Acta Psychologica Sinica ›› 2020, Vol. 52 ›› Issue (11): 1288-1300.doi: 10.3724/SP.J.1041.2020.01288
• Reports of Empirical Studies • Previous Articles Next Articles
REN Zhihong1, ZHAO Ziyi1, YU Xianglian2, ZHAO Chunxiao1, ZHANG Lin1, LIN Yuzhong3, ZHANG Wei1()
Received:
2019-12-03
Published:
2020-11-25
Online:
2020-10-10
Contact:
ZHANG Wei
E-mail:zhangwei2008@mail.ccnu.edu.cn
Supported by:
REN Zhihong, ZHAO Ziyi, YU Xianglian, ZHAO Chunxiao, ZHANG Lin, LIN Yuzhong, ZHANG Wei. (2020). Testosterone and aggressive behavior in juvenile offenders with antisocial tendency: The mediation effect of hostile attention bias and the moderation effect of cortisol. Acta Psychologica Sinica, 52(11), 1288-1300.
Variable | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 Age | - | ||||||||||||||||
2 Education | 0.03 | - | |||||||||||||||
3 Testosterone | -0.15 | 0.14 | - | ||||||||||||||
4 Cortisol | -0.02 | 0.04 | 0.41** | - | |||||||||||||
5 AQCV | 0.11 | -0.07 | 0.09 | 0.17 | - | ||||||||||||
6 AQCV-PA | 0.08 | -0.05 | 0.05 | 0.05 | 0.85** | - | |||||||||||
7 AQCV-VA | 0.14 | -0.09 | 0.07 | 0.11 | 0.80** | 0.63** | - | ||||||||||
8 AQCV-A | 0.07 | -0.01 | 0.02 | 0.17 | 0.87** | 0.68** | 0.65** | - | |||||||||
9 AQCV-H | 0.04 | 0.10 | 0.14 | 0.22 | 0.78** | 0.48** | 0.55** | 0.61** | - | ||||||||
10 AQCV-SA | 0.18 | -0.33** | 0.10 | 0.19 | 0.66** | 0.41** | 0.44** | 0.47** | 0.47** | - | |||||||
11 Dot-BS | -0.04 | -0.20 | -0.01 | -0.10 | 0.05 | 0.08 | 0.09 | 0.02 | -0.02 | 0.04 | - | ||||||
12 eStroop-BS | -0.05 | -0.06 | 0.16 | -0.18 | -0.16 | -0.23* | -0.05 | -0.19 | -0.05 | -0.05 | -0.02 | - | |||||
13 Mean TLBStoward | 0.02 | 0.11 | 0.19 | 0.01 | -0.06 | -0.04 | -0.18 | -0.02 | 0.02 | -0.08 | 0.17 | 0.17 | - | ||||
14 Mean-TLBSaway | 0.07 | -0.19 | -0.23* | -0.08 | 0.23 | 0.16 | 0.18 | 0.27* | 0.17 | 0.12 | 0.50** | -0.26* | -0.08 | - | |||
15 Peak TLBStoward | -0.18 | 0.09 | 0.26* | 0.02 | -0.09 | -0.11 | -0.17 | -0.09 | 0.05 | -0.08 | 0.17 | 0.16 | 0.80** | -0.15 | - | ||
16 Peak-TLBSaway | 0.12 | -0.27* | -0.27* | -0.03 | 0.30** | 0.24* | 0.24* | 0.37** | 0.16 | 0.17 | 0.47** | -0.23 | -0.05 | 0.85** | -0.20 | - | |
17 TLBS-Variability | -0.29* | 0.20 | 0.41** | 0.11 | -0.23* | -0.28* | -0.12 | -0.29* | -0.01 | -0.17 | -0.21 | 0.31** | 0.31** | -0.63** | 0.60** | -0.74** | - |
M(SD) | 17.55 | 3.64 | 29.29 | 901.31 | 73.43 | 19.71 | 12.51 | 13.92 | 15.99 | 11.30 | -19.85 | 3.03 | 77.50 | -96.95 | 159.16 | -202.36 | 55.25 |
0.52 | 3.95 | 7.91 | 213.91 | 19.16 | 7.05 | 3.54 | 4.70 | 5.05 | 3.55 | 32.20 | 22.08 | 51.56 | 64.12 | 114.32 | 148.49 | 29.57 |
Table 1 The mean (M), standard deviation (SD) and correlation coefficient of variables
Variable | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 Age | - | ||||||||||||||||
2 Education | 0.03 | - | |||||||||||||||
3 Testosterone | -0.15 | 0.14 | - | ||||||||||||||
4 Cortisol | -0.02 | 0.04 | 0.41** | - | |||||||||||||
5 AQCV | 0.11 | -0.07 | 0.09 | 0.17 | - | ||||||||||||
6 AQCV-PA | 0.08 | -0.05 | 0.05 | 0.05 | 0.85** | - | |||||||||||
7 AQCV-VA | 0.14 | -0.09 | 0.07 | 0.11 | 0.80** | 0.63** | - | ||||||||||
8 AQCV-A | 0.07 | -0.01 | 0.02 | 0.17 | 0.87** | 0.68** | 0.65** | - | |||||||||
9 AQCV-H | 0.04 | 0.10 | 0.14 | 0.22 | 0.78** | 0.48** | 0.55** | 0.61** | - | ||||||||
10 AQCV-SA | 0.18 | -0.33** | 0.10 | 0.19 | 0.66** | 0.41** | 0.44** | 0.47** | 0.47** | - | |||||||
11 Dot-BS | -0.04 | -0.20 | -0.01 | -0.10 | 0.05 | 0.08 | 0.09 | 0.02 | -0.02 | 0.04 | - | ||||||
12 eStroop-BS | -0.05 | -0.06 | 0.16 | -0.18 | -0.16 | -0.23* | -0.05 | -0.19 | -0.05 | -0.05 | -0.02 | - | |||||
