Acta Psychologica Sinica ›› 2020, Vol. 52 ›› Issue (11): 1253-1265.doi: 10.3724/SP.J.1041.2020.01253
• Reports of Empirical Studies • Next Articles
TONG DanDan1,2, LI WenFu3, LU Peng1, YANG WenJing2, YANG Dong2, ZHANG QingLin2(), QIU Jiang2()
Received:
2019-12-20
Published:
2020-11-25
Online:
2020-10-10
Contact:
ZHANG QingLin,QIU Jiang
E-mail:zhangql@swu.edu.cn;qiuj318@swu.edu.cn
Supported by:
TONG DanDan, LI WenFu, LU Peng, YANG WenJing, YANG Dong, ZHANG QingLin, QIU Jiang. (2020). The neural basis of scientific innovation problem finding. Acta Psychologica Sinica, 52(11), 1253-1265.
Measurement index | Mean number | 95% CI | Standard deviation | Minimum value | Maximum value | Score range |
---|---|---|---|---|---|---|
Novelty problem | 0.89 | 0.86 ~ 0.91 | 0.14 | 0.11 | 1.00 | 0.89 |
Validity problem | 0.33 | 0.28 ~ 0.38 | 0.26 | 0.00 | 0.89 | 0.89 |
Table 1 Mean and standard deviation of the rate of creative scientific problem finding
Measurement index | Mean number | 95% CI | Standard deviation | Minimum value | Maximum value | Score range |
---|---|---|---|---|---|---|
Novelty problem | 0.89 | 0.86 ~ 0.91 | 0.14 | 0.11 | 1.00 | 0.89 |
Validity problem | 0.33 | 0.28 ~ 0.38 | 0.26 | 0.00 | 0.89 | 0.89 |
Cerebral area | Hemispheres | MNI | T value (maximum point) | (Voxels) | ES f 2 | ||
---|---|---|---|---|---|---|---|
X | Y | Z | |||||
ALFF is positively correlated with the proposed rate of novel validity problem | |||||||
vmPFC | L | -6 | 12 | -18 | 3.51 | 74 | 0.19 |
anterior cerebellum | R | 9 | -42 | -30 | 4.53 | 124 | 0.25 |
Table 2 ALFF and novel validity questions were presented with rates significantly correlated to brain regions
Cerebral area | Hemispheres | MNI | T value (maximum point) | (Voxels) | ES f 2 | ||
---|---|---|---|---|---|---|---|
X | Y | Z | |||||
ALFF is positively correlated with the proposed rate of novel validity problem | |||||||
vmPFC | L | -6 | 12 | -18 | 3.51 | 74 | 0.19 |
anterior cerebellum | R | 9 | -42 | -30 | 4.53 | 124 | 0.25 |
[1] |
Alabbasi, A. M. A., & Cramond, B. (2018). The creative problem finding hierarchy: A suggested model for understanding problem finding. Creativity. Theories-Research-Applications, 5(2), 197-229.
doi: 10.1515/ctra-2018-0019 URL |
[2] |
Alabbasi, A. M. A., Paek, S. H., Cramond, B., & Runco, M. A. (2020). Problem finding and creativity: A meta-analytic review. Psychology of Aesthetics, Creativity, and the Arts, 14(1), 3-14
doi: 10.1037/aca0000194 URL |
[3] |
Andreasen, N. C., Ramchandran, K. (2012). Creativity in art and science: Are there two cultures? Dialogues in Clinical Neuroscience, 14(1), 49-54.
URL pmid: 22577304 |
[4] |
Au Duong, M. V., Boulanouar, K., Audoin, B., Treseras, S., Ibarrola, D., Malikova, I., ... Cozzone, P. J. (2005). Modulation of effective connectivity inside the working memory network in patients at the earliest stage of multiple sclerosis. Neuroimage, 24(2), 533-538.
doi: 10.1016/j.neuroimage.2004.08.038 URL pmid: 15627595 |
[5] |
Aziz-Zadeh, L., Kaplan, J. T., & Iacoboni, M. (2009). “Aha!”: The neural correlates of verbal insight solutions. Human Brain Mapping, 30(3), 908-916.
