Acta Psychologica Sinica ›› 2020, Vol. 52 ›› Issue (10): 1199-1211.doi: 10.3724/SP.J.1041.2020.01199
• Reports of Empirical Studies • Previous Articles Next Articles
JIANG Yuchen, CAI Xiao, ZHANG Qingfang
Received:
2019-10-23
Published:
2020-10-25
Online:
2020-08-24
Supported by:
JIANG Yuchen, CAI Xiao, ZHANG Qingfang. (2020). Theta band (4-8 Hz) oscillations reflect syllables processing in Chinese spoken word production. Acta Psychologica Sinica, 52(10), 1199-1211.
Source of variation | 0-100 ms | 100-200 ms | 200-300 ms | 300-400 ms | 400-500 ms | 500-600 ms | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
F | ?p2 | F | ?p2 | F | ?p2 | F | ?p2 | F | ?p2 | F | ?p2 | |
prime type (1, 21) | 8.08* | 0.28 | 11.03** | 0.35 | 5.18* | 0.20 | n.s. | n.s. | n.s. | |||
relatedness (1, 21) | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | ||||||
repetition (1, 21) | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | ||||||
prime type × relatedness (1, 21) | n.s. | n.s. | n.s. | 5.13* | 0.20 | 6.41* | 0.23 | 6.00* | 0.22 | |||
prime type × relatedness × repetition (1, 21) | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | ||||||
prime type × relatedness × repetition × ROI (5, 105) | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. |
Table 1 ANOVA of θ band power activity in 0-600 ms, prime type × relatedness× repitition × ROI
Source of variation | 0-100 ms | 100-200 ms | 200-300 ms | 300-400 ms | 400-500 ms | 500-600 ms | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
F | ?p2 | F | ?p2 | F | ?p2 | F | ?p2 | F | ?p2 | F | ?p2 | |
prime type (1, 21) | 8.08* | 0.28 | 11.03** | 0.35 | 5.18* | 0.20 | n.s. | n.s. | n.s. | |||
relatedness (1, 21) | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | ||||||
repetition (1, 21) | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | ||||||
prime type × relatedness (1, 21) | n.s. | n.s. | n.s. | 5.13* | 0.20 | 6.41* | 0.23 | 6.00* | 0.22 | |||
prime type × relatedness × repetition (1, 21) | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | ||||||
prime type × relatedness × repetition × ROI (5, 105) | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. |
Effect | Frequency band | 0-300 ms | 300-600 ms | ||||
---|---|---|---|---|---|---|---|
First repetition | Syllable effect | δ, α, β | n.s. | n.s. | |||
θ | 270-300 ms p = 0.01 | 300-460 ms p = 0.01 | |||||
Phoneme effect | δ, α, β | n.s. | n.s. | ||||
θ | n.s. | 340-390 ms p = 0.052 | |||||
Second repetition | Syllable effect | δ, α, β | n.s. | n.s. | |||
θ | n.s. | n.s. | |||||
Phoneme effect | δ, α, β | n.s. | n.s. | ||||
θ | n.s. | n.s. |
Table 2 Syllable effect and phoneme effect in different frequency bands from 0 to 600 ms
Effect | Frequency band | 0-300 ms | 300-600 ms | ||||
---|---|---|---|---|---|---|---|
First repetition | Syllable effect | δ, α, β | n.s. | n.s. | |||
θ | 270-300 ms p = 0.01 | 300-460 ms p = 0.01 | |||||
Phoneme effect | δ, α, β | n.s. | n.s. | ||||
θ | n.s. | 340-390 ms p = 0.052 | |||||
Second repetition | Syllable effect | δ, α, β | n.s. | n.s. | |||
θ | n.s. | n.s. | |||||
Phoneme effect | δ, α, β | n.s. | n.s. | ||||
θ | n.s. | n.s. |
Figure 3. Event-related spectral perturbations of syllable-related and syllable-unrelated conditions in FC4. The dotted line represents the picture onset, and the black square indicated the significant difference between the conditions, p < 0.05, corrected in cluster level.
