Acta Psychologica Sinica ›› 2020, Vol. 52 ›› Issue (10): 1212-1223.doi: 10.3724/SP.J.1041.2020.01212
• Reports of Empirical Studies • Previous Articles Next Articles
WANG Yuan1, LI Ke2, GAI Xiaosong1(), CAO Yifei1
Received:
2019-08-16
Published:
2020-10-25
Online:
2020-08-24
Contact:
GAI Xiaosong
E-mail:gaixs669@nenu.edu.cn
Supported by:
WANG Yuan, LI Ke, GAI Xiaosong, CAO Yifei. (2020). Training and transfer effects of response inhibition training with online feedback on adolescents and adults’ executive function. Acta Psychologica Sinica, 52(10), 1212-1223.
Days of training | Adult training Group | Adult active control group | Experimental group for adolescents | Youth active group | ||||
---|---|---|---|---|---|---|---|---|
SSRT (MS) | Accuracy (%) | SSRT (MS) | Accuracy (%) | SSRT (MS) | Accuracy (%) | SSRT (MS) | Accuracy (%) | |
D1 | 156.09 (30.00) | 0.58 (0.08) | 156.88 (29.35) | 0.58 (0.07) | 161.28 (24.51) | 0.53 (0.06) | 166.35 (23.49) | 0.51 (0.07) |
D2 | 146.40 (24.64) | 0.62 (0.10) | 145.50 (26.40) | 0.63 (0.09) | 158.78 (20.38) | 0.55 (0.08) | 163.32 (17.41) | 0.52 (0.06) |
D3 | 140.15 (23.16) | 0.66 (0.11) | 136.39 (20.08) | 0.64 (0.10) | 156.75 (10.49) | 0.59 (0.08) | 162.76 (20.90) | 0.53 (0.07) |
D4 | 134.66 (20.17) | 0.67 (0.13) | 133.41 (19.71) | 0.67 (0.10) | 150.52 (22.73) | 0.65 (0.07) | 158.45 (22.29) | 0.52 (0.07) |
D5 | 126.56 (19.21) | 0.69 (0.10) | 130.40 (19.36) | 0.67 (0.10) | 142.43 (17.80) | 0.76 (0.09) | 160.78 (19.99) | 0.55 (0.08) |
D6 | 123.12 (16.30) | 0.72 (0.10) | 132.49 (19.03) | 0.64 (0.09) | 141.25 (22.66) | 0.74 (0.09) | 155.28 (21.63) | 0.59 (0.09) |
D7 | 119.79 (21.32) | 0.73 (0.10) | 126.86 (25.74) | 0.65 (0.09) | 140.56 (25.29) | 0.77 (0.09) | 160.55 (19.88) | 0.61 (0.07) |
D8 | 116.74 (16.12) | 0.75 (0.10) | 122.79 (23.14) | 0.66 (0.11) | 134.10 (25.97) | 0.78 (0.06) | 162.68 (17.82) | 0.57 (0.08) |
D9 | 109.49 (20.65) | 0.78 (0.10) | 124.24 (19.66) | 0.65 (0.11) | 125.94 (24.90) | 0.82 (0.08) | 162.94 (19.15) | 0.54 (0.08) |
Table 1 Descriptive statistics of training effects of daily Stop Signal task in four training groups
Days of training | Adult training Group | Adult active control group | Experimental group for adolescents | Youth active group | ||||
---|---|---|---|---|---|---|---|---|
SSRT (MS) | Accuracy (%) | SSRT (MS) | Accuracy (%) | SSRT (MS) | Accuracy (%) | SSRT (MS) | Accuracy (%) | |
D1 | 156.09 (30.00) | 0.58 (0.08) | 156.88 (29.35) | 0.58 (0.07) | 161.28 (24.51) | 0.53 (0.06) | 166.35 (23.49) | 0.51 (0.07) |
D2 | 146.40 (24.64) | 0.62 (0.10) | 145.50 (26.40) | 0.63 (0.09) | 158.78 (20.38) | 0.55 (0.08) | 163.32 (17.41) | 0.52 (0.06) |
