Acta Psychologica Sinica ›› 2026, Vol. 58 ›› Issue (4): 634-650.doi: 10.3724/SP.J.1041.2026.0634
• Reports of Empirical Studies • Previous Articles Next Articles
CHEN Yan1, LI Ying1, LIU Guanxiong1, YU Quanlei1, LIANG Zheng1,2, CHEN Shi3,4, ZHAO Qingbai1
Received:2025-05-20
Published:2026-04-25
Online:2026-01-16
CHEN Yan, LI Ying, LIU Guanxiong, YU Quanlei, LIANG Zheng, CHEN Shi, ZHAO Qingbai. (2026). The micro-dynamic neural processing model of insight problem-solving. Acta Psychologica Sinica, 58(4), 634-650.
Add to citation manager EndNote|Ris|BibTeX
URL: https://journal.psych.ac.cn/acps/EN/10.3724/SP.J.1041.2026.0634
| [1] Aziz‐Zadeh L., Kaplan J. T., & Iacoboni M. (2009). “Aha!”: The neural correlates of verbal insight solutions. [2] Bartoli E., Devara E., Dang H. Q., Rabinovich R., Mathura R. K., Anand A., … Shofty B. (2024). Default mode network electrophysiological dynamics and causal role in creative thinking. [3] Beaty R. E., Benedek M., Barry Kaufman S., & Silvia P. J. (2015). Default and executive network coupling supports creative idea production. [4] Benedek M., Christensen A. P., Fink A., & Beaty R. E. (2019). Creativity assessment in neuroscience research. [5] Betzel R. F., Erickson M. A., Abell M., O'Donnell B. F., Hetrick W. P., & Sporns O. (2012). Synchronization dynamics and evidence for a repertoire of network states in resting EEG. [6] Bieth T., Ovando-Tellez M., Lopez‐Persem A., Garcin B., Hugueville L., Lehongre K.,. Volle E. (2024). Time course of EEG power during creative problem‐solving with insight or remote thinking. [7] Bilalić M., Graf M., Vaci N., & Danek A. H. (2021). The temporal dynamics of insight problem solving-restructuring might not always be sudden. [8] Bowden, E. M., & Jung-Beeman, M. (2003). Normative data for 144 compound remote associate problems. [9] Bréchet L., Brunet D., Birot G., Gruetter R., Michel C. M., & Jorge J. (2019). Capturing the spatiotemporal dynamics of self-generated, task-initiated thoughts with EEG and fMRI. [10] Britz J., Van De Ville D., & Michel C. M. (2010). BOLD correlates of EEG topography reveal rapid resting-state network dynamics. [11] Brouwer, H., & Hoeks, J. C. (2013). A time and place for language comprehension: Mapping the N400 and the P600 to a minimal cortical network. [12] Croce P., Zappasodi F., Spadone S., & Capotosto P. (2018). Magnetic stimulation selectively affects pre-stimulus EEG microstates. [13] Custo A., Van De Ville D., Wells W. M., Tomescu M. I., Brunet D., & Michel C. M. (2017). Electroencephalographic resting-state networks: Source localization of microstates. [14] Darsaud A., Wagner U., Balteau E., Desseilles M., Sterpenich V., Vandewalle G., … Maquet P. (2011). Neural precursors of delayed insight. [15] Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. [16] Dijksterhuis, A., & Nordgren, L. F. (2006). A theory of unconscious thought. [17] Dohmatob E., Dumas G., & Bzdok D. (2020). Dark control: The default mode network as a reinforcement learning agent. [18] Erickson B., Truelove-Hill M., Oh Y., Anderson J., Zhang F. Z., & Kounios J. (2018). Resting-state brain oscillations predict trait-like cognitive styles. [19] Fink A., Graif B., & Neubauer A. C. (2009). Brain correlates underlying creative thinking: EEG alpha activity in professional vs. novice dancers. [20] Fleck, J. I., & Kounios, J. (2009). Intuition, creativity, and unconscious aspects of problem solving. In W. P. Banks (Ed.), [21] Gao, Y., & Zhang, H. (2014). Unconscious processing modulates creative problem solving: Evidence from an electrophysiological study. [22] Gilhooly, K. J. (2016). Incubation and intuition in creative problem solving. [23] Haavold, P. Ø., & Sriraman, B. (2022). Creativity in problem solving: Integrating two different views of insight. [24] Hill A. T., Bailey N. W., Zomorrodi R., Hadas I., Kirkovski M., Das S., Lum J. A. G., & Enticott P. G. (2023). EEG microstates in early‐to‐middle childhood show associations with age, biological sex, and alpha power. [25] Huang