Acta Psychologica Sinica ›› 2022, Vol. 54 ›› Issue (6): 628-645.doi: 10.3724/SP.J.1041.2022.00628
• Reports of Empirical Studies • Previous Articles Next Articles
CHEN Li(), SHI Xiao-ke, LI Wei-na, HU Yan
Received:
2021-07-08
Published:
2022-06-25
Online:
2022-04-26
Contact:
CHEN Li
E-mail:Chenli_198286@163.com
Supported by:
CHEN Li, SHI Xiao-ke, LI Wei-na, HU Yan. (2022). Influence of cognitive control based on different conflict levels on the expression of gender stereotypes. Acta Psychologica Sinica, 54(6), 628-645.
Add to citation manager EndNote|Ris|BibTeX
URL: https://journal.psych.ac.cn/acps/EN/10.3724/SP.J.1041.2022.00628
Conflict level | Initiating stimulus × target stimulus | Accuracy rate | Reaction time | Overall accuracy | Total reaction time |
---|---|---|---|---|---|
High conflict | Male-work | 0.96 (0.01) | 452.89 (14.63) | 0.96 (0.01) | 451.74 (12.90) |
Male-family | 0.94 (0.01) | 451.04 (13.24) | |||
Femail-work | 0.96 (0.01) | 451.97 (13.54) | |||
Femail-family | 0.96 (0.01) | 451.05 (14.07) | |||
Baseline | Male-work | 0.96 (0.01) | 456.01 (13.58) | 0.95 (0.01) | 455.46 (12.38) |
Male-family | 0.94 (0.01) | 461.46 (13.44) | |||
Femail-work | 0.95 (0.01) | 456.98 (13.31) | |||
Femail-family | 0.94 (0.01) | 447.39 (12.37) | |||
Low conflict | Male-work | 0.96 (0.01) | 453.36 (14.49) | 0.95 (0.01) | 459.34 (13.97) |
Male-family | 0.95 (0.01) | 459.01 (14.86) | |||
Femail-work | 0.95 (0.01) | 466.83 (15.21) | |||
Femail-family | 0.95 (0.01) | 458.16 (15.20) |
Table 1 Accuracy and response time (ms) of target classification under different conflict levels and target stimuli [M (SE)]
Conflict level | Initiating stimulus × target stimulus | Accuracy rate | Reaction time | Overall accuracy | Total reaction time |
---|---|---|---|---|---|
High conflict | Male-work | 0.96 (0.01) | 452.89 (14.63) | 0.96 (0.01) | 451.74 (12.90) |
Male-family | 0.94 (0.01) | 451.04 (13.24) | |||
Femail-work | 0.96 (0.01) | 451.97 (13.54) | |||
Femail-family | 0.96 (0.01) | 451.05 (14.07) | |||
Baseline | Male-work | 0.96 (0.01) | 456.01 (13.58) | 0.95 (0.01) | 455.46 (12.38) |
Male-family | 0.94 (0.01) | 461.46 (13.44) | |||
Femail-work | 0.95 (0.01) | 456.98 (13.31) | |||
Femail-family | 0.94 (0.01) | 447.39 (12.37) | |||
Low conflict | Male-work | 0.96 (0.01) | 453.36 (14.49) | 0.95 (0.01) | 459.34 (13.97) |
Male-family | 0.95 (0.01) | 459.01 (14.86) | |||
Femail-work | 0.95 (0.01) | 466.83 (15.21) | |||
Femail-family | 0.95 (0.01) | 458.16 (15.20) |
Conflict level | proctive control | Reaction Control |
---|---|---|
High conflict | 0.92 (0.01) | 0.79 (0.06) |
Baseline | 0.90 (0.01) | 0.49 (0.06) |
Low conflict | 0.91 (0.01) | 0.42 (0.06) |
Table 2 Estimation of proctive control and reactive control under different conflict levels [M (SE)]
Conflict level | proctive control | Reaction Control |
---|---|---|
High conflict | 0.92 (0.01) | 0.79 (0.06) |
Baseline | 0.90 (0.01) | 0.49 (0.06) |
Low conflict | 0.91 (0.01) | 0.42 (0.06) |
Conflict level | Accuracy (%) | Reaction Time (ms) |
---|---|---|
High conflict | 0.96 (0.01) | 467.78 (9.77) |
Baseline | 0.95 (0.01) | 456.70 (8.13) |