D3 | 140.15 (23.16) | 0.66 (0.11) | 136.39 (20.08) | 0.64 (0.10) | 156.75 (10.49) | 0.59 (0.08) | 162.76 (20.90) | 0.53 (0.07) |
D4 | 134.66 (20.17) | 0.67 (0.13) | 133.41 (19.71) | 0.67 (0.10) | 150.52 (22.73) | 0.65 (0.07) | 158.45 (22.29) | 0.52 (0.07) |
D5 | 126.56 (19.21) | 0.69 (0.10) | 130.40 (19.36) | 0.67 (0.10) | 142.43 (17.80) | 0.76 (0.09) | 160.78 (19.99) | 0.55 (0.08) |
D6 | 123.12 (16.30) | 0.72 (0.10) | 132.49 (19.03) | 0.64 (0.09) | 141.25 (22.66) | 0.74 (0.09) | 155.28 (21.63) | 0.59 (0.09) |
D7 | 119.79 (21.32) | 0.73 (0.10) | 126.86 (25.74) | 0.65 (0.09) | 140.56 (25.29) | 0.77 (0.09) | 160.55 (19.88) | 0.61 (0.07) |
D8 | 116.74 (16.12) | 0.75 (0.10) | 122.79 (23.14) | 0.66 (0.11) | 134.10 (25.97) | 0.78 (0.06) | 162.68 (17.82) | 0.57 (0.08) |
D9 | 109.49 (20.65) | 0.78 (0.10) | 124.24 (19.66) | 0.65 (0.11) | 125.94 (24.90) | 0.82 (0.08) | 162.94 (19.15) | 0.54 (0.08) |
Tasks and targets | Measuring time point | Adult training group | Adult active control group | Adolescent training group | Adolescent active control group | Negative control group |
---|---|---|---|---|---|---|
Go/No-go reaction time | Pretest | 340.33 (19.49) | 341.51 (41.78) | 348.60 (36.95) | 349.92 (52.99) | 340.44 (26.82) |
Posttest | 316.94 (26.35) | 337.39 (37.57) | 323.91 (49.64) | 337.23 (39.88) | 338.43 (26.95) | |
Go/No-go accuracy | Pretest | 0.89 (0.07) | 0.85 (0.11) | 0.79 (0.11) | 0.77 (0.09) | 0.87 (0.11) |
Posttest | 0.97 (0.02) | 0.87 (0.09) | 0.92 (0.44) | 0.80 (0.05) | 0.88 (0.11) | |
Go/No-go d′ | Pretest | 0.83 (0.15) | 0.84 (0.14) | 0.75 (0.12) | 0.73 (0.08) | 0.83 (0.06) |
Posttest | 0.91 (0.06) | 0.86 (0.11) | 0.87 (0.05) | 0.77 (0.06) | 0.81 (0.04) | |
Stroop effect | Pretest | 32.83 (24.06) | 32.54 (26.10) | 65.16 (28.95) | 69.07 (24.65) | 33.42 (28.13) |
Posttest | 30.04 (28.99) | 34.50 (33.25) | 44.81 (19.08) | 66.54 (23.40) | 32.01 (27.33) | |
2-Back accuracy | Pretest | 0.71 (0.06) | 0.71 (0.06) | 0.63 (0.05) | 0.61 (0.04) | 0.71 (0.03) |
Posttest | 0.73 (0.05) | 0.75 (0.05) | 0.77 (0.04) | 0.63 (0.04) | 0.72 (0.06) | |
3-Back accuracy | Pretest | 0.61 (0.07) | 0.63 (0.08) | 0.53 (0.04) | 0.52 (0.05) | 0.63 (0.03) |
Posttest | 0.64 (0.05) | 0.65 (0.06) | 0.59 (0.04) | 0.55 (0.04) | 0.64 (0.03) | |
Raven’s reasoning test accuracy | Pretest | 0.80 (0.11) | 0.83 (0.10) | 0.82 (0.10) | 0.85 (0.09) | 0.78 (0.11) |
Posttest | 0.80 (0.11) | 0.81 (0.10) | 0.79 (0.09) | 0.79 (0.10) | 0.79 (0.10) |
Table 2 The descriptive statistical results of the transfer effect of each task in the time of two measurements
Tasks and targets | Measuring time point | Adult training group | Adult active control group | Adolescent training group | Adolescent active control group | Negative control group |
