Acta Psychologica Sinica ›› 2021, Vol. 53 ›› Issue (6): 555-564.doi: 10.3724/SP.J.1041.2021.00555
• Reports of Empirical Studies • Next Articles
ZHANG Fan, WANG Aijun(), ZHANG Ming()
Received:
2020-08-05
Published:
2021-06-25
Online:
2021-04-25
Contact:
WANG Aijun,ZHANG Ming
E-mail:ajwang@suda.edu.cn;psyzm@suda.edu.cn
Supported by:
ZHANG Fan, WANG Aijun, ZHANG Ming. (2021). The influence of feature-based statistical regularity of singletons on the attentional suppression effect. Acta Psychologica Sinica, 53(6), 555-564.
Add to citation manager EndNote|Ris|BibTeX
URL: https://journal.psych.ac.cn/acps/EN/10.3724/SP.J.1041.2021.00555
Figure 1. The procedure of Experiment 1. In the formal experiment, the participants were required to search for a specific shape of the target (diamond or circle), and determine the direction of the inner line segment both quickly and accurately. When the search array was presented, half of the trials had the same color of all stimuli (i.e., no color singleton was presented), and the other half had a color singleton presented (dotted circle marked).
Figure 2. Results from Experiment 1. (A) Manual response time as a function of singleton presence of Experiment 1. (B) Manual response time as a function of singleton presence in the first quarter of trials and the last quarter of trials. Note. ***p < 0.001, n.s. p > 0.05
Figure 3. Results from Experiment 2. (A) Manual response time as a function of trial type. (B) Results of response times in the first quarter of trials and the last quarter of trials. Note. ***p < 0.001, **p < 0.01, *p < 0.05, n.s. p > 0.05
[1] |
Awh, E., Belopolsky, A. V., & Theeuwes, J. (2012). Top-down versus bottom-up attentional control: A failed theoretical dichotomy. Trends in Cognitive Sciences, 16(8), 437-443.
doi: 10.1016/j.tics.2012.06.010 URL |
[2] |
Burnham, B. R., Harris, A. M., & Suda, M. T. (2011). Relationship between working memory capacity and contingent involuntary orienting. Visual Cognition, 19(8), 983-1002.
doi: 10.1080/13506285.2011.603710 URL |
[3] |
Chun, M. M., & Jiang, Y. H. (1999). Top-down attentional guidance based on implicit learning of visual covariation. Psychological Science, 10(4), 360-365.
doi: 10.1111/1467-9280.00168 URL |
[4] |
Eimer, M., & Kiss, M. (2008). Involuntary attentional capture is determined by task set: Evidence from event-related brain potentials. Journal of Cognitive Neuroscience, 20(8), 1423-1433.
doi: 10.1162/jocn.2008.20099 URL |
[5] |
Failing, M., & Theeuwes, J. (2019). More capture, more suppression: Distractor suppression due to statistical regularities is determined by the magnitude of attentional capture. Psychonomic Bulletin & Review, 27(1), 86-95.
doi: 10.3758/s13423-019-01672-z URL |
[6] |
Failing, M., Wang, B., & Theeuwes, J. (2019). Spatial suppression due to statistical regularities is driven by distractor suppression not by target activation. Attention, Perception, & Psychophysics, 81(5), 1405-1414.
doi: 10.3758/s13414-019-01704-9 URL |
[7] |
Ferrante, O., Patacca, A., Di Caro, V., Della Libera, C., Santandrea, E., & Chelazzi, L. (2018). Altering spatial priority maps via statistical learning of target selection and distractor filtering. Cortex, 102, 67-95.
doi: S0010-9452(17)30334-9 pmid: 29096874 |
[8] | Folk, C. L., Remington, R. W., & Johnston, J. C. (1992). Involuntary covert orienting is contingent on attentional control settings. Journal of Experimental Psychology: Human Perception & Performance, 18(4), 1030-1044. |
[9] |
Franconeri, S. L., & Simons, D. J. (2003). Moving and looming stimuli capture attention. Perception & Psychophysics, 65(7), 999-1010.
doi: 10.3758/BF03194829 URL |
[10] |
Fukuda, K., & Vogel, E. K. (2011). Individual differences in recovery time from attentional capture. Psychological Science, 22(3), 361-368.
doi: 10.1177/0956797611398493 URL |
[11] |
Gaspar, J. M., & McDonald, J. J. (2014). Suppression of salient objects prevents distraction in visual search. Journal of Neuroscience, 34(16), 5658-5666.
doi: 10.1523/JNEUROSCI.4161-13.2014 URL |
[12] |
Gaspelin, N., Gaspar, J. M., & Luck, S. J. (2019). Oculomotor inhibition of salient distractors: Voluntary inhibition cannot override selection history. Visual Cognition, 27(3-4), 227-246.
doi: 10.1080/13506285.2019.1600090 URL |
[13] |
Gaspelin, N., Leonard, C. J., & Luck, S. J. (2015). Direct evidence for active suppression of salient-but-irrelevant sensory inputs. Psychological Science, 26(11), 1740-1750.
