Acta Psychologica Sinica ›› 2023, Vol. 55 ›› Issue (6): 978-993.doi: 10.3724/SP.J.1041.2023.00978
• Reports of Empirical Studies • Previous Articles Next Articles
XIAO Jiale1, SHEN Zijiao1,2, LI Xiaoyan1, LIN Danhua1()
Received:
2021-11-25
Published:
2023-06-25
Online:
2023-03-10
Contact:
LIN Danhua
E-mail:danhualin@bnu.edu.cn
Supported by:
XIAO Jiale, SHEN Zijiao, LI Xiaoyan, LIN Danhua. (2023). Peer victimization trajectories and their relationships with depressive symptoms and externalizing problems: Risk enhancement or risk susceptibility. Acta Psychologica Sinica, 55(6), 978-993.
Add to citation manager EndNote|Ris|BibTeX
URL: https://journal.psych.ac.cn/acps/EN/10.3724/SP.J.1041.2023.00978
Variable | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1. Gendera | — | ||||||||||||
2. Grade | ?0.00 | — | |||||||||||
3. Rural-to-urban migrant childrena | 0.01 | ?0.09*** | — | ||||||||||
4. Left-behind childrena | ?0.06* | 0.23*** | ?0.26*** | — | |||||||||
5. Rural childrena | ?0.01 | 0.27*** | ?0.23*** | ?0.17*** | — | ||||||||
6. Subjective socioeconomic status | 0.02 | ?0.33*** | ?0.02 | ?0.17*** | ?0.20*** | — | |||||||
7. T1 peer victimization | ?0.17*** | ?0.07** | 0.02 | 0.12*** | 0.02 | ?0.08** | — | ||||||
8. T2 peer victimization | ?0.14*** | ?0.12*** | ?0.03 | 0.09*** | 0.01 | ?0.04 | 0.45*** | — | |||||
9. T3 peer victimization | ?0.14*** | ?0.07** | ?0.02 | 0.09*** | 0.01 | ?0.04 | 0.42*** | 0.55*** | — | ||||
10. T1 depressive symptoms | ?0.06* | 0.16*** | 0.04 | 0.13*** | 0.10*** | ?0.14*** | 0.49*** | 0.29*** | 0.26*** | — | |||
11. T4 depressive symptoms | 0.04 | 0.21*** | 0.01 | 0.05* | 0.06* | ?0.13*** | 0.23*** | 0.30*** | 0.33*** | 0.38*** | — | ||
12. T1 externalizing problems | ?0.14*** | 0.07** | 0.03 | 0.06* | 0.03 | ?0.09*** | 0.41*** | 0.30*** | 0.26*** | 0.37*** | 0.20*** | — | |
13. T4 externalizing problems | ?0.07** | 0.07** | 0.01 | 0.02 | 0.06* | ?0.06* | 0.24*** | 0.30*** | 0.37*** | 0.24*** | 0.49*** | 0.32*** | — |
M | 0.45 | 3.42 | 0.26 | 0.17 | 0.13 | 6.04 | 1.58 | 1.53 | 1.48 | 1.87 | 1.87 | 1.49 | 1.41 |
SD | 0.50 | 2.38 | 0.44 | 0.37 | 0.34 | 1.93 | 0.67 | 0.62 | 0.62 | 0.60 | 0.64 | 0.43 | 0.43 |
Table 1 Correlations, Means, and Standard Deviations of Study Variables (N = 1580)
Variable | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1. Gendera | — | ||||||||||||
2. Grade | ?0.00 | — | |||||||||||
3. Rural-to-urban migrant childrena | 0.01 | ?0.09*** | — | ||||||||||
4. Left-behind childrena | ?0.06* | 0.23*** | ?0.26*** | — | |||||||||
5. Rural childrena | ?0.01 | 0.27*** | ?0.23*** | ?0.17*** | — | ||||||||
6. Subjective socioeconomic status | 0.02 | ?0.33*** | ?0.02 | ?0.17*** | ?0.20*** | — | |||||||
7. T1 peer victimization | ?0.17*** | ?0.07** | 0.02 | 0.12*** | 0.02 | ?0.08** | — | ||||||
8. T2 peer victimization | ?0.14*** | ?0.12*** | ?0.03 | 0.09*** | 0.01 | ?0.04 | 0.45*** | — | |||||
9. T3 peer victimization | ?0.14*** | ?0.07** | ?0.02 | 0.09*** | 0.01 | ?0.04 | 0.42*** | 0.55*** | — | ||||
10. T1 depressive symptoms | ?0.06* | 0.16*** | 0.04 | 0.13*** | 0.10*** | ?0.14*** | 0.49*** | 0.29*** | 0.26*** | — | |||
11. T4 depressive symptoms | 0.04 | 0.21*** | 0.01 | 0.05* | 0.06* | ?0.13*** | 0.23*** | 0.30*** | 0.33*** | 0.38*** | — | ||
12. T1 externalizing problems | ?0.14*** | 0.07** | 0.03 | 0.06* | 0.03 | ?0.09*** | 0.41*** | 0.30*** | 0.26*** | 0.37*** | 0.20*** | — | |