13 Mean TLBStoward | 0.02 | 0.11 | 0.19 | 0.01 | -0.06 | -0.04 | -0.18 | -0.02 | 0.02 | -0.08 | 0.17 | 0.17 | - | ||||
14 Mean-TLBSaway | 0.07 | -0.19 | -0.23* | -0.08 | 0.23 | 0.16 | 0.18 | 0.27* | 0.17 | 0.12 | 0.50** | -0.26* | -0.08 | - | |||
15 Peak TLBStoward | -0.18 | 0.09 | 0.26* | 0.02 | -0.09 | -0.11 | -0.17 | -0.09 | 0.05 | -0.08 | 0.17 | 0.16 | 0.80** | -0.15 | - | ||
16 Peak-TLBSaway | 0.12 | -0.27* | -0.27* | -0.03 | 0.30** | 0.24* | 0.24* | 0.37** | 0.16 | 0.17 | 0.47** | -0.23 | -0.05 | 0.85** | -0.20 | - | |
17 TLBS-Variability | -0.29* | 0.20 | 0.41** | 0.11 | -0.23* | -0.28* | -0.12 | -0.29* | -0.01 | -0.17 | -0.21 | 0.31** | 0.31** | -0.63** | 0.60** | -0.74** | - |
M(SD) | 17.55 | 3.64 | 29.29 | 901.31 | 73.43 | 19.71 | 12.51 | 13.92 | 15.99 | 11.30 | -19.85 | 3.03 | 77.50 | -96.95 | 159.16 | -202.36 | 55.25 |
0.52 | 3.95 | 7.91 | 213.91 | 19.16 | 7.05 | 3.54 | 4.70 | 5.05 | 3.55 | 32.20 | 22.08 | 51.56 | 64.12 | 114.32 | 148.49 | 29.57 |
Predictive variable | Prediction of testosterone on AQCV: The mediation effect of variability | Prediction of testosterone on AQCV-PA: The mediation effect of variability | Prediction of testosterone on AQCV-A: The mediation effect of variability | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dependent variable: AQCV | Dependent variable: AQCV-PA | Dependent variable: AQCV-A | |||||||||||||||||||
B | β | t | ΔR2 | B | β | t | ΔR2 | B | β | t | ΔR2 | ||||||||||
Step 1 | Age | 5.02 | 0.14 | 1.14 | 0.017 | 1.29 | 0.10 | 0.79 | 0.007 | 0.67 | 0.07 | 0.61 | 0.005 | ||||||||
Education | -0.41 | -0.08 | -0.70 | -0.08 | -0.05 | -0.38 | -0.03 | -0.02 | -0.20 | ||||||||||||
Step 2 | Testosterone | 0.33 | 0.14 | 1.14 | 0.018 | 0.08 | 0.09 | 0.76 | 0.008 | 0.02 | 0.03 | 0.24 | 0.001 | ||||||||
Dependent variable: TLBS-Variability | Dependent variable: TLBS-Variability | Dependent variable: TLBS-Variability | |||||||||||||||||||
B | β | t | ΔR2 | B | β | t | ΔR2 | B | β | t | ΔR2 | ||||||||||
Step 1 | Age | -14.52 | -0.26 | -2.44* | 0.131** | -14.52 | -0.26 | -2.44* | 0.131** | -14.52 | -0.26 | -2.44* | 0.131** | ||||||||
Education | 1.14 | 0.15 | 1.45 | 1.14 | 0.15 | 1.45 | 1.14 | 0.15 | 1.45 | ||||||||||||
Step 2 | Testosterone | 1.28 | 0.34 | 3.24** | 0.113** | 1.28 | 0.34 | 3.24** | 0.113** | 1.28 | 0.34 | 3.24** | 0.113** | ||||||||
Dependent variable: AQCV | Dependent variable: AQCV-PA | Dependent variable: AQCV-A | |||||||||||||||||||
B | β | t | ΔR2 | B | β | t | ΔR2 | B | β | t | ΔR2 | ||||||||||
Step 1 | Age | 2.24 | 0.06 | 0.50 | 0.017 | 0.07 | 0.01 | 0.04 | 0.007 | -0.21 | -0.02 | -0.19 | 0.005 | ||||||||
Education | -0.19 | -0.04 | -0.33 | 0.01 | 0.01 | 0.07 | 0.04 | 0.03 | 0.29 | ||||||||||||
Step 2 | Testosterone | 0.58 | 0.24 | 1.90 | 0.083* | 0.19 | 0.21 | 1.70 | 0.100* | 0.10 | 0.16 | 1.28 | 0.108* | ||||||||
TLBS-Variability | -0.19 | -0.29 | -2.23* | -0.08 | -0.35 | -2.67** | -0.06 | -0.38 | -2.89** | ||||||||||||
Direct and indirect effects of TLBS-Variability | |||||||||||||||||||||
Effect | Boot SE | Boot 95% CI | Effect | Boot SE | Boot 95% CI | Effect | Boot SE | Boot 95% CI | |||||||||||||
Direct effect | 0.58 | 0.34 | [-0.11, 1.26] | 0.19 | 0.11 | [-0.04, 0.42] | 0.10 | 0.08 | [-0.60, 0.24] | ||||||||||||
Indirect effect | -0.25 | 0.13 | [-0.56, -0.04] | -0.11 | 0.05 | [-0.24, -0.03] | -0.08 | 0.04 | [-0.16, -0.02] |
Table 2 Prediction of testosterone on aggressive: The mediation effect of TLBS-variability
Predictive variable | Prediction of testosterone on AQCV: The mediation effect of variability | Prediction of testosterone on AQCV-PA: The mediation effect of variability | Prediction of testosterone on AQCV-A: The mediation effect of variability | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dependent variable: AQCV | Dependent variable: AQCV-PA | Dependent variable: AQCV-A | |||||||||||||||||||