Low conflict | 0.94 (0.01) | 442.45 (10.17) |
Table 3 The correct rate and reaction time of classifying and distinguishing target stimuli under different conflict levels
Conflict level | Accuracy (%) | Reaction Time (ms) |
---|---|---|
High conflict | 0.96 (0.01) | 467.78 (9.77) |
Baseline | 0.95 (0.01) | 456.70 (8.13) |
Low conflict | 0.94 (0.01) | 442.45 (10.17) |
Conflict level | proctive control | Reaction Control |
---|---|---|
High conflict | 0.93 (0.01) | 0.69 (0.05) |
Baseline | 0.90 (0.01) | 0.63 (0.05) |
Low conflict | 0.88 (0.01) | 0.56 (0.06) |
Table 4 Estimation of proctive control and reproctive control under different conflict levels [M (SE)]
Conflict level | proctive control | Reaction Control |
---|---|---|
High conflict | 0.93 (0.01) | 0.69 (0.05) |
Baseline | 0.90 (0.01) | 0.63 (0.05) |
Low conflict | 0.88 (0.01) | 0.56 (0.06) |
Conflict level | Accuracy (%) | Reaction Time (ms) |
---|---|---|
High conflict | 0.91 (0.01) | 525.33 (15.81) |
Baseline | 0.87 (0.01) | 513.87 (13.10) |
Low conflict | 0.87 (0.01) | 465.52 (13.22) |
Table 5 The correct rate and reaction time of classifying and distinguishing target stimuli under different conflict levels
Conflict level | Accuracy (%) | Reaction Time (ms) |
---|---|---|
High conflict | 0.91 (0.01) | 525.33 (15.81) |
Baseline | 0.87 (0.01) | 513.87 (13.10) |
Low conflict | 0.87 (0.01) | 465.52 (13.22) |
Conflict level | proctive control | Reaction Control |
---|---|---|
High conflict | 0.81(0.02) | 0.61(0.04) |
Baseline | 0.74(0.03) | 0.56(0.03) |
Low conflict | 0.74(0.03) | 0.59(0.03) |
Table 6 Estimation of proctive control and reproctive control under different conflict levels [M (SE)]
Conflict level | proctive control | Reaction Control |
---|---|---|
High conflict | 0.81(0.02) | 0.61(0.04) |
Baseline | 0.74(0.03) | 0.56(0.03) |
Low conflict | 0.74(0.03) | 0.59(0.03) |
Conflict level | Accuracy (%) | Reaction time (ms) |
---|---|---|
High conflict | 0.90 (0.01) | 646.79 (10.21) |
Baseline | 0.85 (0.02) | 658.10 (9.17) |
Low conflict | 0.83 (0.02) | 634.94 (9.60) |
Table 7 The correct rate and reaction time of classifying and distinguishing target stimuli under different conflict levels
Conflict level | Accuracy (%) | Reaction time (ms) |
---|---|---|
High conflict | 0.90 (0.01) | 646.79 (10.21) |
Baseline | 0.85 (0.02) | 658.10 (9.17) |
Low conflict | 0.83 (0.02) | 634.94 (9.60) |
Conflict level | proctive control | Reaction Control |
---|---|---|
High conflict | 0.80 (0.02) | 0.55 (0.04) |
Baseline | 0.70 (0.03) | 0.58 (0.03) |
Low conflict | 0.66 (0.04) | 0.59 (0.03) |
Table 8 Estimation of proctive control and reproctive control under different conflict levels [M (SE)]
Conflict level | proctive control | Reaction Control |
---|---|---|
High conflict | 0.80 (0.02) | 0.55 (0.04) |
Baseline | 0.70 (0.03) | 0.58 (0.03) |
Low conflict | 0.66 (0.04) | 0.59 (0.03) |
[1] |
Amodio, D. M., Devine, P. G., & Harmon-Jones, E. (2008). Individual differences in the regulation of intergroup bias: The role of conflict monitoring and neural signals for control. Journal of Personality and Social Psychology, 94(1), 60-74.