doi: 10.1002/hbm.20554 URL pmid: 18344174 |
[6] | Bai, X. J., Gong, Y. B., Hu, W. P., Han, Q., & Yao, H. J. (2014). The inhibitory mechanism of individuals with different scientific creativity. Studies of Psychology and Behavior, 12(2), 151-155. |
[7] | Beaty, R. E., Benedek, M., Wilkins, R. W., Jauk, E., Fink, A., Silvia, P. J., ... Neubauer, A. C. (2014). Creativity and the default network: A functional connectivity analysis of the creative brain at rest. Neuropsychologia, 64C(2), 92. |
[8] |
Biswal, B., Yetkin, F. Z., Haughton, V. M., & Hyde, J. S. (2010). Functional connectivity in the motor cortex of resting human brain using echo-planar mri. Magnetic Resonance in Medicine, 34(4), 537-541.
doi: 10.1002/mrm.1910340409 URL pmid: 8524021 |
[9] |
Buckner, R. L. (2012). The serendipitous discovery of the brain's default network. Neuroimage, 62(2), 1137-1145.
doi: 10.1016/j.neuroimage.2011.10.035 URL |
[10] |
Cairo, T. A., Liddle, P. F., Woodward, T. S., & Ngan, E. T. (2004). The influence of working memory load on phase specific patterns of cortical activity. Brain Research Cognitive Brain Research, 21(3), 377.
doi: 10.1016/j.cogbrainres.2004.06.014 URL pmid: 15511653 |
[11] |
Chen, B. R., Hu, W. P., & Plucker, J. A. (2016). The effect of mood on problem finding in scientific creativity. The Journal of Creative Behavior, 50(4), 308-320.
doi: 10.1002/jocb.2016.50.issue-4 URL |
[12] | Chen, L. J., Zhang, Q. L., & Cai., Z., (2006). The effect of the stimuli-presenting mode on children's problem-finding in different fields. Journal of Psychological Science, (02), 43-46. |
[13] | Chen, L. J., & Zheng, X. (2011). The exploratory study of cognitive stages in problem-finding process. Psychological Exploration, 31(4), 332-337. |
[14] |
Chen, Q. L., Yang, W. J., Li, W. F., Wei, D. T., Li, H. J., Lei, Q., ... Qiu, J. (2014). Association of creative achievement with cognitive flexibility by a combined voxel-based morphometry and resting-state functional connectivity study. Neuroimage, 102, 474-483.
doi: 10.1016/j.neuroimage.2014.08.008 URL |
[15] | Cheng, L. F., Hu, W. P., Jia, X. J., & Runco, M. A. (2016). The different role of cognitive inhibition in early versus late creative problem finding. Psychology of Aesthetics Creativity & the Arts, 10(1), 32-41. |
[16] |
Chumbley, J. R., & Friston, K. J. (2009). False discovery rate revisited: FDR and topological inference using Gaussian random fields. Neuroimage, 44(1), 62-70.
doi: 10.1016/j.neuroimage.2008.05.021 URL |
[17] |
Darsaud, A., Wagner, U., Balteau, E., Desseilles, M., Sterpenich, V., Vandewalle, G., ... Maquet, P. (2011). Neural precursors of delayed insight. Journal of Cognitive Neuroscience, 23(8), 1900-1910.
doi: 10.1162/jocn.2010.21550 URL |
[18] |
Dietrich, A., & Kanso, R. (2010). A review of EEG, ERP, and neuroimaging studies of creativity and insight. Psychological Bulletin, 136(5), 822.
doi: 10.1037/a0019749 URL pmid: 20804237 |
[19] |
Fan, L. Y., Fan, X. F., Luo, W. C., Wu, G. H., Yan, X., Yin, D. Z., … Xu, D. R. (2014). An explorative fMRI study of human creative thinking using a specially designed iCAD system. Acta Psychologica Sinica, 46(4), 427-436.
doi: 10.3724/SP.J.1041.2014.00427 URL |
[20] |
Faul, F., Erdfelder, E., Buchner, A., & Lang, A. G. (2009). Statistical power analyses using g*power 3.1: Tests for correlation and regression analyses. Behavior Research Methods, 41(4), 1149-1160.
doi: 10.3758/BRM.41.4.1149 URL |
[21] |
Feist, G. J. (1998). A meta-analysis of personality in scientific and artistic creativity. Personality and Social Psychology Review, 2(4), 290-309.
doi: 10.1207/s15327957pspr0204_5 URL pmid: 15647135 |
[22] |
Ferstl, E. C., & Yves von, Cramon D. (2001). The role of coherence and cohesion in text comprehension: An event- related fMRI study. Cognitive Brain Research, 11, 325-340.
doi: 10.1016/S0926-6410(01)00007-6 URL |
[23] |
Fink, A., Grabner, R. H., Gebauer, D., Reishofer, G., Koschutnig, K., & Ebner, F. (2010). Enhancing creativity by means of cognitive stimulation: Evidence from an fmri study. NeuroImage, 52(4), 1687-1695.