B | β | t | ΔR2 | B | β | t | ΔR2 | B | β | t | ΔR2 | ||||||||||
Step 1 | Age | 5.02 | 0.14 | 1.14 | 0.017 | 1.29 | 0.10 | 0.79 | 0.007 | 0.67 | 0.07 | 0.61 | 0.005 | ||||||||
Education | -0.41 | -0.08 | -0.70 | -0.08 | -0.05 | -0.38 | -0.03 | -0.02 | -0.20 | ||||||||||||
Step 2 | Testosterone | 0.33 | 0.14 | 1.14 | 0.018 | 0.08 | 0.09 | 0.76 | 0.008 | 0.02 | 0.03 | 0.24 | 0.001 | ||||||||
Dependent variable: TLBS-Variability | Dependent variable: TLBS-Variability | Dependent variable: TLBS-Variability | |||||||||||||||||||
B | β | t | ΔR2 | B | β | t | ΔR2 | B | β | t | ΔR2 | ||||||||||
Step 1 | Age | -14.52 | -0.26 | -2.44* | 0.131** | -14.52 | -0.26 | -2.44* | 0.131** | -14.52 | -0.26 | -2.44* | 0.131** | ||||||||
Education | 1.14 | 0.15 | 1.45 | 1.14 | 0.15 | 1.45 | 1.14 | 0.15 | 1.45 | ||||||||||||
Step 2 | Testosterone | 1.28 | 0.34 | 3.24** | 0.113** | 1.28 | 0.34 | 3.24** | 0.113** | 1.28 | 0.34 | 3.24** | 0.113** | ||||||||
Dependent variable: AQCV | Dependent variable: AQCV-PA | Dependent variable: AQCV-A | |||||||||||||||||||
B | β | t | ΔR2 | B | β | t | ΔR2 | B | β | t | ΔR2 | ||||||||||
Step 1 | Age | 2.24 | 0.06 | 0.50 | 0.017 | 0.07 | 0.01 | 0.04 | 0.007 | -0.21 | -0.02 | -0.19 | 0.005 | ||||||||
Education | -0.19 | -0.04 | -0.33 | 0.01 | 0.01 | 0.07 | 0.04 | 0.03 | 0.29 | ||||||||||||
Step 2 | Testosterone | 0.58 | 0.24 | 1.90 | 0.083* | 0.19 | 0.21 | 1.70 | 0.100* | 0.10 | 0.16 | 1.28 | 0.108* | ||||||||
TLBS-Variability | -0.19 | -0.29 | -2.23* | -0.08 | -0.35 | -2.67** | -0.06 | -0.38 | -2.89** | ||||||||||||
Direct and indirect effects of TLBS-Variability | |||||||||||||||||||||
Effect | Boot SE | Boot 95% CI | Effect | Boot SE | Boot 95% CI | Effect | Boot SE | Boot 95% CI | |||||||||||||
Direct effect | 0.58 | 0.34 | [-0.11, 1.26] | 0.19 | 0.11 | [-0.04, 0.42] | 0.10 | 0.08 | [-0.60, 0.24] | ||||||||||||
Indirect effect | -0.25 | 0.13 | [-0.56, -0.04] | -0.11 | 0.05 | [-0.24, -0.03] | -0.08 | 0.04 | [-0.16, -0.02] |
Predictive variable | Prediction of testosterone on AQCV: the mediation effect of Variability and the moderation effect of cortisol | Prediction of testosterone on AQCV-PA: the mediation effect of Variability and the moderation effect of cortisol | Prediction of testosterone on AQCV-A: the mediation effect of Variability and the moderation effect of cortisol | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dependent variable: TLBS-Variability | Dependent variable: TLBS-Variability | Dependent variable: TLBS-Variability | |||||||||||||||||
B | β | t | ΔR2 | B | β | t | ΔR2 | B | β | t | ΔR2 | ||||||||
Step 1 | Age | -12.92 | -0.23 | -2.27* | 0.131** | -12.92 | -0.23 | -2.27* | 0.131** | -12.92 | -0.23 | -2.27* | 0.131** | ||||||
Education | 0.98 | 0.13 | 1.30 | 0.98 | 0.13 | 1.30 | 0.98 | 0.13 | 1.30 | ||||||||||
Step 2 | Testosterone | 1.38 | 0.37 | 3.35** | 0.116** | 1.38 | 0.37 | 3.35** | 0.116** | 1.38 | 0.37 | 3.35** | 0.116** | ||||||
Cortisol | -0.01 | -0.04 | -0.40 | -0.01 | -0.04 | -0.40 | -0.01 | -0.04 | -0.40 | ||||||||||
Step 3 | Testosterone ×SCortisol | 0.01 | 0.30 | 3.00** | 0.088** | 0.01 | 0.30 | 3.00** | 0.088** | 0.01 | 0.30 | 3.00** | 0.088** | ||||||
Dependent variable: AQCV | Dependent variable: AQCV-PA | Dependent variable: AQCV-A | |||||||||||||||||
B | β | t | ΔR2 | B | β | t | ΔR2 | B | β | t | ΔR2 | ||||||||
Step 1 | Age | 2.02 | 0.06 | 0.45 | 0.017 | 0.04 | 0.00 | 0.025 | 0.007 | -0.27 | -0.03 | -0.24 | 0.005 | ||||||