---|---|---|---|---|---|---|
Go/No-go reaction time | Pretest | 340.33 (19.49) | 341.51 (41.78) | 348.60 (36.95) | 349.92 (52.99) | 340.44 (26.82) |
Posttest | 316.94 (26.35) | 337.39 (37.57) | 323.91 (49.64) | 337.23 (39.88) | 338.43 (26.95) | |
Go/No-go accuracy | Pretest | 0.89 (0.07) | 0.85 (0.11) | 0.79 (0.11) | 0.77 (0.09) | 0.87 (0.11) |
Posttest | 0.97 (0.02) | 0.87 (0.09) | 0.92 (0.44) | 0.80 (0.05) | 0.88 (0.11) | |
Go/No-go d′ | Pretest | 0.83 (0.15) | 0.84 (0.14) | 0.75 (0.12) | 0.73 (0.08) | 0.83 (0.06) |
Posttest | 0.91 (0.06) | 0.86 (0.11) | 0.87 (0.05) | 0.77 (0.06) | 0.81 (0.04) | |
Stroop effect | Pretest | 32.83 (24.06) | 32.54 (26.10) | 65.16 (28.95) | 69.07 (24.65) | 33.42 (28.13) |
Posttest | 30.04 (28.99) | 34.50 (33.25) | 44.81 (19.08) | 66.54 (23.40) | 32.01 (27.33) | |
2-Back accuracy | Pretest | 0.71 (0.06) | 0.71 (0.06) | 0.63 (0.05) | 0.61 (0.04) | 0.71 (0.03) |
Posttest | 0.73 (0.05) | 0.75 (0.05) | 0.77 (0.04) | 0.63 (0.04) | 0.72 (0.06) | |
3-Back accuracy | Pretest | 0.61 (0.07) | 0.63 (0.08) | 0.53 (0.04) | 0.52 (0.05) | 0.63 (0.03) |
Posttest | 0.64 (0.05) | 0.65 (0.06) | 0.59 (0.04) | 0.55 (0.04) | 0.64 (0.03) | |
Raven’s reasoning test accuracy | Pretest | 0.80 (0.11) | 0.83 (0.10) | 0.82 (0.10) | 0.85 (0.09) | 0.78 (0.11) |
Posttest | 0.80 (0.11) | 0.81 (0.10) | 0.79 (0.09) | 0.79 (0.10) | 0.79 (0.10) |
[1] |
Ambrosi, S., Lemaire, P., & Blaye, A. (2016). Do young children modulate their cognitive control? Sequential congruency effects across three conflict tasks in 5-to-6 year-olds. Experimental Psychology, 63(2), 117-126.
doi: 10.1027/1618-3169/a000320 URL pmid: 27221602 |
[2] |
Ambrosi, S., Servant, M., Blaye, A., & Burle, B. (2019). Conflict processing in kindergarten children: New evidence from distribution analyses reveals the dynamics of incorrect response activation and suppression. Journal of Experimental Child Psychology, 177(1), 36-52.
doi: 10.1016/j.jecp.2018.06.006 URL |
[3] |
Anderson, P. (2002). Assessment and development of executive function (EF) during childhood. Child Neuropsychology, 8(2), 71-82.
doi: 10.1076/chin.8.2.71.8724 URL pmid: 12638061 |
[4] |
Anderson, V. A., Anderson, P., Northam, E., Jacobs, R., & Catroppa, C. (2001). Development of executive functions through late childhood and adolescence in an Australian sample. Developmental Neuropsychology, 20(1), 385-406.
doi: 10.1207/S15326942DN2001_5 URL pmid: 11827095 |
[5] |
Bellaj, T., Salhi, I., le Gall, D., & Roy, A. (2015). Development of executive functioning in school-age Tunisian children. Child Neuropsychology, 22(8), 1-36.
