Acta Psychologica Sinica ›› 2025, Vol. 57 ›› Issue (2): 191-206.doi: 10.3724/SP.J.1041.2025.0191
• Reports of Empirical Studies • Next Articles
LIAN Haomin, ZHANG Qian, GU Xuemin, LI Shouxin()
Received:
2024-07-22
Published:
2025-02-25
Online:
2024-12-20
Contact:
LI Shouxin
E-mail:shouxinli@sdnu.edu.cn
Supported by:
LIAN Haomin, ZHANG Qian, GU Xuemin, LI Shouxin. (2025). Influence of Sustained Visual Attention on the Prioritization of Visual Working Memory. Acta Psychologica Sinica, 57(2), 191-206.
Add to citation manager EndNote|Ris|BibTeX
URL: https://journal.psych.ac.cn/acps/EN/10.3724/SP.J.1041.2025.0191
Figure 1. The stimulus materials used in the experiment. Note. Refer to the color version in the electronic edition, and the same holds true hereafter.
Figure 2. Flowchart of Experiment 1a. Note. The upper part of the figure illustrates the selective cue, and the lower part presents the neutral cue; the upper part of the visual attention task indicates no change in the fixation point, and the lower part indicates a change in the fixation point.
Figure 3. VWM task accuracy under different conditions in Experiment 1a. Note. The vertical lines in the figure represent ±1 standard deviation; * indicates p < 0.05, ** indicates p < 0.01.
Figure 4. Flowchart of Experiment 1b. Note. The upper part of the figure illustrates the selective cue, and the lower part illustrates the neutral cue; the upper part of the visual attention task indicates no change in the fixation point, and the lower part indicates a change in the fixation point.
Figure 5. VWM task accuracy under different conditions in Experiment 1b. Note. The vertical lines indicate ±1 standard deviation; * indicates p < 0.05.
Figure 6. Illustration of the procedure for Experiment 1c. Note. The upper part of the figure illustrates the selective cue, and the lower part illustrates the neutral cue; the upper part in the visual attention task indicates the early visual attention task condition, and the lower part indicates the late visual attention task condition.
Figure 7. VWM task accuracy under different conditions in Experiment 1c. Note. The vertical lines in the figure represent ±1 standard deviation; ** indicates p < 0.01.
Figure 8. Flowchart of Experiment 1a. Note. The upper part of the figure illustrates the selective cue, and the lower part illustrates the neutral cue; the upper part of the visual attention task indicates no change in the fixation point, and the lower part indicates a change in the fixation point.
Figure 9. VWM task accuracy under different conditions in Experiment 2. Note. The vertical lines in the figure represent ±1 standard deviation; ** indicates p < 0.01; *** indicates p < 0.001.
Figure 11. Placement of Near-Infrared Light Sources and Detectors in Experiment 3. Note. Black circles represent detectors, white circles represent light sources, gray circles indicate unused positions, yellow circles denote the positions of F3/F4 and FC3/FC4 electrodes, and green circles indicate the positions of PO7/PO8 electrodes.
Time Point | Brain Region | Talairach Coordinates (x, y, z) | Peak Z | Peak Z(crit) | p |
---|---|---|---|---|---|
416 ms | Frontal | ?16, 9, 48 | 2.35 | 2.06 | 0.020 |
416 ms | Occipital | 22, ?83, 33 | 2.30 | 2.14 | 0.016 |
544 ms | Frontal | 34, ?6, 51 | 2.46 | 2.44 | 0.007 |
608 ms | Frontal | 34, 37, 33 | 2.64 | 2.62 | 0.004 |
832 ms | Frontal | 12, ?3, 56 | 2.38 | 2.12 | 0.017 |
1056 ms | Frontal | 19, 29, 45 | 2.27 | 2.19 | 0.014 |
1248 ms | Occipital | 7, ?83, 32 | 2.56 | 2.32 | 0.010 |
1280 ms | Occipital | 9, ?88, 29 | 3.53 | 2.48 | 0.007 |
Table 1 Brain regions showing greater activation differences for the selective cue condition compared to the neutral cue condition during the VWM maintenance phase in Experiment 3.