13. T4 externalizing problems | ?0.07** | 0.07** | 0.01 | 0.02 | 0.06* | ?0.06* | 0.24*** | 0.30*** | 0.37*** | 0.24*** | 0.49*** | 0.32*** | — |
M | 0.45 | 3.42 | 0.26 | 0.17 | 0.13 | 6.04 | 1.58 | 1.53 | 1.48 | 1.87 | 1.87 | 1.49 | 1.41 |
SD | 0.50 | 2.38 | 0.44 | 0.37 | 0.34 | 1.93 | 0.67 | 0.62 | 0.62 | 0.60 | 0.64 | 0.43 | 0.43 |
Variable | Model | CFI | RMSEA | SRMR | ΔCFI | ΔRMSEA |
---|---|---|---|---|---|---|
Peer victimization (Grade) | Configural invariance | 0.940 | 0.079 | 0.035 | ||
Weak invariance | 0.939 | 0.077 | 0.040 | ?0.001 | ?0.002 | |
Strong invariance | 0.937 | 0.076 | 0.040 | ?0.002 | ?0.001 | |
Strict invariance | 0.917 | 0.084 | 0.062 | ?0.020 | 0.008 | |
Peer victimization (Migrant status) | Configural invariance | 0.934 | 0.083 | 0.038 | ||
Weak invariance | 0.933 | 0.081 | 0.046 | ?0.001 | ?0.002 | |
Strong invariance | 0.932 | 0.078 | 0.045 | ?0.001 | ?0.003 | |
Strict invariance | 0.921 | 0.081 | 0.055 | ?0.011 | 0.003 | |
Peer victimization (Gender) | Configural invariance | 0.943 | 0.076 | 0.035 | ||
Weak invariance | 0.941 | 0.075 | 0.040 | ?0.002 | ?0.001 | |
Strong invariance | 0.938 | 0.075 | 0.039 | ?0.003 | 0.000 | |
Strict invariance | 0.930 | 0.077 | 0.049 | ?0.008 | 0.002 | |
Peer victimization (Time) | Configural invariance | 0.935 | 0.046 | 0.028 | ||
Weak invariance | 0.933 | 0.046 | 0.030 | ?0.002 | 0.000 | |
Strong invariance | 0.932 | 0.046 | 0.030 | ?0.001 | 0.000 | |
Strict invariance | 0.927 | 0.047 | 0.033 | ?0.005 | 0.001 |
Table 2 Measurement Invariance for Peer Victimization
Variable | Model | CFI | RMSEA | SRMR | ΔCFI | ΔRMSEA |
---|---|---|---|---|---|---|
Peer victimization (Grade) | Configural invariance | 0.940 | 0.079 | 0.035 | ||
Weak invariance | 0.939 | 0.077 | 0.040 | ?0.001 | ?0.002 | |
Strong invariance | 0.937 | 0.076 | 0.040 | ?0.002 | ?0.001 | |
Strict invariance | 0.917 | 0.084 | 0.062 | ?0.020 | 0.008 | |
Peer victimization (Migrant status) | Configural invariance | 0.934 | 0.083 | 0.038 | ||
Weak invariance | 0.933 | 0.081 | 0.046 | ?0.001 | ?0.002 | |
Strong invariance | 0.932 | 0.078 | 0.045 | ?0.001 | ?0.003 | |
Strict invariance | 0.921 | 0.081 | 0.055 | ?0.011 | 0.003 | |
Peer victimization (Gender) | Configural invariance | 0.943 | 0.076 | 0.035 | ||
Weak invariance | 0.941 | 0.075 | 0.040 | ?0.002 | ?0.001 | |
Strong invariance | 0.938 | 0.075 | 0.039 | ?0.003 | 0.000 | |
Strict invariance | 0.930 | 0.077 | 0.049 | ?0.008 | 0.002 | |
Peer victimization (Time) | Configural invariance | 0.935 | 0.046 | 0.028 | ||
Weak invariance | 0.933 | 0.046 | 0.030 | ?0.002 | 0.000 | |
Strong invariance | 0.932 | 0.046 | 0.030 | ?0.001 | 0.000 | |
Strict invariance | 0.927 | 0.047 | 0.033 | ?0.005 | 0.001 |
Figure 2. Group difference in peer victimization trajectories. Note. (a) peer victimization trajectories differed by migrant status; (b) peer victimization trajectories differed by gender; (c) peer victimization trajectories differed by grade.
Figure 3. The relationship between peer victimization trajectories and depressive symptoms. Note. solid line indicates that the path coefficient is significant, and the dotted line indicates that the path coefficient is non-significant. i = intercept, s = slope. SES = Subjective socioeconomic status.