F., Zhao Q., Zhou Z., & Luo J. (2019). People got lost in solving a set of similar problems. [26] Jung-Beeman M., Bowden E. M., Haberman J., Frymiare J. L., Arambel-Liu S., Greenblatt R.,. Kounios J. (2004). Neural activity when people solve verbal problems with insight. [27] Khanna A., Pascual-Leone A., Michel C. M., & Farzan F. (2015). Microstates in resting-state EEG: Current status and future directions. [28] Koenig T., Prichep L., Lehmann D., Sosa P. V., Braeker E., Kleinlogel H.,. John E. R. (2002). Millisecond by millisecond, year by year: Normative EEG microstates and developmental stages. [29] Kohler, W. (1985). [30] Lehmann D., Ozaki H., & Pál I. (1987). EEG alpha map series: Brain micro-states by space-oriented adaptive segmentation. [31] Lehmann D., Pascual-Marqui R. D., & Michel C. (2009). EEG microstates. [32] Leszczynski M., Chaieb L., Reber T. P., Derner M., Axmacher N., & Fell J. (2017). Mind wandering simultaneously prolongs reactions and promotes creative incubation. [33] Lin J., Chen Y., Xie J., & Mo L. (2022). Altered brain connectivity patterns of individual differences in insightful problem solving. [34] Liu C., Tu S., Guan J., Zhou Z., Ma J., & Shi Z. (2024). How does unconscious processing promote creative problem-solving? An examination using priming methods. [35] Liu D., Hao L., Han L., Zhou Y., Qin S., Niki K., … Luo J. (2023). The optimal balance of controlled and spontaneous processing in insight problem solving: fMRI evidence from Chinese idiom guessing. [36] Liu Y., Nour M. M., Schuck N. W., Behrens T. E. J., & Dolan R. J. (2022). Decoding cognition from spontaneous neural activity. [37] Lloyd-Cox J., Chen Q., & Beaty R. E. (2022). The time course of creativity: Multivariate classification of default and executive network contributions to creative cognition over time. [38] Lopez K. L., Monachino A. D., Morales S., Leach S. C., Bowers M. E., & Gabard-Durnam L. J. (2022). HAPPILEE: HAPPE In Low Electrode Electroencephalography, a standardized pre-processing software for lower density recordings. [39] Lu, Y., & Singer, W. (2023). Dynamic signatures of the Eureka effect: An EEG study. [40] Luo, J. (2004). Neural correlates of insight. [罗劲. (2004). 顿悟的大脑机制. [41] Mai X. Q., Luo J., Wu J. H., & Luo Y. J. (2004). “Aha!” effects in a guessing riddle task: An ERP study. [42] Michel C. M., Bréchet L., Schiller B., & Koenig T. (2024). Current state of EEG/ERP microstate research. [43] Musso F., Brinkmeyer J., Mobascher A., Warbrick T., & Winterer G. (2010). Spontaneous brain activity and EEG microstates. A novel EEG/fMRI analysis approach to explore resting-state networks. [44] Oostenveld R., Fries P., Maris E., & Schoffelen J. M. (2011). FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. [45] Pan D. N., Hoid D., Gu R. L., & Li X. (2020). Emotional working memory training reduces rumination and alters the EEG microstate in anxious individuals. [46] Pan M. W., Song J. Q., & Deng H. (2019). Development and validation of self-rating scales in online English writing diagnostic tests. [潘鸣威, 宋杰青, 邓华. (2019). 在线英语写作诊断测评中自评量表的开发与效度验证. [47] Poulsen A. T., Pedroni A., Langer N., & Hansen L. K. (2018). Microstate EEGlab toolbox: An introductory guide.BioRxiv, 289850. [48] Qiu J., Li H., Jou J., Liu J., Luo Y., Feng T.,. Zhang Q. (2010). Neural correlates of the “Aha” experiences: Evidence from an fMRI study of insight problem solving. [49] Ritter, S. M., & Dijksterhuis, A. (2014). Creativity-the unconscious foundations of the incubation period. [50] Rominger C., Papousek I., Perchtold C. M., Weber B., Weiss E. M., & Fink A. (2018). The creative brain in the figural domain: Distinct patterns of EEG alpha power during idea generation and idea elaboration. [51] Satpute, A. B., & Lindquist, K. A. (2019). The default mode network’s role in discrete emotion. [52] Schiller B., Gianotti L. R., Baumgartner T., Nash K., Koenig T., & Knoch D. (2016). Clocking the social mind by identifying mental processes in the IAT with electrical neuroimaging. [53] Shen W. B., Liu C., Luo J., & Yu J. (2012). Brain perceived intuitively mental impasses in insight problem solving: An ERP study. [沈汪兵, 刘昌, 罗劲, 余洁. (2012). 