doi: 10.1016/j.neuroimage.2010.05.072 URL pmid: 20561898 |
[24] |
Fink, A., Koschutnig, K., Hutterer, L., Steiner, E., Benedek, M., Weber, B., ... Weiss, E. M. (2014). Gray matter density in relation to different facets of verbal creativity. Brain Structure and Function, 219(4), 1263-1269.
doi: 10.1007/s00429-013-0564-0 URL pmid: 23636224 |
[25] |
Fulwiler, C. E., King, J. A., & Zhang, N. (2012). Amygdala- orbitofrontal resting-state functional connectivity is associated with trait anger. Neuroreport, 23(10), 606-610.
doi: 10.1097/WNR.0b013e3283551cfc URL |
[26] |
Gansler, D. A., Moore, D. W., Susmaras, T. M., Jerram, M. W., Sousa, J., & Heilman, K. M. (2011). Cortical morphology of visual creativity. Neuropsychologia, 49(9), 2527-2532.
doi: 10.1016/j.neuropsychologia.2011.05.001 URL |
[27] |
Getzels, J. W. (2011). Problem-finding and the inventiveness of solutions. Journal of Creative Behavior, 9(1), 12-18.
doi: 10.1002/jocb.1975.9.issue-1 URL |
[28] |
Gilbert, S. J., Zamenopoulos, T., Alexiou, K., & Johnson, J. F. (2010). Involvement of right dorsolateral prefrontal cortex in ill-structured design cognition: An fMRI study. Brain Research, 1312(2), 79-88.
doi: 10.1016/j.brainres.2009.11.045 URL |
[29] |
Gilhooly, K. J., Fioratou, E., & Henretty, N. (2011). Verbalization and problem solving: Insight and spatial factors. British Journal of Psychology, 101(1), 81-93.
doi: 10.1348/000712609X422656 URL |
[30] |
Greicius, M. D., Krasnow, B., Reiss, A. L., & Menon, V. (2003). Functional connectivity in the resting brain: A network analysis of the default mode hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 100(1), 253-258.
doi: 10.1073/pnas.0135058100 URL pmid: 12506194 |
[31] |
Hahn, A., Stein, P., Windischberger, C., Weissenbacher, A., Spindelegger, C., Moser, E., ... Lanzenberger, R. (2011). Reduced resting-state functional connectivity between amygdala and orbitofrontal cortex in social anxiety disorder. Neuroimage, 56(3), 881-889.
doi: 10.1016/j.neuroimage.2011.02.064 URL |
[32] |
Han, Q., Hu, W. P., Liu, J., Jia, X. J., & Adey, P. (2013). The influence of peer interaction on students creative problem- finding ability. Creativity Research Journal, 25(3), 248-258.
doi: 10.1080/10400419.2013.813754 URL |
[33] | Hao, X., Cui, S., Li, W. F., Yang, W. J., Qiu, J., & Zhang, Q. L. (2013). Enhancing insight in scientific problem solving by highlighting the functional features of prototypes: An fMRI study. Brain Research, 1534: 46-54. |
[34] |
He, Y., Wang, L., Zang, Y. F., Tian, L., Zhang, X. Q., Li, K., & Jiang, T. (2007). Regional coherence changes in the early stages of Alzheimer’s disease: A combined structural and resting-state functional MRI study. Neuroimage, 35(2), 488-500.
doi: 10.1016/j.neuroimage.2006.11.042 URL |
[35] | Hennessey, B. A., & Amabile, T. M. (2010). Creativity. Social Science Electronic Publishing, 61(1), 569-598. |
[36] | Holman, D. M. (2018). What am I supposed to do? Problem Finding and its impact on Problem Solving. UC Merced. |
[37] |
Houk, J. C. (2005). Agenss of the mind. Biological Cybernetics, 92(6), 427-437.
doi: 10.1007/s00422-005-0569-8 URL |
[38] |
Howard-Jones, P. A., Sarah-Jayne Blakemore., Samuel, E. A., Summers, I. R., & Claxton, G. (2005). Semantic divergence and creative story generation: An fMRI investigation. Brain Res Cogn Brain Res, 25(1), 240-250.
doi: 10.1016/j.cogbrainres.2005.05.013 URL pmid: 15993573 |
[39] |
Hu, W. P., & Adey, P. (2002). A scientific creativity test for secondary school students. International Journal of Science Education, 24(4), 389-403.