Figure 5. The relationship between peer victimization trajectories and externalizing problems. Note. solid line indicates that the path coefficient is significant, and the dotted line indicates that the path coefficient is non-significant. i = intercept, s = slope. SES = Subjective socioeconomic status.
Figure 6. The interaction between the intercept and the slope of peer victimization predicts externalizing problems. Note. All plots were created based on the parameter estimates of the fitted model, and thus dotted line for adolescents who reported lower initial level of peer victimization originally extended below zero. Because there were no negative scores on the externalizing problems, we modified the dotted line by adjusting the minimum y-axis value to zero.
Demographics | Rural-to-urban migrant children (n = 402) | Left-behind children (n = 258) | Rural children (n = 205) | Urban children (n = 695) |
---|---|---|---|---|
Age (M ± SD) | 12.20 ± 2.31 | 13.78 ± 2.57 | 14.00 ± 2.30 | 11.49 ± 2.23 |
Gender | ||||
Male | 218 (54.23%) | 158 (61.24%) | 116 (56.59%) | 364 (52.37%) |
Female | 182 (45.27%) | 100 (38.76%) | 89 (43.41%) | 331 (47.63%) |
Other | 2 (0.50%) | — | — | — |
Parental marital status | ||||
Married | 368 (91.54%) | 217 (84.11%) | 193 (94.15%) | 620 (89.21%) |
Other | 34 (8.46%) | 41 (15.89%) | 12 (5.85%) | 75 (10.79%) |
Parental Education | ||||
Less than high school | 257 (63.93%) | 183 (70.93%) | 150 (73.17%) | 200 (28.78%) |
High school and more than | 144 (35.82%) | 56 (21.71%) | 55 (26.83%) | 493 (70.94%) |
Other | 1 (0.25%) | 19 (7.36%) | — | 2 (0.29%) |
Subjective socioeconomic status | ||||
Middle and more than | 325 (80.85%) | 172 (66.67%) | 124 (60.49%) | 622 (89.50%) |
Less than middle | 71 (17.66%) | 62 (24.03%) | 80 (39.02%) | 69 (9.93%) |
Other | 6 (1.49%) | 24 (9.30%) | 1 (0.49%) | 4 (0.58%) |
Table S1 Descriptive Statistics of Rural-to-Urban Migrant Children, Left-Behind Children, Rural Children, and Urban Children
Demographics | Rural-to-urban migrant children (n = 402) | Left-behind children (n = 258) | Rural children (n = 205) | Urban children (n = 695) |
---|---|---|---|---|
Age (M ± SD) | 12.20 ± 2.31 | 13.78 ± 2.57 | 14.00 ± 2.30 | 11.49 ± 2.23 |
Gender | ||||
Male | 218 (54.23%) | 158 (61.24%) | 116 (56.59%) | 364 (52.37%) |
Female | 182 (45.27%) | 100 (38.76%) | 89 (43.41%) | 331 (47.63%) |
Other | 2 (0.50%) | — | — | — |
Parental marital status | ||||
Married | 368 (91.54%) | 217 (84.11%) | 193 (94.15%) | 620 (89.21%) |
Other | 34 (8.46%) | 41 (15.89%) | 12 (5.85%) | 75 (10.79%) |
Parental Education | ||||
Less than high school | 257 (63.93%) | 183 (70.93%) | 150 (73.17%) | 200 (28.78%) |
High school and more than | 144 (35.82%) | 56 (21.71%) | 55 (26.83%) | 493 (70.94%) |
Other | 1 (0.25%) | 19 (7.36%) | — | 2 (0.29%) |
Subjective socioeconomic status | ||||
Middle and more than | 325 (80.85%) | 172 (66.67%) | 124 (60.49%) | 622 (89.50%) |
Less than middle | 71 (17.66%) | 62 (24.03%) | 80 (39.02%) | 69 (9.93%) |
Other | 6 (1.49%) | 24 (9.30%) | 1 (0.49%) | 4 (0.58%) |
Variable | T1 peer victimization | T2 peer victimization | T3 peer victimization |
---|---|---|---|
Total | 1.58 (0.67) | 1.53 (0.62) | 1.48 (0.62) |
Gender | |||
Male | 1.69 (0.73) | 1.61 (0.66) | 1.56 (0.67) |
Female | 1.45 (0.56) | 1.43 (0.56) | 1.38 (0.54) |
Grade | |||
Elementary school | 1.60 (0.70) | 1.61 (0.68) | 1.53 (0.64) |
Junior high school | 1.63 (0.68) | 1.48 (0.60) | 1.47 (0.63) |
Senior high school | 1.46 (0.56) | 1.44 (0.51) | 1.41 (0.59) |
Migrant status | |||