顿悟问题思维僵局早期觉察的脑电研究. [54] Shen W., Tong Y., Li F., Yuan Y., Hommel B., Liu C., & Luo J. (2018). Tracking the neurodynamics of insight: A meta-analysis of neuroimaging studies. [55] Sun Y., Cai Y., & Lu S. (2015). Hemispheric asymmetry in the influence of language on visual perception. [56] Tan T., Zou H., Chen C., & Luo J. (2015). Mind wandering and the incubation effect in insight problem solving. [57] Tarailis P., Koenig T., Michel C. M., & Griškova-Bulanova I. (2024). The functional aspects of resting EEG microstates: A systematic review. [58] Van Der Werf J., Jensen O., Fries P., & Medendorp W. P. (2008). Gamma-band activity in human posterior parietal cortex encodes the motor goal during delayed prosaccades and antisaccades. [59] Wang H., Guo Y., Tu Y., Peng W., Lu X., Bi Y., Iannetti G. D., & Hu L. (2023). Neural processes responsible for the translation of sustained nociceptive inputs into subjective pain experience. [60] Wang T., Zhang Q., Li H., Qiu J., Tu S., & Yu C. (2009). The time course of Chinese riddles solving: Evidence from an ERP study. [61] Yang, J. (2012). The role of the right hemisphere in metaphor comprehension: A meta-analysis of functional magnetic resonance imaging studies. [62] Yeshurun Y., Nguyen M., & Hasson U. (2021). The default mode network: Where the idiosyncratic self meets the shared social world. [63] Yu Y., Oh Y., Kounios J., & Beeman M. (2022). Dynamics of hidden brain states when people solve verbal puzzles. [64] Yue L., Iannetti G. D., & Hu L. (2020). The neural origin of nociceptive-Induced gamma-band oscillations. [65] Zanesco A. P., Denkova E., & Jha A. P. (2021). Self-reported mind wandering and response time variability differentiate prestimulus electroencephalogram microstate dynamics during a sustained attention task. [66] Zhao Q., Li S., Chen S., Zhou Z., & Cheng L. (2015). Dynamic neural processing mode of creative problem solving. [赵庆柏, 李松清, 陈石, 周治金, 成良. (2015). 创造性问题解决的动态神经加工模式. [67] Zhao Q., Wei L., Li Y., Zhou Z., Zhao L., & Tang L. (2017). Right hemispheric dominance in forming novel semantic associations. [赵庆柏, 魏琳琳, 李瑛, 周治金, 赵黎莉, 唐磊. (2017). 新颖语义联结形成的右半球优势效应. [68] Zhou S., Chen S., Wang S., Zhao Q., Zhou Z., & Lu C. (2018). Temporal and spatial patterns of neural activity associated with information selection in open-ended creativity. |
| [1] | LI Xiaoyun, WU Qiqi, JIANG Liwen, LU Xuejing, PENG Weiwei. Neural mechanisms of binaural beats in pain modulation [J]. Acta Psychologica Sinica, 2026, 58(3): 500-515. |
| [2] | JIANG Luyao, LI Bingbing. Subliminal speech priming of Mandarin Chinese: Evidence from auditory masked priming paradigm [J]. Acta Psychologica Sinica, 2023, 55(4): 529-541. |
| [3] | ZHAO Jiaxu, BAO Min. A method for studying unconscious motion processing based on the camouflage principle [J]. Acta Psychologica Sinica, 2022, 54(7): 725-735. |
| [4] | Junchen SHANG, Zhihui LIU, Wenfeng CHEN, Xiaolan FU. Influence of aesthetics on unconscious processing of western paintings [J]. Acta Psychologica Sinica, 2018, 50(7): 693-702. |
| [5] | LUO Ting, QIU Ruyi, CHEN Bin, FU Shimin. The stimulus representation of unconscious information and its temporal characteristics [J]. Acta Psychologica Sinica, 2018, 50(5): 473-482. |
| [6] | ZHANG Xiuling, PANG Zhaoyang, JIANG Yunpeng, ZHANG Ming, JIANG Yi. Access to awareness is improved by affective learning [J]. Acta Psychologica Sinica, 2018, 50(3): 253-259. |
| [7] | ZHANG Xiu-Ling;DONG Bo;JIANG Yun-Peng;ZHANG Ming. The Gestalt in Unconscious Processing: Evidence for the Unconscious Binding Hypothesis [J]. Acta Psychologica Sinica, 2012, 44(12): 1563-1570. |
| [8] | WANG Rui-Ming,WU Di,ZOU Yan-Rong,ZHOU Ai-Si,ZENG Xiang-Yan. The Influence of Coherence on the Consciousness of Text Representation [J]. , 2011, 43(10): 1114-1123. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||