doi: 10.1080/09500690110098912 URL |
[40] | Hu, W. P., Cheng, L. F., Jia, X. J., Han, M., & Chen, Y. H. (2015). The influence of Cognitive inhibition to Creative Scientific Problem Finding: Mediating effect of field cognitive style. Studies of Psychology and Behavior, 13(6), 721-728. |
[41] | Hu, W. P., & Han, K. K. (2015). Theoretical research and practical exploration of adolescents’scientific creativity. Psychological Development and Education. 31(1), 44-50. |
[42] |
Hu, W. P., Shi, Q. Z., Han, Q., Wang, X. Q., & Adey, P. (2010). Creative scientific problem finding and its developmental trend. Creativity Research Journal, 22(1), 46-52.
doi: 10.1080/10400410903579551 URL |
[43] | Hu, W. P., & Zhou, P. (2010). The influences of motivation on creative scientific problem finding ability of first year students in high school. Psychological Development and Education. (01), 34-39. |
[44] |
Huang, F., Fan, J., & Luo, J. (2015). The neural basis of novelty and appropriateness in processing of creative chunk decomposition. Neuroimage, 113, 122-132.
doi: 10.1016/j.neuroimage.2015.03.030 URL pmid: 25797834 |
[45] |
Jia, X. J., Hu, W. P., Cai, F. C., Wang, H. H., Li, J., Runco, M. A., & Chen, Y. H. (2017). The influence of teaching methods on creative problem finding. Thinking Skills and Creativity, 24, 86-94.
doi: 10.1016/j.tsc.2017.02.006 URL |
[46] |
Jung-Beeman, M., Bowden, E. M., Haberman, J., Frymiare, J. L., Arambel-Liu, S., Greenblatt, R., ... Kounios, J. (2004). Neural activity when people solve verbal problems with insight. PLoS biology, 2(4), e97.
doi: 10.1371/journal.pbio.0020097 URL pmid: 15094802 |
[47] | Jung, R. E., Mead, B. S., Carrasco, J., & Flores, R. A. (2013). The structure of creative cognition in the human brain. Frontiers in Human Neuroscience, 7(2), 330. |
[48] |
Jung, R. E., Segall, J. M., Bockholt, J. H., Flores, R. A., Smith, S. M., Chavez, R. S., & Haier, R. J. (2010). Neuroanatomy of creativity. Human Brain Mapping. 31, 398-409.
doi: 10.1002/hbm.20874 URL pmid: 19722171 |
[49] |
Kaplan, C. A., & Simon, H. A. (1990). In search of insight. Cognitive psychology, 22(3), 374-419.
doi: 10.1016/0010-0285(90)90008-R URL |
[50] |
Kounios, J., & Beeman, M. (2013). The cognitive neuroscience of insight. Annual Review of Psychology, 65(1), 71-93.
doi: 10.1146/annurev-psych-010213-115154 URL |
[51] |
Kounios, J., Frymiare, J. L., Bowden, E. M., Fleck, J. I., Subramaniam, K., Parrish, T. B., & Jung-Beeman, M. (2006). The prepared mind neural activity prior to problem presentation predicts subsequent solution by sudden insight. Psychological Science, 17(10), 882-890.
doi: 10.1111/j.1467-9280.2006.01798.x URL pmid: 17100789 |
[52] |
Lang, S., Kanngieser, N., Jaśkowski, P., Haider, H., Rose, M., & Verleger, R. (2006). Precursors of insight in event-related brain potentials. Journal of Cognitive Neuroscience, 18(12), 2152.
doi: 10.1162/jocn.2006.18.12.2152 URL pmid: 17129197 |
[53] |
Lee, H., & Cho, Y. (2007). Factors affecting problem finding depending on degree of structure of problem situation. Journal of Educational Research, 101(2), 113-123.
doi: 10.3200/JOER.101.2.113-125 URL |
[54] | Li, H. Y., Hu, W. P., & Shen, J. L. (2010). School environment effects on the relations between adolescents' personality and creative scientific problem finding. Journal of Psychological Science, (5), 132-136. |
[55] | Li, W. F. (2014). The neural basis of creativity via multi-modal brain imaging investigation. Unpublished doctor’s thesis. China: Southwest University. |
[56] |
Li, W. F., Tong, D. D., Qiu, J., & Zhang, Q. L. (2016). The neural basis of scientific innovation problems solving. Acta Psychologica Sinica, 48(4), 331-342.
doi: 10.3724/SP.J.1041.2016.00331 URL |
[57] |
Limb, C. J., & Braun, A. R. (2008) Neural substrates of spontaneous musical performance: An fMRI Study of Jazz improvisation. PLoS ONE, 3(2), e1679.