Rural-to-urban migrant children | 1.60 (0.72) | 1.49 (0.63) | 1.46 (0.59) |
Left-behind children | 1.75 (0.66) | 1.64 (0.59) | 1.61 (0.64) |
Rural children | 1.61 (0.61) | 1.53 (0.55) | 1.49 (0.59) |
Urban children | 1.49 (0.64) | 1.49 (0.63) | 1.44 (0.64) |
Table S2 Descriptive Statistics of Peer Victimization across waves
Variable | T1 peer victimization | T2 peer victimization | T3 peer victimization |
---|---|---|---|
Total | 1.58 (0.67) | 1.53 (0.62) | 1.48 (0.62) |
Gender | |||
Male | 1.69 (0.73) | 1.61 (0.66) | 1.56 (0.67) |
Female | 1.45 (0.56) | 1.43 (0.56) | 1.38 (0.54) |
Grade | |||
Elementary school | 1.60 (0.70) | 1.61 (0.68) | 1.53 (0.64) |
Junior high school | 1.63 (0.68) | 1.48 (0.60) | 1.47 (0.63) |
Senior high school | 1.46 (0.56) | 1.44 (0.51) | 1.41 (0.59) |
Migrant status | |||
Rural-to-urban migrant children | 1.60 (0.72) | 1.49 (0.63) | 1.46 (0.59) |
Left-behind children | 1.75 (0.66) | 1.64 (0.59) | 1.61 (0.64) |
Rural children | 1.61 (0.61) | 1.53 (0.55) | 1.49 (0.59) |
Urban children | 1.49 (0.64) | 1.49 (0.63) | 1.44 (0.64) |
Model | Model fit indices | Model comparisons | ||||
---|---|---|---|---|---|---|
χ2 | df | Model | Δχ2 | Δdf | p | |
Migrant status (reference: Urban children) | ||||||
Rural-to-urban migrant children | ||||||
M1: Unconstrained model | 18.09 | 6 | ||||
M2: Constrained intercept | 23.56 | 7 | M2-M1 | 5.49 | 1 | 0.019 |
M3: Constrained slope | 23.87 | 7 | M3-M1 | 5.81 | 1 | 0.016 |
M4: Constrained correlation the intercept and slope | 22.46 | 7 | M4-M1 | 4.18 | 1 | 0.041 |
Left-behind children | ||||||
M1: Unconstrained model | 5.71 | 6 | ||||
M2: Constrained intercept | 34.72 | 7 | M2-M1 | 29.99 | 1 | < 0.001 |
M3: Constrained slope | 10.36 | 7 | M3-M1 | 4.68 | 1 | 0.031 |
M4: Constrained correlation the intercept and slope | 6.36 | 7 | M4-M1 | 0.64 | 1 | 0.425 |
Rural children | ||||||
M1: Unconstrained model | 7.89 | 6 | ||||
M2: Constrained intercept | 13.41 | 7 | M2-M1 | 5.56 | 1 | 0.018 |
M3: Constrained slope | 10.13 | 7 | M3-M1 | 2.24 | 1 | 0.134 |
M4: Constrained correlation the intercept and slope | 7.91 | 7 | M4-M1 | 0.02 | 1 | 0.892 |
Gender (reference: Male) | ||||||
M1: Unconstrained model | 15.38 | 6 | ||||
M2: Constrained intercept | 66.69 | 7 | M2-M1 | 52.15 | 1 | < 0.001 |
M3: Constrained slope | 18.46 | 7 | M3-M1 | 3.09 | 1 | 0.079 |
M4: Constrained correlation the intercept and slope | 23.35 | 7 | M4-M1 | 7.73 | 1 | 0.005 |
Grade | ||||||
Elementary school vs. Senior high school | ||||||
M1: Unconstrained model | 37.91 | 6 | ||||
M2: Constrained intercept | 52.64 | 7 | M2-M1 | 14.86 | 1 | < 0.001 |
M3: Constrained slope | 38.02 | 7 | M3-M1 | 0.11 | 1 | 0.737 |
M4: Constrained correlation the intercept and slope | 41.48 | 7 | M4-M1 | 3.58 | 1 | 0.059 |
Junior high school vs. Senior high school | ||||||
M1: Unconstrained model | 18.99 | 6 | ||||
M2: Constrained intercept | 34.01 | 7 | M2-M1 | 15.15 | 1 | < 0.001 |
M3: Constrained slope | 27.15 | 7 | M3-M1 | 8.20 | 1 | 0.004 |
M4: Constrained correlation the intercept and slope | 20.01 | 7 | M4-M1 | 1.02 | 1 | 0.314 |
Junior high school vs. Elementary school | ||||||
M1: Unconstrained model | 39.15 | 6 | ||||
M2: Constrained intercept | 39.19 | 7 | M2-M1 | 0.04 | 1 | 0.836 |
M3: Constrained slope | 46.04 | 7 | M3-M1 | 6.91 | 1 | 0.009 |
M4: Constrained correlation the intercept and slope | 39.76 | 7 | M4-M1 | 0.61 | 1 | 0.435 |
Table S3 Peer Victimization Trajectories Vary by Group
Model | Model fit indices | Model comparisons | ||||
---|---|---|---|---|---|---|
χ2 | df | Model | Δχ2 | Δdf | p | |