doi: 10.1080/09297049.2014.969694 URL |
[6] |
Best, J. R., & Miller, P. H. (2010). A developmental perspective on executive function. Child Development, 81(6), 1641-1660.
doi: 10.1111/j.1467-8624.2010.01499.x URL pmid: 21077853 |
[7] |
Boehler, C. N., Appelbaum, L. G., Krebs, R. M., Hopf, J. M., & Woldorff, M. G. (2012). The influence of different stop-signal response time estimation procedures on behavior-behavior and brain-behavior correlations. Behavioural Brain Research, 229(1), 123-130.
doi: 10.1016/j.bbr.2012.01.003 URL |
[8] |
Boot, W. R., Kramer, A. F., Simons, D. J., Fabiani, M., & Gratton, G. (2008). The effects of video game playing on attention, memory, and executive control. Acta Psychologica, 129(3), 387-398.
doi: 10.1016/j.actpsy.2008.09.005 URL pmid: 18929349 |
[9] |
Brodeur, D. A., & Pond, M. (2001). The development of selective attention in children with attention deficit hyperactivity disorder. Journal of Abnormal Child Psychology, 29(3), 229-239.
doi: 10.1023/A:1010381731658 URL |
[10] |
Conway, A. R. A., Kane, M. J., & Engle, R. W. (2003). Working memory capacity and its relation to general intelligence. Trends in Cognitive Sciences, 7(12), 547-552.
doi: 10.1016/j.tics.2003.10.005 URL pmid: 14643371 |
[11] | Dahlin, K. I. E. (2013). Working memory training and the effect on mathematical achievement in children with attention deficits and special needs. Journal of Education & Learning, 2(1), 118-133. |
[12] |
de Jong, R., Coles, M. G. H., & Logan, G. D. (1995). Strategies and mechanisms in nonselective and selective inhibitory motor control. Journal of Experimental Psychology: Human Perception and Performance, 21(3), 498-511.
doi: 10.1037//0096-1523.21.3.498 URL pmid: 7790830 |
[13] | Denckla, M. B.(1996). A theory and model of executive function: A neuropsychological perspective Baltimore, MD, US: Paul H Brookes Publishing, 263-278. |
[14] |
Diamond, A.(1985). Development of the ability to use recall to guide action, as indicated by infants’ performance on ab?. Child Development, 56(4), 868-883.
URL pmid: 4042750 |
[15] |
Diamond, A.(1996). Evidence for the importance of dopamine for prefrontal cortex functions early in life. Philosophical Transactions of the Royal Society B: Biological Sciences, 351(1346), 1483-1494.
doi: 10.1098/rstb.1996.0134 URL |
[16] |
Diamond, A.(2013). Executive functions. Annual Review of Psychology, 64(1), 135-168.
doi: 10.1146/annurev-psych-113011-143750 URL |
[17] |
Diamond, A., & Lee, K. (2011). Interventions shown to aid executive function development in children 4 to 12 years old. Science, 333(6045), 959-964.
doi: 10.1126/science.1204529 URL pmid: 21852486 |
[18] |
Diamond, A., & Ling, D. S. (2015). Conclusions about interventions, programs, and approaches for improving executive functions that appear justified and those that, despite much hype, do not. Developmental Cognitive Neuroscience, 18(4), 34-48.
doi: 10.1016/j.dcn.2015.11.005 URL |
[19] |
Dowsett, S. M., & Livesey, D. J. (2015). The development of inhibitory control in preschool children: Effects of "executive skills" training. Developmental Psychobiology, 36(2), 161-174.
doi: 10.1002/(sici)1098-2302(200003)36:2<161::aid-dev7>3.0.co;2-0 URL pmid: 10689286 |
[20] |
Enge, S., Behnke, A., Fleischhauer, M., Küttler, L., Kliegel, M., & Strobel, A. (2014). No evidence for true training and transfer effects after inhibitory control training in young healthy adults. Journal of Experimental Psychology: Learning Memory and Cognition, 40(4), 987-1001.