Time Point | Brain Region | Talairach Coordinates (x, y, z) | Peak Z | Peak Z(crit) | p |
---|---|---|---|---|---|
416 ms | Frontal | ?16, 9, 48 | 2.35 | 2.06 | 0.020 |
416 ms | Occipital | 22, ?83, 33 | 2.30 | 2.14 | 0.016 |
544 ms | Frontal | 34, ?6, 51 | 2.46 | 2.44 | 0.007 |
608 ms | Frontal | 34, 37, 33 | 2.64 | 2.62 | 0.004 |
832 ms | Frontal | 12, ?3, 56 | 2.38 | 2.12 | 0.017 |
1056 ms | Frontal | 19, 29, 45 | 2.27 | 2.19 | 0.014 |
1248 ms | Occipital | 7, ?83, 32 | 2.56 | 2.32 | 0.010 |
1280 ms | Occipital | 9, ?88, 29 | 3.53 | 2.48 | 0.007 |
Figure 12 LPC evoked under the selective cue and neutral cue conditions in Experiment 3. Note. The selective cue condition includes high and low probe probability conditions. The gray-shaded area represents the time window (600~800 ms) used for LPC analysis following memory items presentation.
Figure 13 NSW evoked under the selective cue and neutral cue conditions in Experiment 3. Note. The selective cue condition includes high and low probe probability conditions. The gray-shaded area represents the time window (800~1200 ms) used for NSW analysis following memory items presentation.
Figure 14. Brain activation maps for the selective cue condition compared to the neutral cue condition during the VWM maintenance phase (with memory items presentation as the zero point).
[1] | Allen R. J., & Ueno T. (2018). Multiple high-reward items can be prioritized in working memory but with greater vulnerability to interference. Attention, Perception, & Psychophysics, 80(7), 1731-1743. |
[2] | Atkinson A. L., Berry E. D., Waterman A. H., Baddeley A. D., Hitch G. J., & Allen R. J. (2018). Are there multiple ways to direct attention in working memory? Annals of the New York Academy of Sciences. 1424(1), 115-126. |
[3] | Atkinson A. L., Oberauer K., Allen R. J., & Souza A. S. (2022). Why does the probe value effect emerge in working memory? Examining the biased attentional refreshing account. Psychonomic Bulletin & Review, 29(3), 891-900. |
[4] |
Awh E., & Jonides J. (2001). Overlapping mechanisms of attention and spatial working memory. Trends in Cognitive Sciences, 5(3), 119-126.
pmid: 11239812 |
[5] |
Barbosa J., Stein H., Martinez R. L., Galan-Gadea A., Li S., Dalmau J.,... Compte A. (2020). Interplay between persistent activity and activity-silent dynamics in the prefrontal cortex underlies serial biases in working memory. Nature Neuroscience, 23(8), 1016-1024.
doi: 10.1038/s41593-020-0644-4 pmid: 32572236 |
[6] |
Bettencourt K. C., & Xu Y. (2016). Decoding the content of visual short-term memory under distraction in occipital and parietal areas. Nature Neuroscience, 19, 150-157.
doi: 10.1038/nn.4174 pmid: 26595654 |
[7] | Camos V., Johnson M., Loaiza V., Portrat S., Souza A., & Vergauwe E. (2018). What is attentional refreshing in working memory? Annals of the New York Academy of Sciences, 1424(1), 19-32. |
[8] | Che X., Lian H., Zhang F., Li S., & Zheng Y. (2024). The reactivation of working memory representations affects attentional guidance. Psychophysiology, 61(3), e14514. |
[9] | Che X., Wang K., Shangguan M., & Li S. (2020). The Representation of attention template in visual working memory: An EROS study. Studies of Psychology and Behavior, 18(3), 297-303. |
[10] |
Che X., Xu H., Wang K., Zhang Q., & Li S. (2021). Precision requirement of working memory representations influences attentional guidance. Acta Psychologica Sinica, 53(7), 694-713.
doi: 10.3724/SP.J.1041.2021.00694 |
[11] |
Christophel T. B., Iamshchinina P., Yan C., Allefeld C., & Haynes J. D. (2018). Cortical specialization for attended versus unattended working memory. Nature Neuroscience, 21(4), 494-496.
doi: 10.1038/s41593-018-0094-4 pmid: 29507410 |
[12] | Cohen J. (1992). Statistical power analysis. Current Directions in Psychological Science, 1(3), 98-101. |
[13] |
Emrich S. M., Lockhart H. A., & Al-Aidroos N. (2017). Attention mediates the flexible allocation of visual working memory resources. Journal of Experimental Psychology: Human Perception and Performance, 43(7), 1454-1465.