Migrant status (reference: Urban children) | ||||||
Rural-to-urban migrant children | ||||||
M1: Unconstrained model | 18.09 | 6 | ||||
M2: Constrained intercept | 23.56 | 7 | M2-M1 | 5.49 | 1 | 0.019 |
M3: Constrained slope | 23.87 | 7 | M3-M1 | 5.81 | 1 | 0.016 |
M4: Constrained correlation the intercept and slope | 22.46 | 7 | M4-M1 | 4.18 | 1 | 0.041 |
Left-behind children | ||||||
M1: Unconstrained model | 5.71 | 6 | ||||
M2: Constrained intercept | 34.72 | 7 | M2-M1 | 29.99 | 1 | < 0.001 |
M3: Constrained slope | 10.36 | 7 | M3-M1 | 4.68 | 1 | 0.031 |
M4: Constrained correlation the intercept and slope | 6.36 | 7 | M4-M1 | 0.64 | 1 | 0.425 |
Rural children | ||||||
M1: Unconstrained model | 7.89 | 6 | ||||
M2: Constrained intercept | 13.41 | 7 | M2-M1 | 5.56 | 1 | 0.018 |
M3: Constrained slope | 10.13 | 7 | M3-M1 | 2.24 | 1 | 0.134 |
M4: Constrained correlation the intercept and slope | 7.91 | 7 | M4-M1 | 0.02 | 1 | 0.892 |
Gender (reference: Male) | ||||||
M1: Unconstrained model | 15.38 | 6 | ||||
M2: Constrained intercept | 66.69 | 7 | M2-M1 | 52.15 | 1 | < 0.001 |
M3: Constrained slope | 18.46 | 7 | M3-M1 | 3.09 | 1 | 0.079 |
M4: Constrained correlation the intercept and slope | 23.35 | 7 | M4-M1 | 7.73 | 1 | 0.005 |
Grade | ||||||
Elementary school vs. Senior high school | ||||||
M1: Unconstrained model | 37.91 | 6 | ||||
M2: Constrained intercept | 52.64 | 7 | M2-M1 | 14.86 | 1 | < 0.001 |
M3: Constrained slope | 38.02 | 7 | M3-M1 | 0.11 | 1 | 0.737 |
M4: Constrained correlation the intercept and slope | 41.48 | 7 | M4-M1 | 3.58 | 1 | 0.059 |
Junior high school vs. Senior high school | ||||||
M1: Unconstrained model | 18.99 | 6 | ||||
M2: Constrained intercept | 34.01 | 7 | M2-M1 | 15.15 | 1 | < 0.001 |
M3: Constrained slope | 27.15 | 7 | M3-M1 | 8.20 | 1 | 0.004 |
M4: Constrained correlation the intercept and slope | 20.01 | 7 | M4-M1 | 1.02 | 1 | 0.314 |
Junior high school vs. Elementary school | ||||||
M1: Unconstrained model | 39.15 | 6 | ||||
M2: Constrained intercept | 39.19 | 7 | M2-M1 | 0.04 | 1 | 0.836 |
M3: Constrained slope | 46.04 | 7 | M3-M1 | 6.91 | 1 | 0.009 |
M4: Constrained correlation the intercept and slope | 39.76 | 7 | M4-M1 | 0.61 | 1 | 0.435 |
[1] | Abramson, L. Y., Alloy, L. B., & Metalsky, G. I. (1989). Hopelessness depression: A theory-based subtype of depression. Psychological Bulletin, 96(2), 358-372. |
[2] | Achenbach, T. M., & Rescorla, L. (2001). Manual for the ASEBA school-age forms & profiles: An integrated system of multi- informant assessment. University of Vermont, Research Center for Children, Youth & Families. |
[3] | Aiken, L. S., & West, S. G. (1991). Multiple regression: Testing and interpreting interactions. Sage Publications, Inc. |
[4] | Beck, A. T. (1976). Cognitive therapy and the emotional disorders. International University Press. |
[5] |
Chahal, R., Weissman, D. G., Marek, S., Rhoads, S. A., Hipwell, A. E., Forbes, E. E.,... Guyer, A. E. (2020). Girls’ brain structural connectivity in late adolescence relates to history of depression symptoms. Journal of Child Psychology and Psychiatry, 61(11), 1224-1233.
doi: 10.1111/jcpp.v61.11 URL |
[6] |
Chen, F. F. (2007). Sensitivity of goodness of fit indexes to lack of measurement invariance. Structural Equation Modeling: A Multidisciplinary Journal, 14(3), 464-504.
doi: 10.1080/10705510701301834 URL |
[7] |
Chen, Q., Chen, M., Zhu, Y., Chan, K., & Ip, P. (2018). Health correlates, addictive behaviors, and peer victimization among adolescents in China. World Journal of Pediatrics, 14(5), 454-460.
