Traxel, N. (2009). Using dominance analysis to determine predictor importance in logistic regression. Journal of Educational and Behavioral Statistics, 34(3), 319-347. |
[12] |
Budescu, D. V. (1993). Dominance analysis: A new approach to the problem of relative importance of predictors in multiple regression. Psychological Bulletin, 114(3), 542-551.
doi: 10.1037/0033-2909.114.3.542 URL |
[13] |
Braeken, J., Mulder, J., & Wood, S. (2015). Relative effects at work: Bayes factors for order hypotheses. Journal of Management, 41(2), 544-573.
doi: 10.1177/0149206314525206 URL |
[14] |
Braun, M. T., Converse, P. D., & Oswald, F. L. (2019). The accuracy of dominance analysis as a metric to assess relative importance: The joint impact of sampling error variance and measurement unreliability. Journal of Applied Psychology, 104(4), 593-602.
doi: 10.1037/apl0000361 pmid: 30321030 |
[15] |
Casillas, A., Robbins, S., Allen, J., Kuo, Y. L., Hanson, M. A., & Schmeiser, C. (2012). Predicting early academic failure in high school from prior academic achievement, psychosocial characteristics, and behavior. Journal of Educational Psychology, 104(2), 407-420.
doi: 10.1037/a0027180 URL |
[16] | Dalal, R. S., Baysinger, M., Brummel, B. J., & LeBreton, J. M. (2012). The relative importance of employee engagement, other job attitudes, and trait affect as predictors of job performance. Journal of Applied Social Psychology, 42(1), E295-E325. |
[17] |
Darlington, R. B. (1968). Multiple regression in psychological research and practice. Psychological Bulletin, 69(3), 161-182.
pmid: 4868134 |
[18] | Groemping, U., & Matthias, L. (2021). Package ‘relaimpo’. Relative Importance of Regressors in Linear Models. R Fundation for Statistical Computing: Vienna, Austria. |
[19] |
Gu, X., Mulder, J., Deković, M., & Hoijtink, H. (2014). Bayesian evaluation of inequality constrained hypotheses. Psychological Methods, 19(4), 511-527.
doi: 10.1037/met0000017 pmid: 25046447 |
[20] |
Gu, X., Mulder, J., & Hoijtink, H. (2018). Approximated adjusted fractional Bayes factors: A general method for testing informative hypotheses. British Journal of Mathematical and Statistical Psychology, 71(2), 229-261.
doi: 10.1111/bmsp.12110 URL |
[21] | Gu, X. (2021). Evaluating predictors’ relative importance using Bayes factors in regression models. Psychological Methods. Advance online publication. https://doi.org/10.1037/met0000431 |
[22] | Gu, X. (2022). Assessing the relative importance of predictors in latent regression models. Structural Equation Modeling: A Multidisciplinary Journal. Advance online publication. https://doi.org/10.1080/10705511.2021.2025377 |
[23] | Hakanen, J. J., Bakker, A. B., & Turunen, J. (2021). The relative importance of various job resources for work engagement: A concurrent and follow-up dominance analysis. Business Research Quarterly. https://doi.org/10.1177/23409444211012419 |
[24] |
Hoijtink, H., Mulder, J., van Lissa, C., & Gu, X. (2019). A tutorial on testing hypotheses using the Bayes factor. Psychological Methods, 24(5), 539-556.
doi: 10.1037/met0000201 pmid: 30742472 |
[25] |
Johnson, J. W. (2000). A heuristic method for estimating the relative weight of predictor variables in multiple regression. Multivariate Behavioral Research, 35(1), 1-19.
doi: 10.1207/S15327906MBR3501_1 pmid: 26777229 |
[26] |
Johnson, J. W., & LeBreton, J. M. (2004). History and use of relative importance indices in organizational research. Organizational Research Methods, 7(3), 238-257.
doi: 10.1177/1094428104266510 URL |
[27] | Kraha, A., Turner, H., Nimon, K., Zientek, L., & Henson, R. (2012). Tools to support interpreting multiple regression in the face of multicollinearity. Frontiers in Psychology, 3(44), 1-16. |
[28] | Kruskal, W. (1987). Relative importance by averaging over orderings. The American Statistician, 41(1), 6-10. |
[29] |
Lachowicz, M. J., Preacher, K. J., & Kelley, K. (2018). A novel measure of effect size for mediation analysis. Psychological Methods, 23(2), 244-261.
doi: 10.1037/met0000165 pmid: 29172614 |
[30] |
LeBreton, J. M., & Tonidandel, S. (2008). Multivariate relative importance: Extending relative weight analysis to multivariate criterion spaces. Journal of Applied Psychology, 93(2), 329-345.
doi: 10.1037/0021-9010.93.2.329 pmid: 18361636 |
[31] |
Luchman, J. N. (2021). Determining relative importance in Stata using dominance analysis: Domin and domme. The Stata Journal, 21(2), 510-538.
doi: 10.1177/1536867X211025837 URL |
[32] | Luo, W., & Azen, R. (2013). Determining predictor importance in hierarchical linear models using dominance analysis. Journal of Educational and Behavioral Statistics, 38(1), 3-31. |
[33] |
MacCann, C., Jiang, Y., Brown, L. E., Double, K. S., Bucich, M., & Minbashian, A. (2020). Emotional intelligence predicts academic performance: A meta-analysis. Psychological Bulletin, 146(2), 150-186.
doi: 10.1037/bul0000219 pmid: 31829667 |
[34] |
Modersitzki, N., Phan, L. V., Kuper, N., & Rauthmann, J. F. (2021). Who is impacted? Personality predicts individual differences in psychological consequences of the COVID- 19 pandemic in Germany. Social Psychological and Personality Science, 12(6), 1110-1130.