Figure 4. Event-related spectral perturbations of phoneme-related and phoneme-unrelated conditions in FC3. The dotted line represents the picture onset, and the grey square indicated the marginally significant difference between the conditions, 0.05 < p < 0.1, corrected in cluster level.
[1] |
Alario, F. X., Perre, L., Castel, C., & Ziegler, J. C. (2007). The role of orthography in speech production revisited. Cognition, 102(3), 464-475.
doi: 10.1016/j.cognition.2006.02.002 URL pmid: 16545792 |
[2] |
Bastiaansen, M., Magyari, L., & Hagoort, P. (2009). Syntactic unification operations are reflected in oscillatory dynamics during on-line sentence comprehension. Journal of Cognitive Neuroscience, 22(7), 1333-1347.
doi: 10.1162/jocn.2009.21283 URL pmid: 19580386 |
[3] |
Bidelman, G. M. (2015). Induced neural beta oscillations predict categorical speech perception abilities. Brain and Language, 141, 62-69.
doi: 10.1016/j.bandl.2014.11.003 URL pmid: 25540857 |
[4] |
Binder, J. R., Frost, J. A., Hammeke, T. A., Bellgowan, P. S., Springer, J. A., Kaufman, J. N., & Possing, E. T. (2000). Human temporal lobe activation by speech and nonspeech sounds. Cerebral Cortex, 10(5), 512-528.
doi: 10.1093/cercor/10.5.512 URL pmid: 10847601 |
[5] |
Brookes, M. J., Gibson, A. M., Hall, S. D., Furlong, P. L., Barnes, G. R., Hillebrand, A., ... Morris, P. G. (2005). GLM-beamformer method demonstrates stationary field, alpha ERD and gamma ERS co-localisation with fMRI BOLD response in visual cortex. NeuroImage, 26(1), 302-308.
doi: 10.1016/j.neuroimage.2005.01.050 URL pmid: 15862231 |
[6] |
Burki, A., Cheneval, P. P., & Laganaro, M. (2015). Do speakers have access to a mental syllabary? ERP comparison of high frequency and novel syllable production. Brain and Language, 150, 90-102.
doi: 10.1016/j.bandl.2015.08.006 URL pmid: 26367062 |
[7] |
Cai, Q., & Brysbaert, M. (2010). SUBTLEX-CH: Chinese word and character frequencies based on film subtitles. PLOS ONE, 5(6), e10729.
doi: 10.1371/journal.pone.0010729 URL pmid: 20532192 |
[8] | Cai, X., Yin, Y. L., & Zhang, Q. F. (2020). The roles of syllables and phonemes during phonological encoding in Chinese spoken word production: A topographic ERP study. Neuropsychologia, 144, 1-10. |
[9] | Chen, J. -Y. (2000). Syllable errors from naturalistic slips of the tongue in Mandarin Chinese. Psychologia: An International Journal of Psychology in the Orient, 43(1), 15-26. |
[10] | Chen, J. -Y., Chen, T. -M., & Dell, G. S. (2002). Word-form encoding in Mandarin Chinese as assessed by the implicit priming task. Journal of Memory and Language, 46(4), 751-781. |
[11] |
Chen, J. -Y., O’Seaghdha, P. G., & Chen, T. -M. (2016). The primacy of abstract syllables in Chinese word production. Journal of Experimental Psychology: Learning, Memory and Cognition, 42(5), 825-836.
doi: 10.1037/a0039911 URL |
[12] | Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Erlbaum. |
[13] |
Cohen, M. X. (2017). Where Does EEG Come From and What Does It Mean. Trends in Neurosciences, 40(4), 208-218.