doi: 10.1037/xhp0000398 pmid: 28368161 |
[14] |
Ester E. F., Sprague T. C., & Serences J. T. (2015). Parietal and frontal cortex encode stimulus-specific mnemonic representations during visual working memory. Neuron, 87(4), 893-905.
doi: 10.1016/j.neuron.2015.07.013 pmid: 26257053 |
[15] | Ester E. F., & Pytel P. (2023). Changes in behavioral priority influence the accessibility of working memory content. NeuroImage, 272, 120055. |
[16] |
Fabiani M., Low K. A., Wee E., Sable J. J., & Gratton G. (2006). Reduced suppression or labile memory? Mechanisms of inefficient filtering of irrelevant information in older adults. Journal of Cognitive Neuroscience, 18(4), 637-650.
pmid: 16768366 |
[17] | Fu X., Ye C., Hu Z., Li Z., Liang T., & Liu Q. (2022). The impact of retro-cue validity on working memory representation: Evidence from electroencephalograms. Biological Psychology, 170, 108320. |
[18] | Gao Z., Li J., Wu J., Dai A., Liao H., & Shen M. (2022). Diverting the focus of attention in working memory through a perceptual task. Journal of Experimental Psychology: Learning, Memory, and Cognition, 48(6), 876-905. |
[19] |
Gratton G., & Corballis P. M. (1995). Removing the heart from the brain: Compensation for the pulse artifact in the photon migration signal. Psychophysiology, 32(3), 292-299.
pmid: 7784538 |
[20] |
Griffin I. C., & Nobre A. C. (2003). Orienting attention to locations in internal representations. Journal of Cognitive Neuroscience, 15(8), 1176-1194.
doi: 10.1162/089892903322598139 pmid: 14709235 |
[21] |
Günseli E., Fahrenfort J. J., van Moorselaar D., Daoultzis K. C., Meeter M., & Olivers C. N. (2019). EEG dynamics reveal a dissociation between storage and selective attention within working memory. Scientific Reports, 9(1), 13499.
doi: 10.1038/s41598-019-49577-0 pmid: 31534150 |
[22] | Harrison S. A., & Tong F. (2009). Decoding reveals the contents of visual working memory in early visual areas. Nature, 458(7238), 632-635. |
[23] | Hitch G. J., Allen R. J., & Baddeley A. D. (2020). Attention and binding in visual working memory: Two forms of attention and two kinds of buffer storage. Attention, Perception, & Psychophysics, 82(1), 280-293. |
[24] | Hitch G. J., Hu Y., Allen R. J., & Baddeley A. D. (2018). Competition for the focus of attention in visual working memory:Perceptual recency versus executive control. Annals of the New York Academy of Sciences, 1424(1), 64-75. |
[25] |
Hollingworth A., & Maxcey-Richard A. M. (2013). Selective maintenance in visual working memory does not require sustained visual attention. Journal of Experimental Psychology: Human Perception and Performance, 39(4), 1047-1058.
doi: 10.1037/a0030238 pmid: 23067118 |
[26] | Hu Y., Allen R. J., Baddeley A. D., & Hitch G. J. (2016). Executive control of stimulus-driven and goal-directed attention in visual working memory. Attention, Perception, & Psychophysics, 78(7), 2164-2175. |
[27] |
Hu Y., Hitch G. J., Baddeley A. D., Zhang M., & Allen R. J. (2014). Executive and perceptual attention play different roles in visual working memory: Evidence from suffix and strategy effects. Journal of Experimental Psychology: Human Perception and Performance, 40(4), 1665-1678.
doi: 10.1037/a0037163 pmid: 24933616 |
[28] | Huang J., Wang S., Jia S., Mo D., & Chen H. C. (2013). Cortical dynamics of semantic processing during sentence comprehension: Evidence from event-related optical signals. PloS One, 8(8), e70671. |
[29] | Jeanneret S., Bartsch L. M., & Vergauwe E. (2023). To be or not to be relevant: Comparing short-and long-term consequences across working memory prioritization procedures. Attention, Perception, & Psychophysics, 85(5), 1486-1498. |
[30] |
Jia K., Li Y., Gong M., Huang H., Wang Y., & Li S. (2021). Perceptual learning beyond perception: Mnemonic representation in early visual cortex and intraparietal sulcus. Journal of Neuroscience, 41(20), 4476-4486.