Education | -0.18 | -0.04 | -0.31 | 0.01 | 0.01 | 0.065 | 0.04 | 0.04 | 0.31 | ||||||||||
Step 2 | TLBS-Variability | -0.19 | -0.30 | -2.1* | 0.103 | -0.09 | -0.39 | -2.77** | 0.101 | -0.06 | -0.38 | -2.76** | 0.131* | ||||||
Testosterone | 0.42 | 0.17 | 1.26 | 0.19 | 0.22 | 1.57 | 0.06 | 0.09 | 0.68 | ||||||||||
Cortisol | 0.01 | 0.16 | 1.25 | 0.00 | 0.03 | 0.22 | 0.00 | 0.17 | 1.35 | ||||||||||
Step 3 | Testosterone×Cortisol | 0.00 | 0.03 | 0.22 | 0.001 | 0.00 | 0.11 | 0.86 | 0.010 | 0.00 | 0.04 | 0.36 | 0.002 | ||||||
Cortisol | Direct and indirect effects of Variability at different levels of cortisol | ||||||||||||||||||
Effect | Boot SE | Boot 95% CI | Effect | Boot SE | Boot 95% CI | Effect | Boot SE | Boot 95% CI | |||||||||||
687.40 (M - SD) | -0.07 | 0.13 | [-0.37, 0.13] | -0.03 | 0.05 | [-0.16, 0.05] | -0.02 | 0.03 | [-0.10, 0.04] | ||||||||||
901.31 (M) | -0.27 | 0.13 | [-0.61, -0.59] | -0.12 | 0.05 | [-0.25, -0.03] | -0.09 | 0.04 | [-0.18, -0.03] | ||||||||||
1115.22 (M + SD) | -0.47 | 0.22 | [-1.02, -0.12] | -0.21 | 0.08 | [-0.40, -0.07] | -0.15 | 0.06 | [-0.29, -0.05] |
Table 3 Prediction of testosterone on aggressive: The mediation effect of TLBS-Variability and the moderation effect of cortisol
Predictive variable | Prediction of testosterone on AQCV: the mediation effect of Variability and the moderation effect of cortisol | Prediction of testosterone on AQCV-PA: the mediation effect of Variability and the moderation effect of cortisol | Prediction of testosterone on AQCV-A: the mediation effect of Variability and the moderation effect of cortisol | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dependent variable: TLBS-Variability | Dependent variable: TLBS-Variability | Dependent variable: TLBS-Variability | |||||||||||||||||
B | β | t | ΔR2 | B | β | t | ΔR2 | B | β | t | ΔR2 | ||||||||
Step 1 | Age | -12.92 | -0.23 | -2.27* | 0.131** | -12.92 | -0.23 | -2.27* | 0.131** | -12.92 | -0.23 | -2.27* | 0.131** | ||||||
Education | 0.98 | 0.13 | 1.30 | 0.98 | 0.13 | 1.30 | 0.98 | 0.13 | 1.30 | ||||||||||
Step 2 | Testosterone | 1.38 | 0.37 | 3.35** | 0.116** | 1.38 | 0.37 | 3.35** | 0.116** | 1.38 | 0.37 | 3.35** | 0.116** | ||||||
Cortisol | -0.01 | -0.04 | -0.40 | -0.01 | -0.04 | -0.40 | -0.01 | -0.04 | -0.40 | ||||||||||
Step 3 | Testosterone ×SCortisol | 0.01 | 0.30 | 3.00** | 0.088** | 0.01 | 0.30 | 3.00** | 0.088** | 0.01 | 0.30 | 3.00** | 0.088** | ||||||
Dependent variable: AQCV | Dependent variable: AQCV-PA | Dependent variable: AQCV-A | |||||||||||||||||
B | β | t | ΔR2 | B | β | t | ΔR2 | B | β | t | ΔR2 | ||||||||
Step 1 | Age | 2.02 | 0.06 | 0.45 | 0.017 | 0.04 | 0.00 | 0.025 | 0.007 | -0.27 | -0.03 | -0.24 | 0.005 | ||||||
Education | -0.18 | -0.04 | -0.31 | 0.01 | 0.01 | 0.065 | 0.04 | 0.04 | 0.31 | ||||||||||
Step 2 | TLBS-Variability | -0.19 | -0.30 | -2.1* | 0.103 | -0.09 | -0.39 | -2.77** | 0.101 | -0.06 | -0.38 | -2.76** | 0.131* | ||||||
Testosterone | 0.42 | 0.17 | 1.26 | 0.19 | 0.22 | 1.57 | 0.06 | 0.09 | 0.68 | ||||||||||
Cortisol | 0.01 | 0.16 | 1.25 | 0.00 | 0.03 | 0.22 | 0.00 | 0.17 | 1.35 | ||||||||||
Step 3 | Testosterone×Cortisol | 0.00 | 0.03 | 0.22 | 0.001 | 0.00 | 0.11 | 0.86 | 0.010 | 0.00 | 0.04 | 0.36 | 0.002 | ||||||
Cortisol | Direct and indirect effects of Variability at different levels of cortisol | ||||||||||||||||||
Effect | Boot SE | Boot 95% CI | Effect | Boot SE | Boot 95% CI | Effect | Boot SE | Boot 95% CI | |||||||||||
687.40 (M - SD) | -0.07 | 0.13 | [-0.37, 0.13] | -0.03 | 0.05 | [-0.16, 0.05] | -0.02 | 0.03 | [-0.10, 0.04] | ||||||||||
901.31 (M) | -0.27 | 0.13 | [-0.61, -0.59] | -0.12 | 0.05 | [-0.25, -0.03] | -0.09 | 0.04 | [-0.18, -0.03] | ||||||||||