doi: 10.1016/j.tins.2017.02.004 URL pmid: 28314445 |
[14] | Damian, M. F., & Bowers, J. S. (2003). Effects of orthography on speech production in a form-preparation paradigm. Journal of Memory and Language, 49(1), 119-132. |
[15] | Damian, M. F., & Dumay, N. (2007). Time pressure and phonological advance planning in spoken production. Journal of Memory and Language, 57(2), 195-209. |
[16] | Damian, M. F., & Martin, R. C. (1999). Semantic and phonological codes interact in single word production. Journal of Experimental Psychology: Learning, Memory and Cognition, 25(2), 345-361. |
[17] |
Dell’acqua, R., Sessa, P., Peressotti, F., Mulatti, C., Navarrete, E., & Grainger, J. (2010). ERP evidence for ultra-fast semantic processing in the picture-word interference paradigm. Frontiers in Psychology, 1, 177.
doi: 10.3389/fpsyg.2010.00177 URL pmid: 21833238 |
[18] |
Dell, G. S. (1986). A spreading-activation theory of retrieval in sentence production. Psychological Review, 93(3), 283-321.
URL pmid: 3749399 |
[19] |
Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9-21.
doi: 10.1016/j.jneumeth.2003.10.009 URL pmid: 15102499 |
[20] |
Ding, N., Melloni, L., Zhang, H., Tian, X., & Poeppel, D. (2015). Cortical tracking of hierarchical linguistic structures in connected speech. Nature Neuroscience, 19(1), 158-164.
doi: 10.1038/nn.4186 URL pmid: 26642090 |
[21] | Doelling, K. B., Arnal, L. H., Ghitza, O., & Poeppel, D. (2014). Acoustic landmarks drive delta-theta oscillations to enable speech comprehension by facilitating perceptual parsing. NeuroImage, 85, 761-768. |
[22] |
Engell, A. D., & Mccarthy, G. (2014). Repetition suppression of face-selective evoked and induced EEG recorded from human cortex. Human Brain Mapping, 35(8), 4155-4162.
doi: 10.1002/hbm.22467 URL pmid: 24677530 |
[23] |
Fell, J., & Axmacher, N. (2011). The role of phase synchronization in memory processes. Nature Reviews Neuroscience, 12(2), 105-118.
doi: 10.1038/nrn2979 URL pmid: 21248789 |
[24] |
Feng, C., Yue, Y., & Zhang, Q, F. (2019). Syllables are Retrieved before Segments in the Spoken Production of Mandarin Chinese: An ERP Study. Scientific Reports, 9(1), 1-9.
doi: 10.1038/s41598-018-37186-2 URL pmid: 30626917 |
[25] |
Forster, K. I., & Davis, C. (1991). The density constraint on form-priming in the naming task: Interference effects from a masked prime. Journal of Memory and Language, 30(1), 1-25.
doi: 10.1016/0749-596X(91)90008-8 URL |
[26] |
Ghinst, M. V., Bourguignon, M., de Beeck, M. O., Wens, V., Marty, B., Hassid, S., .. de Tiege, X. (2016). Left superior temporal gyrus is coupled to attended speech in a cocktail-party auditory scene. The Journal of Neuroscience, 36(5), 1596-1606.
doi: 10.1523/JNEUROSCI.1730-15.2016 URL pmid: 26843641 |
[27] |
Giraud, A. L., & Poeppel, D. (2012). Cortical oscillations and speech processing: Emerging computational principles and operations. Nature Neuroscience, 15(4), 511-517.
doi: 10.1038/nn.3063 URL pmid: 22426255 |
[28] | Goupillaud, P. L., Grossmann, A., & Morlet, J. (1984). Cycle- octave and related transforms in seismic signal analysis. Geoexploration, 23(1), 85-102. |
[29] |
Grillspector, K., Henson, R. N., & Martin, A. (2006). Repetition and the brain: Neural models of stimulus-specific effects. Trends in Cognitive Sciences, 10(1), 14-23.
doi: 10.1016/j.tics.2005.11.006 URL pmid: 16321563 |
[30] |
Gross, J., Hoogenboom, N., Thut, G., Schyns, P. G., Panzeri, S., Belin, P., & Garrod, S. (2013). Speech rhythms and multiplexed oscillatory sensory coding in the human brain. PLOS Biology, 11(12), e1001752.