doi: 10.1371/journal.pone.0001679 URL pmid: 18301756 |
[58] |
Lundstrom, B. N., Ingvar, M., & Petersson, K. M. (2005). The role of precuneus and left inferior frontal cortex during source memory episodic retrieval. Neuroimage, 27(4), 824-834.
doi: 10.1016/j.neuroimage.2005.05.008 URL pmid: 15982902 |
[59] |
Luo, J., & Niki, K. (2003). Function of hippocampus in “insight” of problem solving. Hippocampus, 13(3), 316-323.
doi: 10.1002/hipo.10069 URL pmid: 12722972 |
[60] | Luo, J., & Zhang, X. L. (2006). From the impasse to the breakthrough: The brain basis for insightful problem solving. Advances of Psychological Science, 14(4):484-489. |
[61] |
Luo, J. L., Li, W. F., Qiu, J., Wei, D. T., Liu, Y. J., & Zhang, Q. L. (2013). Neural basis of scientific innovation induced by heuristic prototype. PLoS ONE, 8(1), e49231.
doi: 10.1371/journal.pone.0049231 URL pmid: 23372641 |
[62] | Luo, Y. M., Li, B. L., Liu, J., Bi, C. Z., & Huang, X. T. (2015). Amplitude of low-frequency fluctuations in happiness: A resting-state fMRI study. Chinese Science Bulletin, 60(2), 170-178. |
[63] |
Mennes, M., Kelly, C., Zuo, X. N., Martino, A. D., Biswal, B. B., Castellanos, F. X., & Milham, M. P. (2010). Inter- individual differences in resting-state functional connectivity predict task-induced BOLD activity. Neuroimage, 50(4), 1690-1701.
doi: 10.1016/j.neuroimage.2010.01.002 URL |
[64] |
Moore, D. W., Bhadelia, R. A., Billings, R. L., Fulwiler, C., Heilman, K. M., Rood, K. M. J., & Gansler, D. A. (2009). Hemispheric connectivity and the visual-spatial divergent-thinking component of creativity. Brain & Cognition, 70(3), 267-272.
doi: 10.1016/j.bandc.2009.02.011 URL pmid: 19356836 |
[65] |
O’Boyle, M. W., Cunnington, R., Silk, T. J., Vaughan, D., Jackson, G., Syngeniotis, A., & Egan,, G. F. (2009). Mathematically gifted male adolescents activate a unique brain network during mental rotation. Cognitive Brain Research, 25(2), 583-587.
doi: 10.1016/j.cogbrainres.2005.08.004 URL pmid: 16150579 |
[66] |
Okuda, S. M., Runco, M. A., & Berger, D. E. (1991). Creativity and the finding and solving of real-world problems. Journal of Psychoeducational Assessment, 9(1), 45-53.
doi: 10.1177/073428299100900104 URL |
[67] |
Paletz, S. B. F., & Peng, K. (2009). Problem finding and contradiction: Examining the relationship between naive dialectical thinking, ethnicity, and creativity. Creativity Research Journal, 21(2-3), 139-151.
doi: 10.1080/10400410902858683 URL |
[68] | Qian, Z. H. (1999). A brief discussion of scientific problems. Journal of Jiangsu University (Social Science Edition), (2), 9-12. |
[69] |
Qiu, J., Li, H., Jou, J., Liu, J., Luo, Y., Feng, T., ... Zhang, Q. (2010). Neural correlates of the “Aha” experiences: Evidence from an fMRI study of insight problem solving. Cortex, 46(3), 397-403.
doi: 10.1016/j.cortex.2009.06.006 URL |
[70] | Reiter-Palmon, R., & Robinson, E. J. (2009). Problem identification and construction: What do we know, what is the future? Psychology of Aesthetics Creativity & the Arts, 3(1), 43-47. |
[71] | Runco, M. A., Illies, J. J., & Reiter-palmon, R. (2005). Explicit instructions to be creative and original: A comparison of strategies and criteria as targets with three types of divergent thinking tests. Korean Journal of Thinking & Problem Solving, 15(1), 5-15. |
[72] |
Runco, M. A., & Okuda, S. M. (1988). Problem discovery, divergent thinking, and the creative process. Journal of Youth and Adolescence, 17(3), 211-220.
doi: 10.1007/BF01538162 URL pmid: 24277636 |
[73] |
Shamay-Tsoory, S. G., Adler, N., Aharon-Peretz, J., Perry, D., & Mayseless, N. (2011). The origins of originality: The neural bases of creative thinking and originality. Neuropsychologia, 49(2), 178-185.