1115.22 (M + SD) | -0.47 | 0.22 | [-1.02, -0.12] | -0.21 | 0.08 | [-0.40, -0.07] | -0.15 | 0.06 | [-0.29, -0.05] |
Predictive variable | Dependent variable: Peak-TLBSaway | |||||||
---|---|---|---|---|---|---|---|---|
B | β | t | ΔR2 | |||||
Step 1 | Age | 17.60 | 0.06 | 0.56 | 0.088* | |||
Education | -8.46 | -0.22 | -2.04* | |||||
Step 2 | Testosterone | -4.88 | -0.26 | -2.13* | 0.053 | |||
Cortisol | 0.05 | 0.07 | 0.60 | |||||
Step 3 | Testosterone×Cortisol | -0.02 | -0.27 | -2.51* | 0.074*** | |||
Dependent variable: AQCV-VA | ||||||||
B | β | t | ΔR2 | |||||
Step 1 | Age | 1.10 | 0.17 | 1.40 | 0.034 | |||
Education | -0.02 | -0.03 | -0.22 | |||||
Step 2 | Peak-TLBSaway | 0.01 | 0.25 | 1.93 | 0.075 | |||
Testosterone | 0.08 | 0.18 | 1.33 | |||||
Cortisol | 0.00 | 0.02 | 0.14 | |||||
Step 3 | Testosterone×Cortisol | 0.00 | -0.01 | -0.10 | 0.000 | |||
Cortisol | Direct and indirect effects of Peak-TLBSaway at different levels of cortisol | |||||||
Effect | Boot SE | Boot 95% CI | ||||||
687.40 (M - SD) | -0.001 | 0.03 | [-0.06, 0.05] | |||||
901.31 (M) | -0.03 | 0.02 | [-0.08, -0.06] | |||||
1115.22 (M + SD) | -0.06 | 0.03 | [-0.14, -0.01] |
Table 4 Prediction of testosterone on AQCV-VA: the mediation effect of Peak-TLBSaway and the moderation effect of cortisol
Predictive variable | Dependent variable: Peak-TLBSaway | |||||||
---|---|---|---|---|---|---|---|---|
B | β | t | ΔR2 | |||||
Step 1 | Age | 17.60 | 0.06 | 0.56 | 0.088* | |||
Education | -8.46 | -0.22 | -2.04* | |||||
Step 2 | Testosterone | -4.88 | -0.26 | -2.13* | 0.053 | |||
Cortisol | 0.05 | 0.07 | 0.60 | |||||
Step 3 | Testosterone×Cortisol | -0.02 | -0.27 | -2.51* | 0.074*** | |||
Dependent variable: AQCV-VA | ||||||||
B | β | t | ΔR2 | |||||
Step 1 | Age | 1.10 | 0.17 | 1.40 | 0.034 | |||
Education | -0.02 | -0.03 | -0.22 | |||||
Step 2 | Peak-TLBSaway | 0.01 | 0.25 | 1.93 | 0.075 | |||
Testosterone | 0.08 | 0.18 | 1.33 | |||||
Cortisol | 0.00 | 0.02 | 0.14 | |||||
Step 3 | Testosterone×Cortisol | 0.00 | -0.01 | -0.10 | 0.000 | |||
Cortisol | Direct and indirect effects of Peak-TLBSaway at different levels of cortisol | |||||||
Effect | Boot SE | Boot 95% CI | ||||||
687.40 (M - SD) | -0.001 | 0.03 | [-0.06, 0.05] | |||||
901.31 (M) | -0.03 | 0.02 | [-0.08, -0.06] | |||||
1115.22 (M + SD) | -0.06 | 0.03 | [-0.14, -0.01] |
[1] |
Archer J. (2006). Testosterone and human aggression: An evaluation of the challenge hypothesis. Neuroscience & Biobehavioral Reviews, 30(3), 319-345.
doi: 10.1016/j.neubiorev.2004.12.007 URL pmid: 16483890 |
[2] |
Boksem M. A., Mehta P. H., Van den Bergh B., van Son V., Trautmann S. T., Roelofs K., ... Sanfey A. G. (2013). Testosterone inhibits trust but promotes reciprocity. Psychological Science, 24(11), 2306-2314.
doi: 10.1177/0956797613495063 URL pmid: 24071565 |
[3] |
Bos P. A., Panksepp J., Bluthé R. M., & van Honk J. (2012). Acute effects of steroid hormones and neuropeptides on human social-emotional behavior: A review of single administration studies. Frontiers in Neuroendocrinology, 33(1), 17-35.
doi: 10.1016/j.yfrne.2011.01.002 URL pmid: 21256859 |
[4] |
Brooks J. H., & Reddon J. R. (1996). Serum testosterone in violent and nonviolent young offenders. Journal of Clinical Psychology, 52(4), 475-483.
doi: 10.1002/(SICI)1097-4679(199607)52:4<475::AID-JCLP14>3.0.CO;2-D URL pmid: 8842886 |
[5] |
Buades-Rotger M., & Krämer U. M. (2018). From words to action: Implicit attention to antisocial semantic cues predicts aggression and amygdala reactivity to angry faces in healthy young women. Aggressive Behavior, 44(6), 624-637.