URL pmid: 24391472 |
[31] |
Gruber, T., & Müller, M. M. (2002). Effects of picture repetition on induced gamma band responses, evoked potentials, and phase synchrony in the human EEG. Cognitive Brain Research, 13(3), 377-392.
doi: 10.1016/S0926-6410(01)00130-6 URL |
[32] |
Gruber, T., Giabbiconi, C. M., Trujillobarreto, N. J., & Müller, M. M. (2006). Repetition suppression of induced gamma band responses is eliminated by task switching. European Journal of Neuroscience, 24(9), 2654-2660.
doi: 10.1111/j.1460-9568.2006.05130.x URL pmid: 17100853 |
[33] |
Howard, M. F., & Poeppel, D. (2012). The neuromagnetic response to spoken sentences: Co-modulation of theta band amplitude and phase. Neuroimage, 60(4), 2118-2127.
doi: 10.1016/j.neuroimage.2012.02.028 URL |
[34] |
Indefrey, P., & Levelt, W. J. M. (2004). The spatial and temporal signatures of word production components. Cognition, 92(1-2), 101-144.
doi: 10.1016/j.cognition.2002.06.001 URL pmid: 15037128 |
[35] |
Jacobs, C. L., & Dell, G. S. (2014). ‘Hotdog’, not ‘Hot’ ‘dog’: The phonological planning of compound words. Language, Cognition and Neuroscience, 29(4), 512-523.
doi: 10.1080/23273798.2014.892144 URL pmid: 24910853 |
[36] |
Jensen, O., Kaiser, J., & Lachaux, J. P. (2007). Human gamma-frequency oscillations associated with attention and memory. Trends in Neurosciences, 30(7), 317-324.
doi: 10.1016/j.tins.2007.05.001 URL pmid: 17499860 |
[37] |
Klimesch, W. (2012). Alpha-band oscillations, attention, and controlled access to stored information. Trends in Cognitive Sciences, 16(12), 606-617.
doi: 10.1016/j.tics.2012.10.007 URL |
[38] |
Levelt, W. J. M., Roelofs, A., & Meyer, A. S. (1999). A theory of lexical access in speech production. Behavioral and Brain Sciences, 22(1), 1-38.
doi: 10.1017/s0140525x99001776 URL pmid: 11301520 |
[39] |
Lewis, A. G., Wang, L., & Bastiaansen, M. (2015). Fast oscillatory dynamics during language comprehension: Unification versus maintenance and prediction? Brain and Language, 148, 51-63.
doi: 10.1016/j.bandl.2015.01.003 URL pmid: 25666170 |
[40] |
Li, X., Shao, X., Xia, J., & Xu, X. (2019). The cognitive and neural oscillatory mechanisms underlying the facilitating effect of rhythm regularity on speech comprehension. Journal of Neurolinguistics, 49, 155-167.
doi: 10.1016/j.jneuroling.2018.05.004 URL |
[41] |
Luo, H., & Poeppel, D. (2007). Phase patterns of neuronal responses reliably discriminate speech in human auditory cortex. Neuron, 54(6), 1001-1010.
doi: 10.1016/j.neuron.2007.06.004 URL |
[42] | Makeig, S., Bell, A. J., Jung, T., & Sejnowski, T. J. (1995). Independent component analysis of electroencephalographic data. Neural Information Processing Systems, 8(8), 145-151. |
[43] |
Maris, E., & Oostenveld, R. (2007). Nonparametric statistical testing of EEG- and MEG-data. Journal of Neuroscience Methods, 164(1), 177-190.
doi: 10.1016/j.jneumeth.2007.03.024 URL pmid: 17517438 |
[44] | Meyer, A. S. (1991). The time course of phonological encoding in language production: Phonological encoding inside a syllable. Journal of Memory and Language, 30(1), 69-89. |
[45] |
Molinaro, N., Lizarazu, M., Lallier, M., Bourguignon, M., & Carreiras, M. (2016). Out-of-synchrony speech entrainment in developmental dyslexia. Human Brain Mapping, 37(8), 2767-2783.
doi: 10.1002/hbm.23206 URL pmid: 27061643 |
[46] |
Oostenveld, R., Fries, P., Maris, E., & Schoffelen, J. M. (2011). Fieldtrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Computational Intelligence & Neuroscience, 2011, 156869.