doi: 10.1177/0956797615597913 URL |
[14] |
Gaspelin, N., Leonard, C. J., & Luck, S. J. (2017). Suppression of overt attentional capture by salient-but-irrelevant color singletons. Attention, Perception, & Psychophysics, 79(1), 45-62.
doi: 10.3758/s13414-016-1209-1 URL |
[15] |
Gaspelin, N., & Luck, S. J. (2018a). Combined electrophysiological and behavioral evidence for the suppression of salient distractors. Journal of Cognitive Neuroscience, 30(9), 1265-1280.
doi: 10.1162/jocn_a_01279 URL |
[16] |
Gaspelin, N., & Luck, S. J. (2018b). The role of inhibition in avoiding distraction by salient stimuli. Trends in Cognitive Sciences, 22(1), 79-92.
doi: 10.1016/j.tics.2017.11.001 URL |
[17] | Gaspelin, N., & Luck, S. J. (2018c). Distinguishing among potential mechanisms of singleton suppression. Journal of Experimental Psychology: Human Perception & Performance, 44(4), 626-644. |
[18] |
Geng, J. J., & Behrmann, M. (2005). Spatial probability as an attentional cue in visual search. Perception & Psychophysics, 67(7), 1252-1268.
doi: 10.3758/BF03193557 URL |
[19] |
Gong, M. Y., Jia, K., & Li, S. (2017). Perceptual competition promotes suppression of reward salience in behavioral selection and neural representation. Journal of Neuroscience, 37(26), 6242-6252.
doi: 10.1523/JNEUROSCI.0217-17.2017 URL |
[20] | Gong, M. Y., Jia, K., & Li, S. (2018). Reward learning drives modulation on visual attention. Chinese Journal of Applied Psychology, 24(2), 99-112. |
[21] |
Gong, M. Y., Li, S., & Yang, F. T. (2016). Reward association facilitates distractor suppression in human visual search. The European Journal of Neuroscience, 43(7), 942-953.
doi: 10.1111/ejn.13174 URL |
[22] |
Gong, M. Y., & Liu, T. S. (2020). Biased neural representation of feature-based attention in the human frontoparietal network. Journal of Neuroscience, 40(43), 8386-8395.
doi: 10.1523/JNEUROSCI.0690-20.2020 URL |
[23] | Han, S. W., & Kim, M. S. (2009). Do the contents of working memory capture attention? Yes, but cognitive control matters. Journal of Experimental Psychology: Human Perception & Performance, 35(5), 1292-1302. |
[24] | Harris, A. M., Jacoby, O., Remington, R. W., Becker, S. I., Mattingley, J. B. (2020). Behavioral and electrophysiological evidence for a dissociation between working memory capacity and feature-based attention. Cortex, 129, 159-174. |
[25] | Hu, L. P., Ding, Y. L., & Qu, Z. (2019). Perceptual learning induces active suppression of physically nonsalient shapes. Psychophysiology, 56(9), e13393. |
[26] |
Jannati, A., Gaspar, J. M., & McDonald, J. J. (2013). Tracking target and distractor processing in fixed-feature visual search: Evidence from human electrophysiology. Journal of Experimental Psychology: Human Perception and Performance, 39(6), 1713-1730.
doi: 10.1037/a0032251 URL |
[27] |
Jiang, J. F., Summerfield, C., & Egner, T. (2013). Attention sharpens the distinction between expected and unexpected percepts in the visual brain. Journal of Neuroscience, 33(47), 18438-18447.
doi: 10.1523/JNEUROSCI.3308-13.2013 URL |
[28] |
Kumada, T. (2001). Feature-based control of attention: evidence for two forms of dimension weighting. Perception & Psychophysics, 63(4), 698-708.
doi: 10.3758/BF03194430 URL |
[29] |
Lee, J., Leonard, C. J., Luck, S. J., & Geng, J. J. (2018). Dynamics of feature-based attentional selection during color-shape conjunction search. Journal of Cognitive Neuroscience, 30(12), 1773-1787.
doi: 10.1162/jocn_a_01318 URL |
[30] |
Louisa, K. (2017). The effect of stimulus size and eccentricity on attention shift latencies. Vision, 1(4), 25-34.
doi: 10.3390/vision1040025 URL |
[31] |
Maunsell, J. H. R., & Treue, S. (2006). Feature-based attention in visual cortex. Trends in Neurosciences, 29(6), 317-322.
doi: 10.1016/j.tins.2006.04.001 URL |
[32] |
Nissens, T., Failing, M., & Theeuwes, J. (2017). People look at the object they fear: Oculomotor capture by stimuli that signal threat. Cognition and Emotion, 31(8), 1707-1714.
doi: 10.1080/02699931.2016.1248905 URL |
[33] |
Ono, F., & Kawahara, J. I. (2007). The subjective size of visual stimuli affects the perceived duration of their presentation. Perception & Psychophysics, 69(6), 952-957.