doi: 10.1016/j.neuropsychologia.2010.11.020 URL |
[74] | Shen, J. L., Hu, W. P., & Lin, C. D. (2002). Constructing of the scientific creativity test for adolescent. Psychological Development and Education, 16(4), 76-81. |
[75] | Shen, W. B., Liu, C., & Wang, Y. J. (2010). Neurophysiological basis of artistic creativity. Advances in Psychological Science, 18(10), 520-1528. |
[76] | Shen, W. B., Luo, J., Liu, C., & Yuan, Y. (2012). One decade for insightful brain: New advances on neural correlates of insight (in Chinese). Chinese Science Bulletin, 57, 1948-1963. |
[77] |
Song, X. W., Dong, Z. Y., Long, X. Y., Li, S. F., Zuo, X. N., Zhu, C. Z., ... Zang, Y. F. (2011). REST: A toolkit for resting-state functional magnetic resonance imaging data processing. Plos One, 6(9), e25031.
doi: 10.1371/journal.pone.0025031 URL pmid: 21949842 |
[78] |
Sternberg, R. J., & Lubart, T. I. (1993). Investing in creativity. Psychological Inquiry, 4(3), 229-232.
doi: 10.1207/s15327965pli0403_16 URL |
[79] | Subramaniam, K. (2008). The behavioral and neural basis for the facilitation of insight problem-solving by a positive mood. Northwestern University. |
[80] |
Takeuchi, H., Taki, Y., Hashizume, H., Sassa, Y., Nagase, T., Nouchi, R., & Kawashima, R. (2012). The association between resting functional connectivity and creativity. Cerebral Cortex, 22(12), 2921-2929.
doi: 10.1093/cercor/bhr371 URL pmid: 22235031 |
[81] |
Takeuchi, H., Taki, Y., Sassa, Y., Hashizume, H., Sekiguchi, A., Fukushima, A., & Kawashima, R. (2010). White matter structures associated with creativity: Evidence from diffusion tensor imaging. Neuroimage, 51(1), 11.
doi: 10.1016/j.neuroimage.2010.02.035 URL pmid: 20171286 |
[82] |
Talati, A., & Hirsch, J. (2005). Functional specialization within the medial frontal gyrus for perceptual go/no-go decisions based on “what, ” “when, ” and “where” related information: An fMRI study. Journal of Cognitive Neuroscience, 17(7), 981-993.
doi: 10.1162/0898929054475226 URL pmid: 16102231 |
[83] | Tong, D. D. (2017). The study of cognitive neural mechanisms of creative scientific problems. Unpublished doctor’s thesis. China: Southwest university. |
[84] |
Tong, D. D., Dai, T. E., Li, W. F., Qiu, J., & Zhang, Q. L. (2013). An fMRI study for problem-finding in scientific inventional situation. Acta Psychologica Sinica, 45(7), 740-751.
doi: 10.3724/SP.J.1041.2013.00740 URL |
[85] |
Tong, D. D., Li, W. F., Dai, T. E., Nusbaum, H. C., Qiu, J., & Zhang, Q. L. (2013). Brain mechanisms of valuable scientific problem finding inspired by heuristic knowledge. Experimental Brain Research. 228, 437-443.
doi: 10.1007/BF00231263 URL pmid: 2286243 |
[86] | Torrance, E. P. (1966). The torrance tests of creative thinking- norms-technical manual research edition-verbal tests, Forms A and B-Figural Tests, Forms A and B. Princeton, NJ: Personnel Press. |
[87] | Wang, B. T. (2013). Effects of hemispheric interaction on creative scientific problem finding ability. Unpublished master’s thesis. Shanxi Normal University, China. |
[88] | Wang, B. T., Duan, H. J., Han, Q., & Hu, W. P. (2017). The influence of inter-hemispheric interaction on creative scientific problem finding ability. Studies of Psychology and Behavior, 15(2), 92-102. |
[89] |
Wang, Z. Q., Yan, C. G., Zhao, C., Qi, Z. G., Zhou, W., Lu, J., ... Li, Q. (2011). Spatial patterns of intrinsic brain activity in mild cognitive impairment and alzheimer’s disease: A resting-state functional MRI study. Human Brain Mapping, 32(10), 1720-1740.
doi: 10.1002/hbm.21140 URL pmid: 21077137 |
[90] |
Ward, T. B. (2007). Creative cognition as a window on creativity. Methods, 42(1), 28.
doi: 10.1016/j.ymeth.2006.12.002 URL pmid: 17434413 |
[91] |
Wei, D. T., Yang, J. Y., Li, W. F., Wang, K. C., Zhang, Q. L., & Qiu, J. (2014). Increased resting functional connectivity of the medial prefrontal cortex in creativity by means of cognitive stimulation. Cortex, 51(1), 92-102.