URL pmid: 30141188 |
[6] |
Carré J. M., & Archer J. (2018). Testosterone and human behavior: The role of individual and contextual variables. Current Opinion in Psychology, 19, 149-153.
doi: 10.1016/j.copsyc.2017.03.021 URL pmid: 29279215 |
[7] | Clarke-McLean J. G. (1996). Social networks among incarcerated juvenile offenders. Social Development, 5(2), 203-217. |
[8] |
Crick N. R., & Dodge K. A. (1994). A review and reformulation of social information-processing mechanisms in children’s social adjustment. Psychological Bulletin, 115(1), 74-101.
doi: 10.1037/0033-2909.115.1.74 URL |
[9] | Dabbs J. M., Carr T. S., Frady R. L., & Riad J. K. (1995). Testosterone, crime, and misbehavior among 692 male prison inmates. Personality and Individual Differences, 18(5), 627-633. |
[10] |
Dekkers T. J., van Rentergem, J. A. A., Meijer B., Popma A., Wagemaker E., & Huizenga H. M. (2019). A meta- analytical evaluation of the dual-hormone hypothesis: Does cortisol moderate the relationship between testosterone and status, dominance, risk taking, aggression, and psychopathy? Neuroscience & Biobehavioral Reviews, 96, 250-271.
URL pmid: 30529754 |
[11] |
Denson T. F., Ronay R., von Hippel W., & Schira M. M. (2013). Endogenous testosterone and cortisol modulate neural responses during induced anger control. Social Neuroscience, 8(2), 165-177.
URL pmid: 22263640 |
[12] |
Domes G., Mense J., Vohs K., & Habermeyer E. (2013). Offenders with antisocial personality disorder show attentional bias for violence-related stimuli. Psychiatry Research, 209(1), 78-84.
URL pmid: 23261185 |
[13] | Dreher J. C., Dunne S., Pazderska A., Frodl T., Nolan J. J., & O’Doherty J. P. (2016). Testosterone causes both prosocial and antisocial status-enhancing behaviors in human males. Proceedings of the National Academy of Sciences, 113(41), 11633-11638. |
[14] |
Eisenegger C., Haushofer J., & Fehr E. (2011). The role of testosterone in social interaction. Trends in Cognitive Sciences, 15(6), 263-271.
doi: 10.1016/j.tics.2011.04.008 URL pmid: 21616702 |
[15] | Fernàndez-Castillo N., & Cormand B. (2016). Aggressive behavior in humans: Genes and pathways identified through association studies. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 171(5), 676-696. |
[16] |
Gross J. J. (2001). Emotion regulation in adulthood: Timing is everything. Current Directions in Psychological Science, 10(6), 214-219.
doi: 10.1111/1467-8721.00152 URL |
[17] |
Grotzinger A. D., Mann F. D., Patterson M. W., Tackett J. L., Tucker-Drob E. M., & Harden K. P. (2018). Hair and salivary testosterone, hair cortisol, and externalizing behaviors in adolescents. Psychological Science, 29(5), 688-699.
URL pmid: 29443645 |
[18] |
Guan M., Liao Y., Ren H., Wang X., Yang Q., Liu X., & Wang W. (2015). Impaired response inhibition in juvenile delinquents with antisocial personality characteristics: A preliminary ERP study in a Go/Nogo task. Neuroscience Letters, 603, 1-5.
doi: 10.1016/j.neulet.2015.06.062 URL pmid: 26189594 |
[19] |
Hakamata Y., Lissek S., Bar-Haim Y., Britton J. C., Fox N. A., Leibenluft E., ... Pine D. S. (2010). Attention bias modification treatment: A meta-analysis toward the establishment of novel treatment for anxiety. Biological Psychiatry, 68(11), 982-990.
doi: 10.1016/j.biopsych.2010.07.021 URL pmid: 20887977 |
[20] | Hayes A. F. (2012). PROCESS: A versatile computational tool for observed variable mediation, moderation, and conditional process modeling [White paper]. Retrieved from http://www.afhayes.com/ public/process2012.pdf |
[21] |
Huesmann L. R. (2018). An integrative theoretical understanding of aggression: A brief exposition. Current Opinion in Psychology, 19, 119-124.
URL pmid: 29279209 |
[22] |
Knight E. L., Sarkar A., Prasad S., & Mehta P. H. (2020). Beyond the challenge hypothesis: The emergence of the dual-hormone hypothesis and recommendations for future research. Hormones and Behavior, 123, 104657.
doi: 10.1016/j.yhbeh.2019.104657 URL pmid: 31863735 |
[23] |
Kuckertz J. M., & Amir N. (2015). Attention bias modification for anxiety and phobias: Current status and future directions. Current Psychiatry Reports, 17(2), 9.
doi: 10.1007/s11920-014-0545-x URL pmid: 25620791 |
[24] |
Laue C., Griffey M., Lin P. I., Wallace K., van der Schoot M., Horn P., ... Barzman D. (2018). Eye gaze patterns associated with aggressive tendencies in adolescence. Psychiatric Quarterly, 89(3), 747-756.
doi: 10.1007/s11126-018-9573-8 URL pmid: 29552711 |
[25] |
Lee A. H., & DiGiuseppe R. (2018). Anger and aggression treatments: A review of meta-analyses. Current Opinion in Psychology, 19, 65-74.
doi: 10.1016/j.copsyc.2017.04.004 URL pmid: 29279226 |
[26] | Li X. Y., Fei L. P., Zhang Y. L., Nun Y. J., Tong Y. S., & Yang S. J. (2011). Development, reliability and validity of the Chinese version of Buss & Perry Aggression Questionnaire. Chinese Journal of Nervous and Mental Diseases, 37(10), 607-613. |
[27] |
Lievaart M., Huijding J., van der Veen, F. M., Hovens J. E., & Franken, I. H. A. (2017). The impact of angry rumination on anger-primed cognitive control. Journal of Behavior Therapy and Experimental Psychiatry, 54, 135-142.