doi: 10.3758/BF03193932 URL |
[34] | Pronina, A., Grigoryan, R. K., & Kaplan, A. Y. (2018). Objective eye movements during typing in P300 BCI: The effect of stimuli size and spacing. Moscow University Psychology Bulletin, 4, 120-134. |
[35] |
Sàenz, M., Buraĉas, G. T., & Boynton, G. M. (2002). Global effects of feature-based attention in human visual cortex. Nature Neuroscience, 5(7), 631-632.
doi: 10.1038/nn876 URL |
[36] |
Sàenz, M., Buraĉas, G. T., Boynton, G. M. (2003). Global feature-based attention for motion and color. Vision Research, 43(6), 629-637.
doi: 10.1016/S0042-6989(02)00595-3 URL |
[37] |
Sawaki, R., Geng, J. J., & Luck, S. J. (2012). A common neural mechanism for preventing and terminating the allocation of attention. Journal of Neuroscience, 32(31), 10725-10736.
doi: 10.1523/JNEUROSCI.1864-12.2012 URL |
[38] |
Sawaki, R., & Luck, S. J. (2010). Capture versus suppression of attention by salient singletons: Electrophysiological evidence for an automatic attend-to-me signal. Attention, Perception, & Psychophysics, 72(6), 1455-1470.
doi: 10.3758/APP.72.6.1455 URL |
[39] |
Sawaki, R., & Luck, S. J. (2011). Active suppression of distractors that match the contents of visual working memory. Visual Cognition, 19(7), 956-972.
pmid: 22053147 |
[40] |
Sawaki, R., & Luck, S. J. (2013). Active suppression after involuntary capture of attention. Psychonomic Bulletin & Review, 20(2), 296-301.
doi: 10.3758/s13423-012-0353-4 URL |
[41] |
Stilwell, B. T., Bahle, B., & Vecera, S. P. (2019). Feature-based statistical regularities of distractors modulate attentional capture. Journal of Experimental Psychology: Human Perception and Performance, 45(3), 419-433.
doi: 10.1037/xhp0000613 URL |
[42] |
Sun, M., Wang, E., Huang, J., Zhao, C. G., Guo, J. L., Li, D. W., .. Song, Y. (2018). Attentional selection and suppression in children and adults. Development Science, 21(6), e12684.
doi: 10.1111/desc.2018.21.issue-6 URL |
[43] |
Vatterott, D. B., Mozer, M. C., & Vecera, S. P. (2017). Rejecting salient distractors: Generalization from experience. Attention, Perception, & Psychophysics, 80, 485-499.
doi: 10.3758/s13414-017-1465-8 URL |
[44] |
Vatterott, D. B., & Vecera, S. P. (2012). Experience-dependent attentional tuning of distractor rejection. Psychonomic Bulletin & Review, 19(5), 871-878.
doi: 10.3758/s13423-012-0280-4 URL |
[45] |
Wang, B., Samara, I., & Theeuwes, J. (2019). Statistical regularities bias overt attention. Attention, Perception, & Psychophysics, 81, 1813-1821.
doi: 10.3758/s13414-019-01708-5 URL |
[46] |
Wang, B., & Theeuwes, J. (2018a). Statistical regularities modulate attentional capture. Journal of Experimental Psychology: Human Perception and Performance, 44(1), 13-17.
doi: 10.1037/xhp0000472 URL |
[47] |
Wang, B., & Theeuwes, J. (2018b). How to inhibit a distractor location? Statistical learning versus active, top-down suppression. Attention, Perception, & Psychophysics, 80(4), 860-870.
doi: 10.3758/s13414-018-1493-z URL |
[48] |
Wang, B., & Theeuwes, J. (2018c). Statistical regularities modulate attentional capture independent of search strategy. Attention, Perception, & Psychophysics, 80(7), 1763-1774.
doi: 10.3758/s13414-018-1562-3 URL |
[49] |
Wang H., Y., Sui, J., & Zhang, M. (2018). Attentional capture is contingent on attentional control setting for semantic meaning: Evidence from modified spatial cueing paradigm. Acta Psychologica Sinica, 50(10), 1071-1082.
doi: 10.3724/SP.J.1041.2018.01071 URL |
[50] |
Yantis, S., & Hillstrom, A. P. (1994). Stimulus-driven attentional capture: Evidence from equiluminant visual objects. Journal of Experimental Psychology: Human Perception and Performance, 20(1), 95-107.
doi: 10.1037/0096-1523.20.1.95 URL |
[51] |
Yantis, S., & Jonides, J. (1984). Abrupt visual onsets and selective attention: evidence from visual search. Journal of Experimental Psychology: Human Perception and Performance, 10(5), 601-621.
doi: 10.1037/0096-1523.10.5.601 URL |
[52] |
Zhao, J. Y., & Luo, Y. (2017). Statistical regularities guide the spatial scale of attention. Attention, Perception, & Psychophysics, 79(1), 24-30.
doi: 10.3758/s13414-016-1233-1 URL |
[1] | HUANG Yuesheng, ZHANG Bao, FAN Xinhua, HUANG Jie. Can negative emotion of task-irrelevant working memory representation affect its attentional capture? A study of eye movements [J]. Acta Psychologica Sinica, 2021, 53(1): 26-37. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||