doi: 10.1037/0022-3514.94.1.60 pmid: 18179318 |
[2] |
Amodio, D. M., Harmon-Jones, E., Devine, P. G., Curtin, J. J., Hartley, S. L., & Covert, A. E. (2004). Neural signals for the detection of unintentional race bias. Psychological Science, 15(2), 88-93.
doi: 10.1111/j.0963-7214.2004.01502003.x pmid: 14738514 |
[3] |
Amodio, D. M., & Swencionis, J. K. (2018). Proproctive control of implicit bias: A theoretical model and implications for behavior change. Journal of Personality and Social Psychology, 115(2), 255- 275.
doi: 10.1037/pspi0000128 pmid: 30024242 |
[4] |
Appelbaum, L. G., Boehler, C. N., Davis, L. A., Won, R. J., & Woldorff, M. G. (2014). The Dynamics of Proactive and Reactive Cognitive Control Processes in the Human Brain. Journal of Cognitive Neuroscience, 26(5), 1021-1038.
doi: 10.1162/jocn_a_00542 pmid: 24345171 |
[5] |
Bailey, K., West, R., & Anderson, C. (2010). A negative association between video game experience and proactive cognitive control. Psychophysiology, 47(1), 34-42.
doi: 10.1111/j.1469-8986.2009.00925.x pmid: 19818048 |
[6] |
Bartholow, B. D., & Dickter, C. L. (2008). A response conflict account of the effects of stereotypes on racial categorization. Social Cognition, 26(3), 314-332.
doi: 10.1521/soco.2008.26.3.314 URL |
[7] |
Blair, I. V., & Banaji, M. R. (1996). Automatic and controlled processes in stereotype priming. Journal of Personality and Social Psychology, 70(6), 1142-1163.
doi: 10.1037/0022-3514.70.6.1142 URL |
[8] |
Braver, T. S. (2012). The variable nature of cognitive control: A dual mechanisms framework. Trends in Cognitive Sciences, 16(2), 106- 113.
doi: 10.1016/j.tics.2011.12.010 pmid: 22245618 |
[9] | Braver, T. S., Gray, J. R., & Burgess, G. C. (2007). Explaining the many varieties of working memory variation:Dual mechanisms of cognitive control. In A. R. A. Conway, C. Jarrold, M. J. Kane (Eds.) & A. Miyake & J. N. Towse (Ed.), Variation in working memory (pp. 76-106). Oxford University Press. |
[10] | Braver, T. S., Paxton, J. L., Locke, H. S., & Barch, D. M. (2009). Flexible neural mechanisms of cognitive control within human prefrontal cortex. Proceedings of the National Academy of Sciences of the United States of America, 106(18), 7351-7356. |
[11] |
Brown, J. W., Reynolds, J. R., & Braver, T. S. (2007). A computational model of fractionated conflict-control mechanisms in task- switching. Cognitive Psychology, 55(1), 37-85.
doi: 10.1016/j.cogpsych.2006.09.005 URL |
[12] |
Bugg, J. M., & Braver, T. S. (2016). Proproctive control of irrelevant task rules during cued task switching. Psychological Research, 80(5), 860-876.