URL pmid: 27494341 |
[28] | Lu Q., Guo K. Y., Zhang M., Zhang X. B., Hu F. Q., & Yang J. L. (2018). Chinese juvenile delinquency research report 2017: Based on a comparative study of juvenile offenders and other groups. Juvenile Delinquency, 219(6), 31-45. |
[29] | Manning K. E. (2019). Seeing red? A systematic review of the evidence for attentional biases to threat-relevant stimuli in propensity to reactive aggression. Aggression and Violent Behavior, 50, 101359. |
[30] |
Mehta P. H., & Josephs R. A. (2010). Testosterone and cortisol jointly regulate dominance: Evidence for a dual- hormone hypothesis. Hormones and Behavior, 58(5), 898-906.
doi: 10.1016/j.yhbeh.2010.08.020 URL pmid: 20816841 |
[31] |
Miller N. V., & Johnston C. (2019). Social threat attentional bias in childhood: Relations to aggression and hostile intent attributions. Aggressive Behavior, 45(3), 245-254.
URL pmid: 30635910 |
[32] |
Montoya E. R., Terburg D., Bos P. A., & van Honk J. (2012). Testosterone, cortisol, and serotonin as key regulators of social aggression: A review and theoretical perspective. Motivation and Emotion, 36(1), 65-73.
doi: 10.1007/s11031-011-9264-3 URL pmid: 22448079 |
[33] |
O’Neal C. R., Brotman L. M., Huang K. Y., Gouley K. K., Kamboukos D., Calzada E. J., & Pine D. S. (2010). Understanding relations among early family environment, cortisol response, and child aggression via a prevention experiment. Child Development, 81(1), 290-305.
doi: 10.1111/j.1467-8624.2009.01395.x URL pmid: 20331668 |
[34] |
Panagiotidis D., Clemens B., Habel U., Schneider F., Schneider I., Wagels L., & Votinov M. (2017). Exogenous testosterone in a non-social provocation paradigm potentiates anger but not behavioral aggression. European Neuropsychopharmacology, 27(11), 1172-1184.
doi: 10.1016/j.euroneuro.2017.07.006 URL pmid: 28939164 |
[35] |
Panizzon M. S., Hauger R. L., Xian H., Jacobson K., Lyons M. J., Franz C. E., & Kremen W. S. (2018). Interactive effects of testosterone and cortisol on hippocampal volume and episodic memory in middle-aged men. Psychoneuroendocrinology, 91, 115-122.
doi: 10.1016/j.psyneuen.2018.03.003 URL pmid: 29547742 |
[36] |
Popma A., Vermeiren R., Geluk C. A., Rinne T., van den Brink W., Knol D. L., ... Doreleijers T. A. (2007). Cortisol moderates the relationship between testosterone and aggression in delinquent male adolescents. Biological Psychiatry, 61(3), 405-411.
doi: 10.1016/j.biopsych.2006.06.006 URL pmid: 16950214 |
[37] |
Prasad S., Knight E. L., & Mehta P. H. (2019). Basal testosterone’s relationship with dictator game decision-making depends on cortisol reactivity to acute stress: A dual-hormone perspective on dominant behavior during resource allocation. Psychoneuroendocrinology, 101, 150-159.
doi: 10.1016/j.psyneuen.2018.11.012 URL pmid: 30463044 |
[38] |
Radke S., Volman I., Mehta P., van Son V., Enter D., Sanfey A., ... Roelofs K. (2015). Testosterone biases the amygdala toward social threat approach. Science Advances, 1(5), e1400074.
doi: 10.1126/sciadv.1400074 URL pmid: 26601187 |
[39] |
Rosell D. R., & Siever L. J. (2015). The neurobiology of aggression and violence. CNS Spectrums, 20(3), 254-279.
URL pmid: 25936249 |
[40] |
Roy A. K., Vasa R. A., Bruck M., Mogg K., Bradley B. P., Sweeney M., ... CAMS Team. (2008). Attention bias toward threat in pediatric anxiety disorders. Journal of the American Academy of Child & Adolescent Psychiatry, 47(10), 1189-1196.
doi: 10.1097/CHI.0b013e3181825ace URL pmid: 18698266 |
[41] |
Smillie L. D., Pickering A. D., & Jackson C. J. (2006). The new reinforcement sensitivity theory: Implications for personality measurement. Personality and Social Psychology Review, 10(4), 320-335.
doi: 10.1207/s15327957pspr1004_3 URL pmid: 17201591 |
[42] | Terburg D., & van Honk, J. (2013). Approach-avoidance versus dominance-submissiveness: A multilevel neural framework on how testosterone promotes social status. Emotion Review, 5(3), 296-302. |
[43] |
Terburg D., Aarts H., & van Honk J. (2012). Testosterone affects gaze aversion from angry faces outside of conscious awareness. Psychological Science, 23(5), 459-463.
URL pmid: 22477106 |
[44] |
Terburg D., Morgan B., & van Honk J. (2009). The testosterone-cortisol ratio: A hormonal marker for proneness to social aggression. International Journal of Law and Psychiatry, 32(4), 216-223.
doi: 10.1016/j.ijlp.2009.04.008 URL pmid: 19446881 |
[45] | Tremblay R. E. (1998). Testosterone, physical aggression, dominance, and physical development in early adolescence. International Journal of Behavioral Development, 22(4), 753-777. |
[46] |
van Peer J. M., Enter D., van Steenbergen H., Spinhoven P., & Roelofs K. (2017). Exogenous testosterone affects early threat processing in socially anxious and healthy women. Biological Psychology, 129, 82-89.
doi: 10.1016/j.biopsycho.2017.08.003 URL pmid: 28811112 |
[47] |
Vasquez E. A., Pedersen W. C., Bushman B. J., Kelley N. J., Demeestere P., & Miller N. (2013). Lashing out after stewing over public insults: The effects of public provocation, provocation intensity, and rumination on triggered displaced aggression. Aggressive Behavior, 39(1), 13-29.