doi: 10.1155/2011/156869 URL pmid: 21253357 |
[47] |
O’Seaghdha, P. G., Chen, J.- Y., & Chen, T.- M. (2010). Proximate units in word production: Phonological encoding begins with syllables in Mandarin Chinese but with segments in English. Cognition, 115(2), 282-302.
doi: 10.1016/j.cognition.2010.01.001 URL pmid: 20149354 |
[48] |
Peelle, J. E., Gross, J., & Davis, M. H. (2013). Phase-locked responses to speech in human auditory cortex are enhanced during comprehension. Cerebral Cortex, 23(6), 1378-1387.
doi: 10.1093/cercor/bhs118 URL pmid: 22610394 |
[49] |
Pefkou, M., Arnal, L. H., Fontolan, L., & Giraud, A. L. (2017). θ-band and β-band neural activity reflects independent syllable tracking and comprehension of time-compressed speech. Journal of Neuroscience, 37(33), 7930-7938.
doi: 10.1523/JNEUROSCI.2882-16.2017 URL pmid: 28729443 |
[50] |
Peña, M., & Melloni, L. (2012). Brain oscillations during spoken sentence processing. Journal of Cognitive Neuroscience, 24(5), 1149-1164.
doi: 10.1162/jocn_a_00144 URL pmid: 21981666 |
[51] |
Perrin, F., Pernier, J., Bertrand, O. F., & Echallier, J. F. (1989). Spherical splines for scalp potential and current density mapping. Electroencephalography and Clinical Neurophysiology, 72(2), 184-187.
doi: 10.1016/0013-4694(89)90180-6 URL pmid: 2464490 |
[52] |
Pivik, R. T., Broughton, R. J., Coppola, R., Davidson, R. J., Fox, N., & Nuwer, M. R. (1993). Guidelines for the recording and quantitative analysis of electroencephalographic activity in research contexts. Psychophysiology, 30(6), 547-558.
doi: 10.1111/j.1469-8986.1993.tb02081.x URL pmid: 8248447 |
[53] |
Poeppel, D. (2003). The analysis of speech in different temporal integration windows: Cerebral lateralization as 'asymmetric sampling in time'. Speech Communication, 41(1), 245-255.
doi: 10.1016/S0167-6393(02)00107-3 URL |
[54] |
Power, A. J., Mead, M., Barnes, L., & Goswami, U. (2012). Neural entrainment to rhythmically presented auditory, visual, and audio-visual speech in children. Frontiers in Psychology, 3, 216.
doi: 10.3389/fpsyg.2012.00216 URL pmid: 22833726 |
[55] |
Qu, Q., Damian, M. F., & Kazanina, N. (2012). Sound-sized segments are significant for Mandarin speakers. Proceedings of the National Academy of Sciences of the United States of America, 109(35), 14265-14270.
doi: 10.1073/pnas.1200632109 URL pmid: 22891321 |
[56] |
Roelofs, A. (1997). The weaver model of word-form encoding in speech production. Cognition, 64(3), 249-284.
doi: 10.1016/s0010-0277(97)00027-9 URL pmid: 9426503 |
[57] | Roelofs, A. (2015). Modeling of phonological encoding in spoken word production: From Germanic languages to Mandarin Chinese and Japanese. Japanese Psychological Research, 57(1), 22-37. |
[58] |
Roux, F., & Uhlhaas, P. J. (2014). Working memory and neural oscillations: Alpha-gamma versus theta-gamma codes for distinct WM information? Trends in Cognitive Sciences, 18(1), 16-25.
doi: 10.1016/j.tics.2013.10.010 URL pmid: 24268290 |
[59] | Rugg, M. D., & Coles, M. G. H. (1995). Oxford psychology series, No. 25. Electrophysiology of mind: Event-related brain potentials and cognition New York, NY, US: Oxford University Press. |
[60] |
Saur, D., Schelter, B., Schnell, S., Kratochvil, D., Kupper, H., Kellmeyer, P., .. Weiller, C. (2010). Combining functional and anatomical connectivity reveals brain networks for auditory language comprehension. NeuroImage, 49(4), 3187-3197.