doi: 10.1007/s00426-015-0686-5 URL |
[13] |
Bukowski, M., de Lemus, S., Marzecová, A., Lupiáez, J., & Goclowska, M. A. (2019). Different faces oF (un)controllability: Control restoration modulates the efficiency of task switching. Motivation and Emotion, 43(1), 12-34
doi: 10.1007/s11031-018-9745-8 |
[14] | Chen, L. (2011). The schema and specificity of stereotype representation (Unpublished doctoral dissertation). Shanghai Normal University. |
[15] | Croft, A. (2016). Men's roles and women's goals: Causes, consequences, and complementarity (Unpublished doctoral dissertation). University of British Columbia. |
[16] | Cui, Y. C. (2016). The cognitive control of impression formation on perception conflict (Unpublished doctoral dissertation). Shanghai Normal University. |
[17] | Cundiff, J. L., & Vescio, T. K. (2016). Gender stereotypes influence how people explain gender disparities in the workplace. Sex Roles, 75(3-4), 126-138. |
[18] |
Dickter, C. L., & Bartholow, B. D. (2010). Ingroup categorization and response conflict: interactive effects of target race, flanker compatibility, and infrequency on N2 amplitude. Psychophysiology, 47(3), 596-601.
doi: 10.1111/j.1469-8986.2010.00963.x pmid: 20136734 |
[19] | Eagly, A. H. (1987). Sex differences in social behavior: A social-role interpretation. Hillsdale, NJ:Erlbaum. Los Angeles, CA: The University of California Press. |
[20] |
Eagly, A. H., & Steffen, V. J. (1984). Gender stereotypes stem from the distribution of women and men into social roles. Journal of Personality and Social Psychology, 46(4), 735-754.
doi: 10.1037/0022-3514.46.4.735 URL |
[21] |
Egner, T. (2008). Multiple conflict-driven control mechanisms in the human brain. Trends in Cognitive Sciences, 12(10), 374-380.
doi: 10.1016/j.tics.2008.07.001 URL |
[22] |
Faul, F., Erdfelder, E., Buchner, A., & Lang, A. G. (2009). Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods, 41, 1149-1160.
doi: 10.3758/BRM.41.4.1149 URL |
[23] | Fazio, R. H. (1990). Multiple processes by which attitudes guide behavior: The MODE model as an integrative framework. Advances in Experimental Social Psychology, 23, 75-109. |
[24] |
Freitas, A. L., Bahar, M., Yang, S., & Banai, R. (2007). Contextual adjustments in cognitive control across tasks. Psychological Science, 18(2), 1040-1043.
doi: 10.1111/j.1467-9280.2007.02022.x URL |
[25] |
Funes, M. J., Lupianez, J., & Humphreys, G. (2010). Sustained vs. transient cognitive control: Evidence of a behavioral dissociation. Cognition, 114(3), 338-347.
doi: 10.1016/j.cognition.2009.10.007 URL |
[26] |
Gonthier, C., Ambrosi, S., & Blaye, A. (2021). Learning-based before intentional cognitive control: Developmental evidence for a dissociation between implicit and explicit control. Journal of Experimental Psychology: Learning, Memory, and Cognition, 47(10), 1660-1685.
doi: 10.1037/xlm0001005 URL |
[27] |
Gratton, G., Coles, M. G. H., & Donchin, E. (1992). Optimizing the use of information: Strategic control of activation of responses. Journal of Experimental Psychology: General, 121(4), 480-506.
doi: 10.1037/0096-3445.121.4.480 URL |
[28] |
Hazeltine, E., Lightman, E., Schwarb, H., & Schumacher, E. H. (2011). The boundaries of sequential modulations: Evidence for set-level control. Journal of Experimental Psychology: Human Perception and Performance, 37(6), 1898-1914.
doi: 10.1037/a0024662 URL |
[29] |
Hilgard, J., Bartholow, B. D., Dickter, C. L., & Blanton, H. (2015). Characterizing switching and congruency effects in the Implicit association Test as reactive and proactive cognitive control. Social Cognitive and Affective Neuroscience, 10(3), 381-388.
doi: 10.1093/scan/nsu060 pmid: 24812074 |
[30] |
Jacoby, L. L. (1991). A process dissociation framework: Separating automatic from intentional uses of memory. Journal of Memory and Language, 30(5), 513-541.