doi: 10.1037/a0036165 URL |
[21] | Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target letter in a nonsearch task. Perception & Psychophysics, 16(1), 143-149. |
[22] |
Friedman, N. P., & Miyake, A. (2004). The relations among inhibition and interference control functions: A latent- variable analysis. Journal of Experimental Psychology: General, 133(1), 101-135.
doi: 10.1037/0096-3445.133.1.101 URL |
[23] |
Gaultney, J. F., Bjorklund, D. F., & Goldstein, D. (1996). To be young, gifted, and strategic: Advantages for memory performance. Journal of Experimental Child Psychology, 61(1), 43-66.
doi: 10.1006/jecp.1996.0002 URL |
[24] |
Gray, J. R., Chabris, C. F., & Braver, T. S. (2003). Neural mechanisms of general fluid intelligence. Nature Neuroscience, 6(3), 316-322.
doi: 10.1038/nn1014 URL pmid: 12592404 |
[25] |
Guerrieri, R., Nederkoorn, C., & Jansen, A. (2008). The interaction between impulsivity and a varied food environment: Its influence on food intake and overweight. International journal of obesity, 32(4), 708-714.
doi: 10.1038/sj.ijo.0803770 URL pmid: 18059403 |
[26] | Hare, T. A.,& Casey, B. J. (2005). The neurobiology and development of cognitive and affective control. Brain, IX(3), 273-286. |
[27] |
Jaeggi, S. M., Buschkuehl, M., Jonides, J., & Perrig, W. J. (2008). Improving fluid intelligence with training on working memory. Proceedings of the National Academy of Sciences, 105(19), 6829-6833.
doi: 10.1073/pnas.0801268105 URL |
[28] |
Ji, Y., Wang, J., Chen, T., Du, X., & Zhan, Y. (2016). Plasticity of inhibitory processes and associated far-transfer effects in older adults. Psychology & Aging, 31(5), 415-429.
doi: 10.1037/pag0000102 URL pmid: 27243762 |
[29] |
Johnstone, S. J., Dimoska, A., Smith, J. L., Barry, R., Pleffer, C. B., Chiswick, D., & Clarke, A. R. (2007). The development of stop-signal and Go/Nogo response inhibition in children aged 7-12 years: Performance and event-related potential indices. International Journal of Psychophysiology, 63(1), 25-38.
doi: 10.1016/j.ijpsycho.2006.07.001 URL pmid: 16919346 |
[30] |
Jongen, E. M. M., & Jonkman, L. M. (2008). The developmental pattern of stimulus and response interference in a color-object Stroop task: An ERP study. BMC Neuroscience, 9(1), 1-24.
doi: 10.1186/1471-2202-9-1 URL |
[31] |
Karatekin, C.(2004). Development of attentional allocation in the dual task paradigm. International Journal of Psychophysiology, 52(1), 7-21.
doi: 10.1016/j.ijpsycho.2003.12.002 URL pmid: 15003369 |
[32] |
Karatekin, J., & Kray, J. (2010). How useful is executive control training? Age differences in near and far transfer of task-switching training. Developmental Science, 12(6), 978-990.
doi: 10.1111/j.1467-7687.2009.00846.x URL pmid: 19840052 |
[33] |
Kohls, G., Peltzer, J., Herpertz-dahlmann, B., & Konrad, K. (2010). Differential effects of social and non-social reward on response inhibition in children and adolescents. Developmental Science, 12(4), 614-625.
doi: 10.1111/j.1467-7687.2009.00816.x URL pmid: 19635087 |
[34] | Kornblum, S. (1992). Dimensional overlap and dimensional relevance in stimulus-response and stimulus-stimulus compatibility. In G. E. Stelmach & J. Requin (Eds.), Tutorials in motor behavior(Vol. 2, pp. 743-777). Amsterdam: North-Holland. |
[35] |
Kornblum, S., Hasbroucq, T., & Osman, A. (1990). Dimensional overlap: Cognitive basis for stimulus-response compatibility--a model and taxonomy. Psychological Review, 97(2), 253-270.