doi: 10.1523/JNEUROSCI.2780-20.2021 pmid: 33811151 |
[31] | Li D., Hu Y., Qi M., Zhao C., Jensen O., Huang J., & Song Y. (2023). Prioritizing flexible working memory representations through retrospective attentional strengthening. NeuroImage, 269, 119902. |
[32] |
Liang T., Chen X., Ye C., Zhang J., & Liu Q. (2019). Electrophysiological evidence supports the role of sustained visuospatial attention in maintaining visual WM contents. International Journal of Psychophysiology, 146, 54-62.
doi: S0167-8760(19)30504-5 pmid: 31639381 |
[33] |
Lorenc E. S., Mallett R., & Lewis-Peacock J. A. (2021). Distraction in visual working memory: Resistance is not futile. Trends in Cognitive Sciences, 25(3), 228-239.
doi: 10.1016/j.tics.2020.12.004 pmid: 33397602 |
[34] |
Lorenc E. S., Sreenivasan K. K., Nee D. E., Vandenbroucke A. R., & D'Esposito M. (2018). Flexible coding of visual working memory representations during distraction. Journal of Neuroscience, 38(23), 5267-5276.
doi: 10.1523/JNEUROSCI.3061-17.2018 pmid: 29739867 |
[35] |
Ma W. J., Husain M., & Bays P. M. (2014). Changing concepts of working memory. Nature Neuroscience, 17(3), 347-356.
doi: 10.1038/nn.3655 pmid: 24569831 |
[36] | Macedo-Pascual J., Capilla A., Campo P., Hinojosa J. A., & Poch C. (2023). Selection within working memory impairs perceptual detection. Psychonomic Bulletin & Review, 30(4), 1442-1451. |
[37] | Oberauer K. (2002). Access to information in working memory: Exploring the focus of attention. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28(3), 411-421. |
[38] | Panichello M. F., & Buschman T. J. (2021). Shared mechanisms underlie the control of working memory and attention. Nature, 592(7855), 601-605. |
[39] |
Proulx N., Samadani A. A., & Chau T. (2018). Quantifying fast optical signal and event-related potential relationships during a visual oddball task. NeuroImage, 178, 119-128.
doi: S1053-8119(18)30438-5 pmid: 29777826 |
[40] | Rerko L., Souza A. S., & Oberauer K. (2014). Retro-cue benefits in working memory without sustained focal attention. Memory & Cognition, 42(5), 712-728. |
[41] | Rose N. S. (2020). The dynamic-processing model of working memory. Current Directions in Psychological Science, 29(4), 378-387. |
[42] | Sandry J., & Ricker T. J. (2020). Prioritization within visual working memory reflects a flexible focus of attention. Attention, Perception, & Psychophysics, 82(6), 2985-3004. |
[43] | Schmidt B. K., Vogel E. K., Woodman G. F., & Luck S. J. (2002). Voluntary and automatic attentional control of visual working memory. Perception & Psychophysics, 64(5), 754-763. |
[44] |
Schneider D., Barth A., Getzmann S., & Wascher E. (2017). On the neural mechanisms underlying the protective function of retroactive cuing against perceptual interference: Evidence by event-related potentials of the EEG. Biological Psychology, 124, 47-56.
doi: S0301-0511(17)30006-6 pmid: 28115199 |
[45] | Souza A. S., Czoschke S., & Lange E. B. (2020). Gaze-based and attention-based rehearsal in spatial working memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 46(5), 980-1003. |
[46] |
Tas A. C., Luck S. J., & Hollingworth A. (2016). The relationship between visual attention and visual working memory encoding: A dissociation between covert and overt orienting. Journal of Experimental Psychology: Human Perception and Performance, 42(8), 1121-1138.