doi: 10.1177/1948550620952576 URL |
[35] |
Mulder, J., Wagenmakers, E. J., & Marsman, M. (2022). A generalization of the Savage-Dickey density ratio for testing equality and order constrained hypotheses. The American Statistician, 76(2), 102-109.
doi: 10.1080/00031305.2020.1799861 URL |
[36] | Mulder, J., Williams, D. R., Gu, X., Tomarken, A., Böing-Messing, F., Olsson-Collentine, A.,... van Lissa, C. (2021). BFpack: Flexible Bayes factor testing of scientific theories in R. Journal of Statistical Software, 100(18), 1-63. |
[37] | Nandlall, S. D., & Millard, K. (2019). Quantifying the relative importance of variables and groups of variables in remote sensing classifiers using Shapley values and game theory. Institute of Electrical and Electronics Engineers Geoscience and Remote Sensing Letters, 17(1),42-46. |
[38] |
Nimon, K. F., & Oswald, F. L. (2013). Understanding the results of multiple linear regression: Beyond standardized regression coefficients. Organizational Research Methods, 16(4), 650-674.
doi: 10.1177/1094428113493929 URL |
[39] | Ozdemir, B. (2015). Partitioning variance into constituents in multiple regression models:Commonality analysis. In R. E. Millsap, D. M. Bolt, L. A. Ark, & W.-C. Wang (Eds.), Quantitative psychology research: Vol. 89: Springer proceedings in mathematics & statistics (pp. 395-405). Switzerland: Springer International. |
[40] |
Preacher, K. J., & Hayes, A. F. (2008). Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behavior Research Methods, 40(3), 879-891.
pmid: 18697684 |
[41] |
Preacher, K. J., & Kelley, K. (2011). Effect size measures for mediation models: Quantitative strategies for communicating indirect effects. Psychological Methods, 16(2), 93-115.
doi: 10.1037/a0022658 pmid: 21500915 |
[42] |
Richardson, M., Passmore, H. A., Lumber, R., Thomas, R., & Hunt, A. (2021). Moments, not minutes: The nature- wellbeing relationship. International Journal of Wellbeing, 11(1), 8-33.
doi: 10.5502/ijw.v11i1.1267 URL |
[43] |
Rights, J. D., & Sterba, S. K. (2019). Quantifying explained variance in multilevel models: An integrative framework for defining R-squared measures. Psychological Methods, 24(3), 309-338.
doi: 10.1037/met0000184 pmid: 29999378 |
[44] | Stevens, J. P. (2002). Applied multivariate statistics for the social sciences. New York: Routledge. |
[45] |
Thomas, D. R., Zumbo, B. D., Kwan, E., & Schweitzer, L. (2014). On Johnson's (2000) relative weights method for assessing variable importance: A reanalysis. Multivariate Behavioral Research, 49(4), 329-338.
doi: 10.1080/00273171.2014.905766 pmid: 26765801 |
[46] |
Tonidandel, S., LeBreton, J. M., & Johnson, J. W. (2009). Determining the statistical significance of relative weights. Psychological Methods, 14(4), 387-399.
doi: 10.1037/a0017735 pmid: 19968399 |
[47] |
Tonidandel, S., & LeBreton, J. M. (2009). Determining the relative importance of predictors in logistic regression: An extension of relative weight analysis. Organizational Research Methods, 13(4), 767-781.
doi: 10.1177/1094428109341993 URL |
[48] |
Tonidandel, S., & LeBreton, J. M. (2011). Relative importance analysis: A useful supplement to regression analysis. Journal of Business and Psychology, 26(1), 1-9.
doi: 10.1007/s10869-010-9204-3 URL |
[49] |
Vaessen, A., & Blomert, L. (2010). Long-term cognitive dynamics of fluent reading development. Journal of Experimental Child Psychology, 105(3), 213-231.
doi: 10.1016/j.jecp.2009.11.005 pmid: 20042196 |
[50] |
Young, H. R., Glerum, D. R., Wang, W., & Joseph, D. L. (2018). Who are the most engaged at work? A meta‐analysis of personality and employee engagement. Journal of Organizational Behavior, 39(10), 1330-1346.
doi: 10.1002/job.2303 URL |
[51] |
Zhang, Y., Liu, G., Zhang, L., Xu, S., & Cheung, M. W. L. (2021). Psychological ownership: A meta-analysis and comparison of multiple forms of attachment in the workplace. Journal of Management, 47(3), 745-770.
doi: 10.1177/0149206320917195 URL |
[1] | 王珺, 宋琼雅, 许岳培, 贾彬彬, 陆春雷, 陈曦, 戴紫旭, 黄之玥, 李振江, 林景希, 罗婉莹, 施赛男, 张莹莹, 臧玉峰, 左西年, 胡传鹏. 解读不显著结果:基于500个实证研究的量化分析[J]. 心理科学进展, 2021, 29(3): 381-393. |
[2] | 胡传鹏, 孔祥祯, Eric-Jan Wagenmakers, Alexander Ly, 彭凯平. 贝叶斯因子及其在JASP中的实现[J]. 心理科学进展, 2018, 26(6): 951-965. |
[3] | 温忠麟;叶宝娟. 中介效应分析:方法和模型发展[J]. 心理科学进展, 2014, 22(5): 731-745. |
[4] | 方杰;张敏强;顾红磊;梁东梅. 基于不对称区间估计的有调节的中介模型检验[J]. 心理科学进展, 2014, 22(10): 1660-1668. |
[5] | 方杰;张敏强;李晓鹏. 中介效应的三类区间估计方法[J]. 心理科学进展, 2011, 19(5): 765-774. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||