doi: 10.1037/0033-295x.97.2.253 URL pmid: 2186425 |
[36] |
Kornblum, S., Stevens, G. T., Whipple, A., & Requin, J. (1999). The effects of irrelevant stimuli: The time course of stimulus-stimulus and stimulus-response consistency effects with Stroop-like stimuli, Simon-like tasks, and their factorial combinations. Journal of Experimental Psychology: Human Perception and Performance, 25(3), 688-714.
doi: 10.1037/0096-1523.25.3.688 URL |
[37] |
Leotti, L.A., & Wager, T. D. (2010). Motivational influences on response inhibition measures. Journal of Experimental Psychology: Human Perception and Performance, 36(2), 430-447.
doi: 10.1037/a0016802 URL pmid: 20364928 |
[38] |
Littman, K. L. (2015). Reinforcement learning improves behaviour from evaluative feedback. Nature, 521(7553), 445-451.
doi: 10.1038/nature14540 URL pmid: 26017443 |
[39] |
Liu, X. Y., Liu, T. R., Shangguan, F. F., Sørensen, T. A., Liu, Q., & Shi, J. (2018). Neurodevelopment of conflict adaptation: Evidence from event-related potentials. Developmental Psychology, 54(7), 1347-1362.
doi: 10.1037/dev0000524 URL pmid: 29756794 |
[40] |
Logan, G. D., & Cowan, W. B. (1984). On the ability to inhibit thought and action: A theory of an act of control. Psychological Review, 91(3), 295-327.
doi: 10.1037/0033-295X.91.3.295 URL |
[41] |
Loosli, S. V., Falquez, R., Unterrainer, J. M., Weiller, C., Rahm, B., & Kaller, C. P. (2016). Training of resistance to proactive interference and working memory in older adults: A randomized double-blind study. International Psychogeriatrics, 28(3), 453-467.
doi: 10.1017/S1041610215001519 URL pmid: 26478277 |
[42] | Maraver, M. J., Bajo, M. T., & Gomez-Ariza, C. J. (2016). Training on working memory and inhibitory control in young adults. Frontiers in Human Neuroscience, 10(11), 1-18. |
[43] |
Melanko, S., & Larkin, K. T. (2013). Preference for immediate reinforcement over delayed reinforcement: Relation between delay discounting and health behavior. Journal of Behavioral Medicine, 36(1), 34-43.
doi: 10.1007/s10865-012-9399-z URL pmid: 22311103 |
[44] |
Melby-Lervåg, M., Redick, T. S., & Hulme, C. (2016). Working memory training does not improve performance on measures of intelligence or other measures of “far transfer”: Evidence from a meta-analytic review. Perspectives on Psychological Science, 11(4), 512-534.
doi: 10.1177/1745691616635612 URL pmid: 27474138 |
[45] |
Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex "frontal lobe" tasks: A latent variable analysis. Cognitive Psychology, 41(1), 49-100.
doi: 10.1006/cogp.1999.0734 URL pmid: 10945922 |
[46] |
Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M., … Hassabis, D. (2015). Human-level control through deep reinforcement learning. Nature, 518(7540), 529-533.
doi: 10.1038/nature14236 URL pmid: 25719670 |
[47] |
Moffitt, T. E., Arseneault, L., Belsky, D., Dickson, N., Hancox, R. J., Harrington, H., … Caspi, A. (2011). A gradient of childhood self-control predicts health, wealth, and public safety. Proceedings of the National Academy of Sciences, 108(7), 2693-2698.
doi: 10.1073/pnas.1010076108 URL |
[48] |
Monk, C. S., Mcclure, E. B., Nelson, E. E., Zarahn, E., Bilder, R. M., Leibenluft, E., … Pin, D. S. (2003). Adolescent immaturity in attention-related brain engagement to emotional facial expressions. Neuroimage, 20(1), 420-428.
doi: 10.1016/s1053-8119(03)00355-0 URL pmid: 14527602 |
[49] |
Morrison, A. B., & Chein, J. M. (2011). Does working memory training work? the promise and challenges of enhancing cognition by training working memory. Psychonomic Bulletin & Review, 18(1), 46-60.