doi: 10.1016/j.cortex.2013.09.004 URL |
[92] |
Wei, L. Q., Duan, X. J., Zheng, C. Y., Wang, S. S., Gao, Q., Zhang, Z. Q., … Chen, H. F. (2013). Specific frequency bands of amplitude low-frequency oscillation encodes personality. Human Brain Mapping, 35(1), 331-339.
doi: 10.1002/hbm.22176 URL pmid: 22987723 |
[93] |
Whitfield-Gabrieli, S., & Nieto-Castanon, A. (2012). A functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect, 2(3), 125-141.
doi: 10.1089/brain.2012.0073 URL pmid: 22642651 |
[94] |
Wu, L. L., Knoblich, G., & Luo, J. (2013). The role of chunk tightness and chunk familiarity in problem solving: Evidence from ERPs and FMRI. Human Brain Mapping, 34(5), 1173-1186.
doi: 10.1002/hbm.21501 URL pmid: 22328466 |
[95] | Wu, Z. Z., Qiu, J., & Zhang, Q. L. (2008). Exploring the mechanism for prototype elicitation effect in insight. Psychological Development and Education. 24(1), 31-35. |
[96] | Wu, Z. Z., & Zhang, Q. L. (2005). Effects of familiarity of fields and questioning-constrained on the creativity of question- asking of undergraduates. Chinese Journal of Clinical Rehabilitation. (44), 61-63. |
[97] |
Xue, H., Lu, K. L., & Hao, N. (2018). Cooperation makes two less-creative individuals turn into a highly-creative pair. Neuroimage, 172, 527-537.
doi: 10.1016/j.neuroimage.2018.02.007 URL pmid: 29427846 |
[98] |
Yan, C. G., & Zang, Y. F. (2010). DPARSF: A MATLAB toolbox for “pipeline” data analysis of resting-state fMRI. Frontiers in Systems Neuroscience, 4, 13.
doi: 10.3389/fnsys.2010.00013 URL pmid: 20577591 |
[99] |
Yang, W. J., Jin, Y. L., Qiu, J., & Zhang, Q. L. (2018). The effect of prototype difficulty and semantic similarity on the prototype activation. Acta Psychologica Sinica, 50(3), 260-269.
doi: 10.3724/SP.J.1041.2018.00260 URL |
[100] |
Zang, Y. F., He, Y., Zhu, C. Z., Cao, Q. J., Sui, M. Q., Liang, M., ... Wang, Y. F. (2007). Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain & Development, 29(2), 83-91.
doi: 10.1016/j.braindev.2006.07.002 URL pmid: 16919409 |
[101] |
Zeng, L. L., Shen, H., Liu, L., Wang, L. B., Li, B. J., Fang, P., ... Hu, D. W. (2012). Identifying major depression using whole-brain functional connectivity: A multivariate pattern analysis. Brain A Journal of Neurology, 135(Pt 5), 1498.
doi: 10.1093/brain/aws059 URL pmid: 22418737 |
[102] | Zhang, Q. L., Tian, Y., Qiu, J. (2012). Automatic activation of prototype representation in insight: The sources of inspiration. Journal of Southwest University (Natural Science Edition), 34(9), 144-149. |
[103] |
Zhao, Q. B., Zhou, Z. J., Xu, H. B., Chen, S., Xu, F., Fan, W. L., & Han, L. (2013). Dynamic neural network of insight: A functional magnetic resonance imaging study on solving chinese riddles. Plos One, 8(3), e59351.
doi: 10.1371/journal.pone.0059351 URL pmid: 23555020 |
[104] | Zhou, D., & Shi, J. N. (2005). Creative process: From the information processing perspective. Advances in Psychological Science. 13(6), 721-727. |
[105] | Zhou, H. (2015). Research on the difference of novelty evaluation process of college students with different creative science problem finding ability. Unpublished master’s thesis. Shaanxi Normal University, China. |
[106] | Zhu, D., Luo, J. L., Zhu, H. X., Qiu, J., & Zhang, Q. L. (2011). The effect of prototype inspiration in the process of scientific innovation thinking. Journal of Southwest University (Social Sciences Edition), 37(5), 144-149. |
[107] |
Zou, Q. H., Ross, T. J., Gu, H., Geng, X. J., Zuo, X. N., Elliot Hong, L., ... Yang, Y. H. (2013). Intrinsic resting-state activity predicts working memory brain activation and behavioral performance. Human Brain Mapping, 34(12), 3204-3215.