doi: 10.1007/s12519-018-0158-2 |
[8] | Chen, Q., Sun, X., Xie, Q., Li, J., & Chan, K. L. (2019). The impacts of internal migration on child victimization in China: A meta-analysis. Trauma, Violence, & Abuse, 20(1), 40-50. |
[9] |
Chen, X., & French, D. C. (2008). Children’s social competence in cultural context. Annual Review of Psychology, 59, 591-616.
doi: 10.1146/psych.2008.59.issue-1 URL |
[10] |
Cho, S. (2018). The impact of low self-control and delinquent peer associations on bullying perpetration and victimization among South Korean adolescents: Time-concurrent, time-lagged, and latent growth curve modeling. Journal of School Violence, 17(4), 500-520.
doi: 10.1080/15388220.2018.1453821 URL |
[11] | Díaz, K. I., Fite, P. J., Abel, M. R., & Doyle, R. L. (2021). Varying experiences of cyber victimization among middle and high school students. In Child & Youth Care Forum, 50(6), 1087-1105. |
[12] | Dodge, K. A., & Schwartz, D. (1997). Social information processing mechanisms in aggressive behavior. In D. M. Stoff, J. Breiling, & J. D. Maser (Eds.), Handbook of antisocial behavior (pp. 171-180). John Wiley & Sons Inc. |
[13] |
Edmond, M. B., Granberg, E., Simons, R., & Lei, M. K. (2014). Distressing relationships, anger, and stress amplification in a sample of young adult African Americans. Journal of Adult Development, 21(1), 13-29.
doi: 10.1007/s10804-013-9175-5 URL |
[14] |
El-Sheikh, M., Shimizu, M., Erath, S. A., Philbrook, L. E., & Hinnant, J. B. (2019). Dynamic patterns of marital conflict: Relations to trajectories of adolescent adjustment. Developmental Psychology, 55(8), 1720-1732.
doi: 10.1037/dev0000746 pmid: 31169398 |
[15] |
Epkins, C. C. (2000). Cognitive specificity in internalizing and externalizing problems in community and clinic-referred children. Journal of Clinical Child Psychology, 29(2), 199-208.
pmid: 10802829 |
[16] | Feng, C., Wang, H., Lu, N., Chen, T., He, H., Lu, Y., & Tu, X. (2014). Log-transformation and its implications for data analysis. Shanghai Arch Psychiatry, 26(2), 105-109. |
[17] | Grimm, K. J., Ram, N., & Estabrook, R. (2017). Growth modeling: Structural equation and multilevel modeling approaches. Guilford Publications. |
[18] |
Guo, H. Y., Chen, L. H., Ye, Z., Pan, J., Lin, D. H. (2017). Characteristics of peer victimization and the bidirectional relationship between peer victimization and internalizing problems among rural-to-urban migrant children in China: A longitudinal study. Acta Psychologica Sinica, 49(3), 336-348.
doi: 10.3724/SP.J.1041.2017.00336 URL |
[19] |
Harkness, K. L., Bruce, A. E., & Lumley, M. N. (2006). The role of childhood abuse and neglect in the sensitization to stressful life events in adolescent depression. Journal of Abnormal Psychology, 115(4), 730-741.
pmid: 17100530 |
[20] | Hawker, D. S., & Boulton, M. J. (2000). Twenty years’ research on peer victimization and psychosocial maladjustment: A meta-analytic review of cross-sectional studies. The Journal of Child Psychology and Psychiatry and Allied Disciplines, 41(4), 441-455. |
[21] |
Heim, C., & Nemeroff, C. B. (2001). The role of childhood trauma in the neurobiology of mood and anxiety disorders: Preclinical and clinical studies. Biological Psychiatry, 49(12), 1023-1039.
doi: 10.1016/s0006-3223(01)01157-x pmid: 11430844 |
[22] |
Hou, J. Q., & Chen, Z. Y. (2016). The trajectories of adolescent depressive symptoms: Identifying latent subgroups and risk factors. Acta Psychologica Sinica, 48(8), 957-968.
doi: 10.3724/SP.J.1041.2016.00957 URL |
[23] |
Hu, L.-T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6, 1-55.
doi: 10.1080/10705519909540118 URL |
[24] |
Huang, H., Hong, J. S., & Espelage, D. L. (2013). Understanding factors associated with bullying and peer victimization in Chinese schools within ecological contexts. Journal of Child and Family Studies, 22(7), 881-892.
doi: 10.1007/s10826-012-9647-4 URL |
[25] |
Jiang, S., & Liang, Z. (2021). Mediator of school belongingness and moderator of migration status in the relationship between peer victimization and depression among Chinese children: A multi-group structural equation modeling approach. Journal of Affective Disorders, 278, 382-389.
doi: 10.1016/j.jad.2020.09.075 pmid: 33007628 |
[26] | Johnson, L. E., Parra, L. A., Ugarte, E., Weissman, D. G., Han, S. G., Robins, R. W.,... Hastings, P. D. (2021). Patterns of poverty across adolescence predict salivary cortisol stress responses in Mexican-origin youths. Psychoneuroendocrinology, 132, Article 105340. |
[27] |
Juvonen, J., & Graham, S. (2014). Bullying in schools: The power of bullies and the plight of victims. Annual Review of Psychology, 65, 159-185.