doi: 10.3758/s13423-010-0034-0 URL pmid: 21327348 |
[50] |
Nee, D. E., Wager, T. D., & Jonides, J. (2007). Interference resolution: Insights from a meta-analysis of neuroimaging tasks. Cognitive, Affective & Behavioral Neuroscience, 7(1), 1-17.
doi: 10.3758/cabn.7.1.1 URL pmid: 17598730 |
[51] | Raven, J., Raven, J. C., & Court, J. H. (2000) Standard progressive matrices. Oxford: Psychology Press. |
[52] |
Rueda, M. R., Rothbart, M. K., Mccandliss, B. D., Saccomanno, L., & Posner, M. I. (2005). Training, maturation, and genetic influences on the development of executive attention. Proceedings of the National Academy of Sciences, 102(41), 14931-14936.
doi: 10.1073/pnas.0506897102 URL |
[53] |
Shilling, V. M., Chetwynd, A., & Rabbitt, P. M. A. (2002). Individual inconsistency across measures of inhibition: An investigation of the construct validity of inhibition in older adults. Neuropsychologia, 40(6), 605-619.
doi: 10.1016/s0028-3932(01)00157-9 URL pmid: 11792402 |
[54] |
Spierer, L., Chavan, C. F., & Manuel, A. L. (2013). Training- induced behavioral and brain plasticity in inhibitory control. Frontiers in Human Neuroscience, 7, 427.
doi: 10.3389/fnhum.2013.00427 URL pmid: 23914169 |
[55] |
Strobach, T., Salminen, T., Karbach, J., & Schubert, T. (2014). Practice-related optimization and transfer of executive functions: A general review and a specific realization of their mechanisms in dual tasks. Psychological Research, 78(6), 836-851.
doi: 10.1007/s00426-014-0563-7 URL pmid: 24668506 |
[56] | Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology: General, 18(6), 643-662. |
[57] |
Thorell, L. B., Lindqvist, S., Nutley, S. B., Bohlin, G., & Klingberg, T. (2009). Training and transfer effects of executive functions in preschool children. Developmental Science, 12(1), 106-113.
doi: 10.1111/j.1467-7687.2008.00745.x URL pmid: 19120418 |
[58] |
van Boxtel, G. J. M., van der Molen, M. W., Jennings, J. R., & Brunia, C. H. M. (2001). A psychophysiological analysis of inhibitory motor control in the stop-signal paradigm. Biological Psychology, 58(3), 229-262.
doi: 10.1016/s0301-0511(01)00117-x URL pmid: 11698116 |
[59] |
Verbruggen, F., Liefooghe, B., & Vandierendonck, A. (2004). The interaction between stop signal inhibition and distractor interference in the flanker and stroop task. Acta Psychologica, 116(1), 21-37.
doi: 10.1016/j.actpsy.2003.12.011 URL pmid: 15111228 |
[60] |
Verbruggen, F., & Logan, G. D. (2008). Automatic and controlled response inhibition: Associative learning in the go/no-go and stop-signal paradigms. Journal of Experimental Psychology: General, 137(4), 649-672.
doi: 10.1037/a0013170 URL |
[61] |
Wilkinson, A. J., & Yang, L. X. (2012). Plasticity of inhibition in older adults: Retest practice and transfer effects. Psychology and Aging, 27(3), 606-615.
doi: 10.1037/a0025926 URL pmid: 22182362 |
[62] |
Williams, B. R. G., Ponesse, J. S., Schachar, R. J., Logan, G. D., & Tannock, R. (1999). Development of inhibitory control across the life span. Developmental Psychology, 35(1), 205-213.
doi: 10.1037//0012-1649.35.1.205 URL pmid: 9923475 |
[63] |
Zhao, X., Chen, L., & Maes, J. H. R. (2018). Training and transfer effects of response inhibition training in children and adults. Developmental Science, 21(1), e12511.
doi: 10.1111/desc.12511 URL |
[64] |
Zhao, X., & Jia, L. (2019). Training and transfer effects of interference control training in children and young adults. Psychological Research, 83(7), 1519-1530.
