1 |
邱皓政 . ( 2008). 潜在类别模型的原理与技术. 北京: 教育科学出版社.
|
2 |
张洁婷, 焦璨, 张敏强 . ( 2010). 潜在类别分析技术在心理学研究中的应用. 心理科学进展, 18( 12), 1991-1998.
|
3 |
Asparouhov, T., &MuthÉn, B. ( 2014). Auxiliary variables in mixture modeling: Three-step approaches using M plus. Structural Equation Modeling, 21( 3), 329-341.
doi: 10.1080/10705511.2014.915181
URL
|
4 |
Asparouhov, T., &MuthÉn, B(2015 ).Auxiliary Variables in Mixture Modeling: Using the BCH Method in Mplus to Estimate a Distal Outcome Model and an Arbitrary Secondary Model.Mplus Web Notes: No.21. Retrieved from
|
5 |
Bakk Z., Oberski D. L., &Vermunt J. K . ( 2016). Relating latent class membership to continuous distal outcomes: Improving the LTB approach and a modified three-step implementation. Structural Equation Modeling, 23( 2), 278-289.
doi: 10.1080/10705511.2015.1049698
URL
|
6 |
Bakk Z., Tekle F. B., &Vermunt J. K . ( 2013). Estimating the association between latent class membership and external variables using bias-adjusted three-step approaches. Sociological methodology.43( 1), 272-311.
|
7 |
Bakk, Z., &Vermunt, J.K. ( 2016). Robustness of stepwise latent class modeling with continuous distal outcomes. Structural Equation Modeling, 23( 1), 20-31.
doi: 10.1080/10705511.2014.955104
URL
|
8 |
Bauer, D.J., &Curran, P.J . ( 2003). Distributional assumptions of growth mixture models: Implications for overextraction of latent trajectory classes. Psychological Methods, 8( 3), 338-363.
doi: 10.1037/1082-989X.8.3.338
URL
pmid: 14596495
|
9 |
Bolck A., Croon M., &Hagenaars J . ( 2004). Estimating latent structure models with categorical variables: One-step versus three-step estimators. Political Analysis, 12( 1), 3-27.
doi: 10.1093/pan/mph001
URL
|
10 |
Clark, S.L., &MuthÉn, B . ( 2009). Relating latent class analysis results to variables not included in the analysis. Retrieved from
|
11 |
Collins, L.M., &Lanza, S.T . ( 2010). Latent class and latent transition analysis: With applications in the social, behavioral, and health sciences . New York: Wiley.
|
12 |
Lanza S. T., Tan X., & Bray B. C . ( 2013). Latent class analysis with distal outcomes: A flexible model-based approach. Structural Equation Modeling, 20( 1), 1-26.
doi: 10.1080/10705511.2013.742377
URL
pmid: 4240499
|
13 |
Morin A. J. S., Morizot J., Boudrias J-S., &Madore I . ( 2011). A multifoci person-centered perspective on workplace affective commitment: A latent profile/factor mixture analysis. Organizational Research Methods,14( 1), 58-90.
doi: 10.1177/1094428109356476
URL
|
14 |
Sterba, S.K. ( 2013). Understanding linkages among mixture models. Multivariate Behavioral Research, 48( 6), 775-815.
doi: 10.1080/00273171.2013.827564
URL
pmid: 26745595
|
15 |
Vermunt, J.K. ( 2010). Latent class modeling with covariates: Two improved three-step approaches. Political Analysis, 18, 450-469.
doi: 10.1093/pan/mpq025
URL
|
16 |
Wang C-P., Brown C. H., &Bandeen-Roche K . ( 2005). Residual diagnostics for growth mixture models: Examining the impact of a preventive intervention on multiple trajectories of aggressive behavior. Journal of the American Statistical Association, 100( 471), 1054-1076.
doi: 10.1198/016214505000000501
URL
|