doi: 10.1002/hbm.22136 URL pmid: 22711376 |
[108] |
Zuo, X. N., Martino, A. D., Kelly, C., Shehzad, Z. E., Gee, D. G., Klein, D. F., ... Milham, M. P. (2010). The oscillating brain: Complex and reliable. Neuroimage, 49(2), 1432-1445.
doi: 10.1016/j.neuroimage.2009.09.037 URL pmid: 19782143 |
[1] | WANG Dan, WANG Dianhui, CHEN Wenfeng. The relationship between adolescents’ resilience and their malevolent creative behaviors [J]. Acta Psychologica Sinica, 2022, 54(2): 154-167. |
[2] | CHENG Rui, LU Kelong, HAO Ning. The effect of anger on malevolent creativity and strategies for its emotion regulation [J]. Acta Psychologica Sinica, 2021, 53(8): 847-860. |
[3] | KE Xiaoxiao, QI Huizi, LIANG Jiahui, JIN Xinyuan, GAO Jie, ZHANG Mingxia, WANG Yamin. Situational assessment method of the Chinese people’s holistic thinking characteristics and their application [J]. Acta Psychologica Sinica, 2021, 53(12): 1299-1309. |
[4] | ZHANG Jinghuan, FU Mengmeng, XIN Yuwen, CHEN Peipei, SHA Sha. The development of creativity in senior primary school students: Gender differences and the role of school support [J]. Acta Psychologica Sinica, 2020, 52(9): 1057-1070. |
[5] | ZHOU Heng, HE Hua, YU Wei, WANG Aijun, ZHANG Ming. Sound-induced flash illusion in older adults: Evidence from low-frequency fluctuation amplitudes in resting-state fMRI [J]. Acta Psychologica Sinica, 2020, 52(7): 823-834. |
[6] | HU Qiaoting,WANG Haijiang,LONG Lirong. Will newcomer job crafting bring positive outcomes? The role of leader-member exchange and traditionality [J]. Acta Psychologica Sinica, 2020, 52(5): 659-668. |
[7] | ZHU Jinqiang, XU Shiyong, ZHOU Jinyi, ZHANG Bainan, XU Fangfang, ZONG Boqiang. The cross-level double-edged-sword effect of boundary-spanning behavior on creativity [J]. Acta Psychologica Sinica, 2020, 52(11): 1340-1351. |
[8] | LUAN Mo, WU Shuang, LI Hong. The relationship between anticipated communication and creativity: The moderating role of construal level [J]. Acta Psychologica Sinica, 2020, 52(10): 1178-1188. |
[9] | LUO Ping,SHI Junqi,ZHU Yanni,FANG Yanran. The influence of idiosyncratic deals on employee proactive career behavior and creativity [J]. Acta Psychologica Sinica, 2020, 52(1): 81-92. |
[10] | WEI Lihua, LIU Zhiqiang, LIAO Shudi, LONG Lirong, LIAO Jianqiao. Collective psychological ownership, status conferral criteria and team creativity [J]. Acta Psychologica Sinica, 2019, 51(6): 677-687. |
[11] | SHEN Yimo,MA Chenlu,BAI Xinwen,ZHU Yanhan,LU Yunlin,ZHANG Qinglin,LIU Jun. Linking abusive supervision with employee creativity: The roles of psychological contract breach and Zhongyong thinking style [J]. Acta Psychologica Sinica, 2019, 51(2): 238-247. |
[12] | Qi JIANG, Lulu HOU, Jiang QIU, Changran LI, Huanzhen WANG. The relationship between the caudate nucleus-orbitomedial prefrontal cortex connectivity and reactive aggression: A resting-state fMRI study [J]. Acta Psychologica Sinica, 2018, 50(6): 655-666. |
[13] | Weiguo LIU, Yanran FANG, Junqi SHI, Shenjiang MO. The impact of supervisor’s creativity expectation on team creativity [J]. Acta Psychologica Sinica, 2018, 50(6): 667-677. |
[14] | ZHANG Yong, LIU Haiquan, WANG Mingxuan, QING Ping. The impact of challenge stress and hindrance stress on employee creativity: The mediating role of self-efficacy and the moderating role of justice [J]. Acta Psychologica Sinica, 2018, 50(4): 450-461. |
[15] | YANG Wenjing, JIN Yule, QIU Jiang, ZHANG Qinglin. The effect of prototype difficulty and semantic similarity on the prototype activation [J]. Acta Psychologica Sinica, 2018, 50(3): 260-269. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||