doi: 10.1016/j.neuroimage.2009.11.009 URL pmid: 19913624 |
[61] |
Schiller, N. O. (2008). The masked onset priming effect in picture naming. Cognition, 106(2), 952-962.
doi: 10.1016/j.cognition.2007.03.007 URL pmid: 17442296 |
[62] | Sereno, J. A., & Lee, H. (2015). The Contribution of Segmental and Tonal Information in Mandarin Spoken Word Processing. Language and Speech, 58(2), 131-151. |
[63] |
Siegel, M., Donner, T. H., & Engel, A. K. (2012). Spectral fingerprints of large-scale neuronal interactions. Nature Reviews Neuroscience, 13(2), 121-134.
doi: 10.1038/nrn3137 URL pmid: 22233726 |
[64] |
van, Petten, C., & Luka, B. J. (2012). Prediction during language comprehension: Benefits, costs, and ERP components. International Journal of Psychophysiology, 83(2), 176-190.
doi: 10.1016/j.ijpsycho.2011.09.015 URL pmid: 22019481 |
[65] |
Wang, J., Wong, W. K., Wang, S., & Chen, H. C. (2017). Primary phonological planning units in spoken word production are language-specific: Evidence from an ERP study. Scientific Reports, 7(1), 5815.
doi: 10.1038/s41598-017-06186-z URL pmid: 28724982 |
[66] |
Ward, L. M. (2003). Synchronous neural oscillations and cognitive processes. Trends in Cognitive Sciences, 7(12), 553-559.
doi: 10.1016/j.tics.2003.10.012 URL pmid: 14643372 |
[67] |
You, W. P., Zhang Q., F., & Verdonschot, R. G. (2012). Masked syllable priming effects in word and picture naming in Chinese. PLoS ONE, 7(10), e46595.
doi: 10.1371/journal.pone.0046595 URL pmid: 23056360 |
[68] |
Yu, M., Mo, C. & Mo, L. (2014). The role of phoneme in Mandarin Chinese production: Evidence from ERPs. PLoS One, 9(9), e106486.
doi: 10.1371/journal.pone.0106486 URL pmid: 25191857 |
[69] | Yue, Y., & Zhang, Q. F. (2015). Syllable and Segments Effects in Mandarin Chinese Spoken Word Production. Acta Psychologica Sinica, 47(3), 319-328. |
[70] | Zhang, Q. F. (2005). The syllable’s role in language production. Advances in Psychological Science, 13(6), 752-759. |
[71] |
Zhang, Q. F., & Damian, M. F. (2019). Syllables constitute proximate units for Mandarin speakers: Electrophysiological evidence from a masked priming task. Psychophysiology, 56(4), e13317.
doi: 10.1111/psyp.13317 URL pmid: 30657602 |
[72] |
Zhang, Q. F., & Wang, C. (2014). Syllable frequency and word frequency effects in spoken and written word production in a non-alphabetic script. Frontiers in Psychology, 5, 120.
doi: 10.3389/fpsyg.2014.00120 URL pmid: 24600420 |
[73] | Zhang, Q. F., & Yang, Y. F. (2003a). The determiners of picturenaming latency. Acta Psychologica Sinica, 35(4), 447-454. |
[74] | Zhang, Q. F., & Yang, Y. F. (2003b). The lexical access theory in speech production. Journal of Developments in Psychology, 11(1), 6-11. |
[75] | Zhang, Q. F., & Yang, Y. F. (2005). The phonological planning unit in Chinese monosyllabic word production. Psychological Science, 28(2), 374-378. |
[76] |
Zhu, X., Damian, M. F., & Zhang, Q. (2015). Seriality of semantic and phonological processes during overt speech in Mandarin as revealed by event-related brain potentials. Brain and Language, 144, 16-25.
doi: 10.1016/j.bandl.2015.03.007 URL pmid: 25880902 |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||