doi: 10.1037/xhp0000212 pmid: 26854532 |
[47] | Teng C., & Postle B. R. (2024). Investigating the roles of the visual and parietal cortex in representing content versus context in visual working memory. eNeuro, 11(2), ENEURO. 0270-20.2024. |
[48] | Wang M., Liu H., Chen Y., Yang P., & Fu S. (2023). Different prioritization states of working memory representations affect visual searches: Evidence from an event-related potential study. International Journal of Psychophysiology, 193, 112246. |
[49] | Williams M., Pouget P., Boucher L., & Woodman G. F. (2013). Visual-spatial attention aids the maintenance of object representations in visual working memory. Memory & Cognition, 41(5), 698-715. |
[50] | Zhang W., & Luck S. J. (2008). Discrete fixed-resolution representations in visual working memory. Nature, 453(7192), 233-235. |
[51] | Zhang Z., & Lewis-Peacock J. A. (2023a). Prioritization sharpens working memories but does not protect them from distraction. Journal of Experimental Psychology: General, 152(4), 1158-1174. |
[52] | Zhang Z., & Lewis-Peacock J. A. (2023b). Bend but don’t break: Prioritization protects working memory from displacement but leaves it vulnerable to distortion from distraction. Cognition, 239, 105574. |
[1] | LI Ziyuan, LEI Ming, LIU Qiang. Cognitive mechanisms underlying the formation of offline representations in visual working memory [J]. Acta Psychologica Sinica, 2024, 56(4): 412-420. |
[2] | PANG Chao, CHEN Yanzhang, WANG Li, YANG Xiduan, HE Ya, LI Zhiying, OUYANG Xiaoyu, FU Shimin, NAN Weizhi. Different attentional selection modes of object information in the encoding and maintenance stages of visual working memory [J]. Acta Psychologica Sinica, 2023, 55(9): 1397-1410. |
[3] | ZHOU Zinuan, CHEN Yanzhang, FU Shimin. The effects of expectation on attention are dependent on whether expectation is on the target or on the distractor [J]. Acta Psychologica Sinica, 2022, 54(3): 221-235. |
[4] | LI Jie, YANG Yue, ZHAO Jing. The development of visual simultaneous processing skill subcomponents of Chinese children with developmental dyslexia and its relationship with reading [J]. Acta Psychologica Sinica, 2021, 53(8): 821-836. |
[5] | SUN Yanliang, SONG Jiaru, XIN Xiaowen, DING Xiaowei, LI Shouxin. Same-category advantage on the capacity of visual working memory [J]. Acta Psychologica Sinica, 2021, 53(11): 1189-1202. |
[6] | YE Chaoxiong,HU Zhonghua,LIANG Tengfei,ZHANG Jiafeng,XU Qianru,LIU Qiang. The mechanism of retro-cue effect in visual working memory: Cognitive phase separation [J]. Acta Psychologica Sinica, 2020, 52(4): 399-413. |
[7] | ZHANG Di, HAO Renning, LIU Qiang. The effects of the attention resource allocation on visual working memory consolidation process [J]. Acta Psychologica Sinica, 2019, 51(7): 772-780. |
[8] | LI Shouxin, CHE Xiaowei, LI Yanjiao, WANG Li, CHEN Kaisheng. The effects of capacity load and resolution load on visual selective attention during visual working memory [J]. Acta Psychologica Sinica, 2019, 51(5): 527-542. |
[9] | Lu LIU, Guoli YAN. Effect of parafoveal visual attention enhancement in deaf reading: Evidence from disappearing text [J]. Acta Psychologica Sinica, 2018, 50(7): 715-726. |
[10] | Sisi WANG, Yixuan KU. The causal role of right dorsolateral prefrontal cortex in visual working memory [J]. Acta Psychologica Sinica, 2018, 50(7): 727-738. |
[11] | WANG Jing, XUE Chengbo, LIU Qiang. Storage mechanism of same-dimension features in visual working memory [J]. Acta Psychologica Sinica, 2018, 50(2): 176-185. |
[12] | Yushang HUANG, Liren CAO. Effect of spatial position based configuration on visual working memory performance [J]. Acta Psychologica Sinica, 2018, 50(11): 1222-1234. |
[13] | XUE ChengBo, YE ChaoXiong, ZHANG Yin, LIU Qiang. Memory Mechanism of Feature Binding in Visual Working Memory [J]. Acta Psychologica Sinica, 2015, 47(7): 851-858. |
[14] | LI Cuihong, HE Xu, GUO Chunyan. The Storage Mechanism of Multi-feature Objects in Visual Working Memory [J]. Acta Psychologica Sinica, 2015, 47(6): 734-745. |
[15] | ZHANG Wei, ZHOU Bingping, ZANG Ling, MO Shuliang. The Attentional Capture of Internet Addicts under the Guidance of Visual Working Memory [J]. Acta Psychologica Sinica, 2015, 47(10): 1223-1234. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||