doi: 10.1016/0749-596X(91)90025-F URL |
[31] | Jacoby, L. L., Kelley, C. M., & McElree, B. D. (1999). The role of cognitive control:Early selection versus late correction. In S. Chaiken & Y. Trope (Eds.), Dual process theories in social psychology (pp.383-400). New York, NY: Guilford Press. |
[32] |
Jia, L., Zhu, S. R., Zhang, C. J., & Zhang, Q. L. (2016). The distributed semantic representation and activation processes of the implicit and explicit stereotypes: An examination based on the perspective of cognitive neuroscience. Advances in Psychological Science, 24(10), 1519-1533.
doi: 10.3724/SP.J.1042.2016.01519 URL |
[33] |
Kidder, C. K., White, K. R., Hinojos, M. R., Sandoval, M., & Crites, S. L. (2018). Sequential stereotype priming: A meta-analysis. Personality and Social Psychology Review, 22(3), 199-227.
doi: 10.1177/1088868317723532 pmid: 28836887 |
[34] |
Kleiman, T., Hassin, R. R., & Trope, Y. (2014). The control-freak mind: Stereotypical biases are eliminated following conflict-activated cognitive control. Journal of Experimental Psychology: General, 143(2), 498-503.
doi: 10.1037/a0033047 URL |
[35] |
Lai, C. K., Skinner, A. L., Cooley, E., Murrar, S., Brauer, M., Devos, T., & Nosek, B. A. (2016). Reducing implicit racial preferences: II. Intervention effectiveness across time. Journal of Experimental Psychology: General, 145(8), 1001-1016.
doi: 10.1037/xge0000179 URL |
[36] | Liu, H. D. (2018). A research on gender role attitude, mate preference and the relationship between the two of college students (Unpublished master dissertation). Sichuan Normal University, China. |
[37] |
Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24(1), 167-202.
doi: 10.1146/annurev.neuro.24.1.167 URL |
[38] |
Payne, B. K. (2001). Prejudice and perception: The role of automatic and controlled processes in misperceiving a weapon. Journal of Personality and Social Psychology, 81(2), 181-192.
pmid: 11519925 |
[39] |
Purmann, S., Badde, S., Luna-Rodriguez, A., & Wendt, M. (2011). Adaptation to frequent conflict in the Eriksen flanker task. Journal of Psychophysiology, 25(2), 50-59.
doi: 10.1027/0269-8803/a000041 URL |
[40] | Qiu, L., Zheng, X., & Wang, Y, F. (2008). Revison of the positive affect and negative affect scale. Chinese Journal of Applied Psychology, 14(03), 249-254. |
[41] | Rajadhyaksha, U., Korabik, K., & Aycan, Z. (2015). Gender, gender-role ideology, and the work-family interface:A cross-cultural analysis. In M. Mikks (Ed.),Gender and the Work-Family Experience: An Intersection of Two Domains. Springer International Publishing. |
[42] |
Ren, N., Zuo, B., Hou, F. X., & Wang, G. J. (2012). Context effect or automatic process? The implicit attitude of undergraduates to old people. Acta Psychologica Sinica, 44(06), 777-788.
doi: 10.3724/SP.J.1041.2012.00777 URL |
[43] |
Rudman, L. A., & Kilianski, S. E. (2000). Implicit and explicit attitudes toward female authority. Personality and Social Psychology Bulletin, 26(11), 1315-1328.
doi: 10.1177/0146167200263001 URL |
[44] |
Schmid, P. C., Kleiman, T., & Amodio, D. M. (2015). Neural mechanisms of proactive and reactive cognitive control in social anxiety. Cortex, 70, 137-145.
doi: 10.1016/j.cortex.2015.05.030 pmid: 26166457 |
[45] |
Schmidt, J. R. (2019). Evidence against conflict monitoring and adaptation: An updated review. Psychonomic Bulletin & Review, 26, 753-771.