URL pmid: 23042637 |
[48] |
Wibral M., Dohmen T., Klingmüller D., Weber B., & Falk A. (2012). Testosterone administration reduces lying in men. PloS One, 7(10), e46774.
doi: 10.1371/journal.pone.0046774 URL pmid: 23071635 |
[49] |
Wilkowski B. M., & Robinson M. D. (2010). The anatomy of anger: An integrative cognitive model of trait anger and reactive aggression. Journal of Personality, 78(1), 9-38.
doi: 10.1111/j.1467-6494.2009.00607.x URL pmid: 20433611 |
[50] | Yang B., Xiao Y. Q., Lai L., & Wu M. X. (2018). Evidence- based modification of juvenile violent delinquency. Juvenile Delinquency Prevention Research, 1, 32-42. |
[51] | Zvielli A., Bernstein A., & Koster E. H. (2015). Temporal dynamics of attentional bias. Clinical Psychological Science, 3(5), 772-788. |
[1] | LIU Yuping, ZHOU Bingtao, YANG Bo. How does emotion shape aggressive behavior of violent offenders? An explanation based on emotion regulation theory [J]. Acta Psychologica Sinica, 2022, 54(3): 270-280. |
[2] | ZHANG Ni, LIU Wen, LIU Fang, GUO Xin. Relationship between depression and cognitive reappraisal in 8-12 years old children: the mediating role of attention bias toward sad expression [J]. Acta Psychologica Sinica, 2022, 54(1): 25-39. |
[3] | LEI Yi, XIA Qi, MO Zhifeng, LI Hong. The attention bias effect of infant face: The mechanism of cuteness and familiarity [J]. Acta Psychologica Sinica, 2020, 52(7): 811-822. |
[4] | HU Na, CHEN Antao, WANG Yanqing, LI Qing, XU Zhenzhen, LONG Quanshan. Acute stress impairs error monitoring and post-error adjustment [J]. Acta Psychologica Sinica, 2020, 52(2): 162-172. |
[5] | HUANG Xiaoxiao,ZHANG Baoshan,ZHANG Yuan,MA Yuting. Effects of meta-stereotype on aggressive behavior among migrant children and the mediating effect of frustration [J]. Acta Psychologica Sinica, 2019, 51(4): 484-496. |
[6] | Huini PENG, Jianhui WU, Xiaofang SUN, Qing GUAN, Yuejia LUO. Trait anxiety predicts the response to acute psychological stress [J]. Acta Psychologica Sinica, 2018, 50(9): 997-1006. |
[7] | Tonglin JIN, Guizhi LU, Lu ZHANG, Yuntena WU, Xiangzhong JIN. The effect of violent exposure on online aggressive behavior of college students: The role of ruminative responses and internet moral [J]. Acta Psychologica Sinica, 2018, 50(9): 1051-1060. |
[8] | Jinsheng HU, Chengshi LI, Qi WANG, Songze LI, Taotao LI, Shuqing LIU. The deficiency of attention bias to emotional prosody in the teenagers with autism spectrum disorders: A perceptual mode of low efficiency [J]. Acta Psychologica Sinica, 2018, 50(6): 637-646. |
[9] | HOU Lulu, JIANG Qi, WANG Huanzhen, LI Changran. The relationship between trait anger and aggressive behavior: Based on the perspective of the integrative cognitive model [J]. Acta Psychologica Sinica, 2017, 49(12): 1548-1558. |
[10] | ZHANG Lin, LIU Shen, XU Qiang, WU Xiaoyan, YANG Mengyuan. Long-term effect of violence exposure in real-life on aggressive behaviors: A moderated mediation model [J]. Acta Psychologica Sinica, 2017, 49(1): 50-59. |
[11] | LU Qingyun;TAO Fangbiao;HOU Fangli;SUN Ying. Cortisol Reactivity to Stress and Decision–making in Adolescents: There is Gender Difference [J]. Acta Psychologica Sinica, 2014, 46(5): 647-655. |
[12] | HE Qiong;WANG Zhengyan;WANG Li;JIANG Caihong;SHANGGUAN Fangfang. Saliva Cortisol and Upper Respiratory Tract Infection in Young Children Experiencing Kindergarten Transition: The Effect of Temperament [J]. Acta Psychologica Sinica, 2014, 46(4): 516-527. |
[13] | WANG Jingxin;JIA Liping;BAI Xuejun;LUO Yuejia. Emotional Faces Processing Takes Precedence of Inhibition of Return: ERPs Study [J]. Acta Psychologica Sinica, 2013, 45(1): 1-10. |
[14] | YANG Ji-Ping,WANG Xing-Chao. Effect of Moral Disengagement on Adolescents’ Aggressive Behavior: Moderated Mediating Effect [J]. Acta Psychologica Sinica, 2012, 44(8): 1075-1085. |
[15] | WANG Li-Jie,SUN Qiu-De,YAN Jin,LIU Ai-Li,DONG Jian-Shu,LIU Jia-Jia,WANG Jian-Ping. Changes in Hippocampus Morphology, Cognitive Function and Coping Style Induced by Chronic Military Stress [J]. , 2011, 43(07): 792-797. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||