doi: 10.1146/annurev-psych-010213-115030 pmid: 23937767 |
[28] |
Ladd, G. W., Ettekal, I., & Kochenderfer-Ladd, B. (2017). Peer victimization trajectories from kindergarten through high school: Differential pathways for children’s school engagement and achievement? Journal of Educational Psychology, 109(6), 826-841.
doi: 10.1037/edu0000177 URL |
[29] | Lane, S. T. (2014). Evaluating the interaction of growth factors in the univariate latent curve model (Publication No. 1563955) [Doctoral dissertation, The University of North Carolina at Chapel Hill]. ProQuest Dissertations and Theses Global. |
[30] | Li, X. W., Zou, H., & Wang, L. (2009, September). A comparative study on school adjustment between migrant children in public schools and those in migrant worker children’s schools. Chinese Journal of Special Education, (9), 81-86. |
[31] | Lian, Q., Su, Q., Li, R., Elgar, F. J., Liu, Z., & Zheng, D. (2018). The association between chronic bullying victimization with weight status and body self-image: A cross-national study in 39 countries. PeerJ, 6, Article e4330. |
[32] |
Ma, T.-L., Meter, D. J., Chen, W.-T., & Lee, Y. (2019). Defending behavior of peer victimization in school and cyber context during childhood and adolescence: A meta-analytic review of individual and peer-relational characteristics. Psychological Bulletin, 145(9), 891-928.
doi: 10.1037/bul0000205 URL |
[33] |
Maslowsky, J., Jager, J., & Hemken, D. (2015). Estimating and interpreting latent variable interactions: A tutorial for applying the latent moderated structural equations method. International Journal of Behavioral Development, 39(1), 87-96.
pmid: 26478643 |
[34] | Monroe, S. M., Anderson, S. F., & Harkness, K. L. (2019). Life stress and major depression: The mysteries of recurrences. Psychological Review, 126(6), 791-816. |
[35] | Myers, H. F., Wyatt, G. E., Ullman, J. B., Loeb, T. B., Chin, D., Prause, N.,... Liu, H. (2015). Cumulative burden of lifetime adversities: Trauma and mental health in low-SES African Americans and Latino/as. Psychological Trauma: Theory, Research, Practice, and Policy, 7(3), 243-251. |
[36] | Patterson, G. R., & Capaldi, D. M. (1990). A mediational model for boys’ depressed mood. In J. E. Rolf, A. Masten, D. Ciccheti, K. Neuchterlein, & S. Weintraub (Eds.), Risk and protective factors in the development of psychopathology (pp. 141-163). Cambridge University Press. |
[37] |
Pouwels, J. L., Souren, P. M., Lansu, T. A. M., & Cillessen, A. H. N. (2016). Stability of peer victimization: A meta-analysis of longitudinal research. Developmental Review, 40, 1-24.
doi: 10.1016/j.dr.2016.01.001 URL |
[38] | Preacher, K. J., Wichman, A. L., MacCallum, R. C., & Briggs, N. E. (2008). Latent growth curve modeling. Sage. |
[39] |
Radloff, L. S. (1977). The CES-D scale: A self-report depression scale for research in the general population. Applied Psychological Measurement, 1(3), 385-401.
doi: 10.1177/014662167700100306 URL |
[40] |
Reijntjes, A., Kamphuis, J. H., Prinzie, P., Boelen, P. A., van der Schoot, M., & Telch, M. J. (2011). Prospective linkages between peer victimization and externalizing problems in children: A meta-analysis. Aggressive Behavior, 37(3), 215-222.
doi: 10.1002/ab.20374 pmid: 21433031 |
[41] |
Reijntjes, A., Kamphuis, J. H., Prinzie, P., & Telch, M. J. (2010). Peer victimization and internalizing problems in children: A meta-analysis of longitudinal studies. Child Abuse & Neglect, 34(4), 244-252.
doi: 10.1016/j.chiabu.2009.07.009 URL |
[42] | Rescorla, L., Achenbach, T. M., Ivanova, M. Y., Dumenci, L., Almqvist, F., Bilenberg, N.,... Verhulst, F. (2007). Epidemiological comparisons of problems and positive qualities reported by adolescents in 24 countries. Journal of Consultative and Clinical Psychology, 75(2), 351-358. |
[43] |
Rudolph, K. D., & Flynn, M. (2007). Childhood adversity and youth depression: Influence of gender and pubertal status. Development and Psychopathology, 19(2), 497-521.