doi: 10.3758/s13423-018-1520-z URL |
[46] | Sherman, J. W. (1996). Development and mental representation of stereotypes. Journal of Personality & Social Psychology, 70(6), 1126-1141. |
[47] |
Sherman, J. W., Gawronski, B., Gonsalkorale, K., Hugenberg, K., Allen, T. J., & Groom, C. J. (2008). The self-regulation of automatic associations and behavioral impulses. Psychological Review, 115(2), 314-335.
doi: 10.1037/0033-295X.115.2.314 URL |
[48] |
van Rooy, D., van Overwalle, F., Vanhoomissen, T., Labiouse, C., & French, R. (2003). A recurrent connectionist model of group biases. Psychological Review, 110(3), 536-563.
doi: 10.1037/0033-295X.110.3.536 URL |
[49] |
van Veen, V., & Carter, C. S. (2005). Separating semantic conflict and response conflict in the Stroop task: A functional MRI study. NeuroImage, 27(3), 497-504.
doi: 10.1016/j.neuroimage.2005.04.042 URL |
[50] |
Wang, P., Yang, Y. P., & Zhao, L. (2010). The activation of stereotypes: Behavioral and ERPs evidence. Acta Psychologica Sinica, 42(5), 607-617.
doi: 10.3724/SP.J.1041.2010.00607 URL |
[51] | Wu, M. L. (2017). The relationship between egalitarian sex role attitudes of China dual-earner couples and their marital quality (Unpublished master dissertation). Southwest University, Chongqing, China. |
[52] | Yuan, F. (2015). Cognitive monitoring in different contexts: The effect of conflict adaptation on gender stereotype (Unpublished master dissertation). Shaanxi Normal University, China. |
[53] |
Yuan, J., Tian, Y., Huang, X., Fan, H., & Wei, X. (2019). Emotional bias varies with stimulus type, arousal and task setting: Meta-analytic evidences. Neuroscience & Biobehavioral Reviews, 107, 461-472.
doi: 10.1016/j.neubiorev.2019.09.035 URL |
[54] |
Zhang, M. K., Li, Q., Yi, S. H., & Chen, A. T. (2021). Changes in the level of conflict trigger conflict adaptation. Acta Psychologica Sinica, 53(2), 128-138.
doi: 10.3724/SP.J.1041.2021.00128 URL |
[1] | ZUO Bin, DAI Yuee, WEN Fangfang, GAO Jia, XIE Zhijie, HE Saifei. “You were what you eat”: Food-gender stereotypes and their impact on evaluation of impression [J]. Acta Psychologica Sinica, 2021, 53(3): 259-272. |
[2] | WANG Lijun, SUO Tao, ZHAO Guoxiang. The influence of unaware errors on post-error adjustment: Evidence from electrophysiological analysis [J]. Acta Psychologica Sinica, 2020, 52(10): 1189-1198. |
[3] | WU Yan,GAO Yuefei,ZHAO Simin,WANG Suiping. The effects of discourse context and world knowledge on pronoun resolution [J]. Acta Psychologica Sinica, 2019, 51(3): 293-303. |
[4] | CUI Yichen, WANG Pei, CUI Yajuan. Cognitive control strategies from the perspective of perceptual conflict: An example of stereotyped information and counterstereotyped information [J]. Acta Psychologica Sinica, 2019, 51(10): 1157-1170. |
[5] | QIU Li-Jing;WANG Sui-Ping;CHEN Hsuan-Chih. Pronoun Processing during Language Comprehension:The Effects of Distance and Gender Stereotype [J]. Acta Psychologica Sinica, 2012, 44(10): 1279-1288. |
[6] | Wang-Pei,Sun-Lianrong. The Information Processing Mode of ADs’ Gender Stereotype [J]. , 2005, 37(06): 819-825. |
[7] | Wang Pei, Gao Ying. GENDER EXCLUSION IN CHILDREN PEER GROUP ACTIVITY [J]. , 2004, 36(03): 340-346. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||