doi: 10.1007/s00426-018-1007-6 URL pmid: 29691649 |
[1] | ZHANG Qing, WANG Zhengyan. The interplay of maternal sensitivity and infant temperament and attention in predicting toddlers’ executive function: A two-year longitudinal study [J]. Acta Psychologica Sinica, 2022, 54(2): 141-153. |
[2] | GAI XiaoSong, XU Jie, YAN Yan, WANG Yuan, XIE XiaoChun. Exergame can improve children’s executive function: The role of physical intensity and cognitive engagement [J]. Acta Psychologica Sinica, 2021, 53(5): 505-514. |
[3] | HUANG Yuancheng, ZHAO Qingling, LI Caina. How interpersonal factors impact the co-development of depression and non-suicidal self-injury in Chinese early adolescents [J]. Acta Psychologica Sinica, 2021, 53(5): 515-526. |
[4] | ZHAO Xin, LI Hongli, JIN Ge, LI Shifeng, ZHOU Aibao, LIANG Wenjia, GUO Hongxia, CAI Yaya. Effects of phonological memory and central executive function on decoding, language comprehension of children in different grades [J]. Acta Psychologica Sinica, 2020, 52(4): 469-484. |
[5] | CHEN Ximei, LUO Yijun, CHEN Hong. Friendship quality and adolescents’ intuitive eating: A serial mediation model and the gender difference [J]. Acta Psychologica Sinica, 2020, 52(4): 485-496. |
[6] | WANG Ting,ZHI Fengying,LU Yutong,ZHANG Jijia. Effect of Dong Chorus on the executive function of Dong high school students [J]. Acta Psychologica Sinica, 2019, 51(9): 1040-1056. |
[7] | LI Quan, SONG Yanan, LIAN Bin, FENG Tingyong. Mindfulness training can improve 3-and 4-year-old children’s attention and executive function [J]. Acta Psychologica Sinica, 2019, 51(3): 324-336. |
[8] | Shufen XING,Qianqian LI,Xin GAO,Yuanyuan MA,Rui FU. Differential influence of sleep time parameters on preschoolers’ executive function [J]. Acta Psychologica Sinica, 2018, 50(11): 1269-1281. |
[9] | TIAN Lumei, YUAN Jingchi, LI Yongmei. Effects of peer presence and self-esteem on adolescent risk-taking behavior: Evidence from an ERP study [J]. Acta Psychologica Sinica, 2018, 50(1): 47-57. |
[10] | LIAN Shuailei, SUN Xiaojun, NIU Gengfeng, ZHOU Zongkui. Upward social comparison on SNS and depression: A moderated mediation model and gender difference [J]. Acta Psychologica Sinica, 2017, 49(7): 941-952. |
[11] | YANG Haibo; ZHAO Xin; WANG Yang; ZHANG Lei; WANG Ruimeng; ZHANG Yi; WANG Li. The emotional specificity of executive function defects of earthquake PTSD teenagers [J]. Acta Psychologica Sinica, 2017, 49(5): 643-652. |
[12] | LIU Qingqi, ZHOU Zongkui, NIU Gengfeng, Fan Cuiying. Mobile phone addiction and sleep quality in adolescents: Mediation and moderation analyses [J]. Acta Psychologica Sinica, 2017, 49(12): 1524-1536. |
[13] | WANG Ting, WANG Dan, ZHANG Jijia, CUI Jianai. Effects of “each speaks their own dialect” phenomenon on the executive function of Jingpo students [J]. Acta Psychologica Sinica, 2017, 49(11): 1392-1403. |
[14] | ZHOU Xiao, WU Xinchun, ZENG Min, TIAN Yuxin. The relationship between emotion regulation and PTSD/PTG among adolescents after the Ya’an earthquake: The moderating role of social support [J]. Acta Psychologica Sinica, 2016, 48(8): 969-980. |
[15] | LI Dongping, ZHOU Yueyue, ZHAO Liyan, WANG Yanhui, SUN Wenqiang. Cumulative ecological risk and adolescent internet addiction: The mediating role of basic psychological need satisfaction and positive outcome expectancy [J]. Acta Psychologica Sinica, 2016, 48(12): 1519-1537. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||