doi: 10.1017/S0954579407070241 pmid: 17459181 |
[44] | Rudolph, K. D., Lansford, J. E., & Rodkin, P. C. (2016). Interpersonal theories of developmental psychopathology. In D. Cicchetti (Ed.), Developmental psychopathology (Vol. 3, pp. 243-311). John Wiley & Sons, Inc. |
[45] |
Rudolph, K. D., Troop-Gordon, W., Hessel, E. T., & Schmidt, J. D. (2011). A latent growth curve analysis of early and increasing peer victimization as predictors of mental health across elementary school. Journal of Clinical Child and Adolescent Psychology, 40(1), 111-122.
doi: 10.1080/15374416.2011.533413 pmid: 21229448 |
[46] |
Schacter, H. L., & Juvonen, J. (2015). The effects of school-level victimization on self-blame: Evidence for contextualized social cognitions. Developmental Psychology, 51(6), 841-847.
doi: 10.1037/dev0000016 pmid: 25893267 |
[47] |
Schlomer, G. L., Bauman, S., & Card, N. A. (2010). Best practices for missing data management in counseling psychology. Journal of Counseling Psychology, 57(1), 1-10.
doi: 10.1037/a0018082 pmid: 21133556 |
[48] |
Schoeler, T., Duncan, L., Cecil, C. M., Ploubidis, G. B., & Pingault, J.-B. (2018). Quasi-experimental evidence on short-and long-term consequences of bullying victimization: A meta-analysis. Psychological Bulletin, 144(12), 1229-1246.
doi: 10.1037/bul0000171 pmid: 30475016 |
[49] | Schweizer, T. H., & Hankin, B. L. (2020). Cognitive risks:Translating stress into psychopathology. In K. L. Harkness & E. P. Hayden (Eds.), The Oxford handbook of stress and mental health (pp. 371-396). Oxford University Press. |
[50] |
Sugimura, N., Berry, D., Troop-Gordon, W., & Rudolph, K. D. (2017). Early social behaviors and the trajectory of peer victimization across the school years. Developmental Psychology, 53(8), 1447-1461.
doi: 10.1037/dev0000346 pmid: 28557475 |
[51] | Tabachnick, B., & Fidell, L. (2018). Using multivariate statistics (7th ed.). Allyn & Bacon/Pearson Education. |
[52] |
Troop-Gordon, W. (2017). Peer victimization in adolescence: The nature, progression, and consequences of being bullied within a developmental context. Journal of Adolescence, 55, 116-128.
doi: S0140-1971(16)30189-0 pmid: 28081521 |
[53] |
Troop-Gordon, W., & Ladd, G. W. (2005). Trajectories of peer victimization and perceptions of the self and schoolmates: Precursors to internalizing and externalizing problems. Child Development, 76(5), 1072-1091.
pmid: 16150003 |
[54] | Wei, H.-S., Chang, H.-H., & Chen, J.-K. (2016). Bullying and victimisation among Taiwanese students in special schools. International Journal of Disability, Development and Education, 63(2), 246-259. |
[55] | Yan, R., Xie, R., Jiang, M., Li, J., Lin, X., & Ding, W. (2022). Longitudinal relationship between bullying victimization and depression among left-behind children: Roles of negative thoughts and self-compassion. Frontiers in Psychology, 13, Article 852634. |
[56] | Ye, Z., Chen, L., Harrison, S. E., Guo, H., Li, X., & Lin, D. (2016). Peer victimization and depressive symptoms among rural-to-urban migrant children in China: The protective role of resilience. Frontiers in Psychology, 7, Article 1542. |
[57] |
Zahn-Waxler, C., Shirtcliff, E. A., & Marceau, K. (2008). Disorders of childhood and adolescence: Gender and psychopathology. Annual Review of Clinical Psychology, 4, 275-303.
doi: 10.1146/annurev.clinpsy.3.022806.091358 pmid: 18370618 |
[58] |
Zhang, H., Zhou, H., & Tao, T. (2019). Bullying behaviors and psychosocial adjustment among school-aged children in China. Journal of Interpersonal Violence, 34(11), 2363-2375.
doi: 10.1177/0886260518780777 pmid: 29911464 |
[59] | Zhang, W. X. (2002). Prevalence and major characteristics of bullying/victimization among primary and junior middle school children. Acta Psychologica Sinica, 34(4), 387-394. |
[60] | Zhang, X., Ray, S. A., Hou, W., & Liu, X. (2021). Environmental risk factors and their different effects in depressive symptoms of left-behind children in rural China compared with non-left-behind children. International Journal of Environmental Research and Public Health, 18(20), Article 10873. |
[61] | Zhang, Z., Shi, H. J., Li, M. N., Xu, X. Er., & Guo, J. P. (2015). Prevalence of school bullying behavior among high grade students in urban migrant elementary schools. Chinese Journal of School Health, 36(2), 190-197. |
[62] | Zhou, H., & Long, L. R. (2004). Statistical remedies for common method biases. Advances in Psychological Science, 12(6), 942-950. |
[63] | Zhu, Y., Xiao, C., Chen, Q., Wu, Q., & Zhu, B. (2020). Health effects of repeated victimization among school-aged adolescents in six major cities in China. Child Abuse & Neglect, 108, Article 104654 |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||