Acta Psychologica Sinica ›› 2021, Vol. 53 ›› Issue (1): 15-25.doi: 10.3724/SP.J.1041.2021.00015
• Reports of Empirical Studies • Previous Articles Next Articles
LEI Zhen1, BI Rong2, MO Licheng2, YU Wenwen2, ZHANG Dandan1,2()
Received:
2020-03-03
Published:
2021-01-25
Online:
2020-11-24
Contact:
ZHANG Dandan
E-mail:zhangdd05@gmail.com
Supported by:
LEI Zhen, BI Rong, MO Licheng, YU Wenwen, ZHANG Dandan. (2021). The brain mechanism of explicit and implicit processing of affective prosodies: An fNIRS study. Acta Psychologica Sinica, 53(1), 15-25.
Add to citation manager EndNote|Ris|BibTeX
URL: https://journal.psych.ac.cn/acps/EN/10.3724/SP.J.1041.2021.00015
Channel | Emitter- Detector | MNI coordinate | Brodmann area and percentage of overlap * | ||
---|---|---|---|---|---|
x | y | z | |||
1 | Fp1-Fpz | -10 | 68 | -5 | 10 - Frontopolar area (0.62) |
2 | Fp1-AF3 | -25 | 66 | 4 | 10 - Frontopolar area (1.00) |
3 | Fp1-AF7 | -32 | 62 | -8 | 10 - Frontopolar area (0.58) 11 - Orbitofrontal area (0.42) |
4 | AFz-Fpz | 3 | 66 | 11 | 10 - Frontopolar area (1.00) |
5 | AFz-AF3 | -12 | 65 | 20 | 10 - Frontopolar area (1.00) |
6 | AFz-AF4 | 16 | 65 | 20 | 10 - Frontopolar area (1.00) |
7 | F5-AF7 | -46 | 48 | 0 | 10 - Frontopolar area (0.46) 47 - Inferior prefrontal gyrus (0.34) |
8 | F5-F7 | -52 | 39 | 0 | 47 - Inferior prefrontal gyrus (0.62) |
9 | F5-FC5 | -56 | 27 | 16 | 45 - pars triangularis, part of Broca's area (0.64) |
10 | FT7-F7 | -57 | 21 | -13 | 38 - Temporopolar area (0.68) |
11 | FT7-FC5 | -61 | 8 | 2 | 22 - Superior temporal gyrus (0.61) |
12 | FT7-T7 | -66 | -7 | -14 | 21 - Middle temporal gyrus (1.00) |
13 | C5-FC5 | -64 | -2 | 24 | 6 - Pre-motor and supplementary motor cortex (0.67) |
14 | C5-T7 | -68 | -17 | 8 | 42 - Primary and auditory association cortex (0.51) |
15 | C5-CP5 | -66 | -30 | 28 | 40 - Supramarginal gyrus, part of Wernicke's area (0.73) |
16 | TP7-T7 | -69 | -31 | -9 | 21 - Middle temporal gyrus (1.00) |
17 | TP7-CP5 | -67 | -44 | 11 | 22 - Superior temporal gyrus (0.92) |
18 | TP7-P7 | -64 | -55 | -4 | 21 - Middle temporal gyrus (0.58) 37 - Fusiform gyrus (0.42) |
19 | P5-CP5 | -60 | -56 | 28 | 40 - Supramarginal gyrus, part of Wernicke's area (0.58) |
20 | P5-P7 | -58 | -68 | 13 | 39 - Angular gyrus, part of Wernicke's area (0.42) |
21 | Fp2-Fpz | 14 | 68 | -5 | 10 - Frontopolar area (0.66) |
22 | Fp2-AF4 | 28 | 66 | 4 | 10 - Frontopolar area (1.00) |
23 | Fp2-AF8 | 35 | 63 | -8 | 10 - Frontopolar area (0.63) |
24 | F6-AF8 | 49 | 48 | 1 | 10 - Frontopolar area (0.45) |
25 | F6-F8 | 54 | 39 | 1 | 47 - Inferior prefrontal gyrus (0.56) |
26 | F6-FC6 | 58 | 25 | 16 | 45 - pars triangularis, part of Broca's area (0.69) |
27 | FT8-F8 | 59 | 21 | -12 | 38 - Temporopolar area (0.62) |
28 | FT8-FC6 | 63 | 7 | 3 | 22 - Superior temporal gyrus (0.63) |
29 | FT8-T8 | 67 | -7 | -12 | 21 - Middle temporal gyrus (1.00) |
30 | C6-FC6 | 66 | -3 | 24 | 6 - Pre-motor and supplementary motor cortex (0.66) |
31 | C6-T8 | 70 | -17 | 8 | 42 - Primary and auditory association cortex (0.50) |
32 | C6-CP6 | 67 | -30 | 28 | 40 - Supramarginal gyrus, part of Wernicke's area (0.78) |
33 | TP8-T8 | 70 | -30 | -9 | 21 - Middle temporal gyrus (0.98) |
34 | TP8-CP6 | 68 | -43 | 11 | 22 - Superior temporal gyrus (0.92) |
35 | TP8-P8 | 64 | -54 | -4 | 37 - Fusiform gyrus (0.54) 21 - Middle temporal gyrus (0.46) |
36 | P6-CP6 | 61 | -56 | 28 | 40 - Supramarginal gyrus, part of Wernicke's area (0.61) |
37 | P6-P8 | 57 | -67 | 13 | 39 - Angular gyrus, part of Wernicke's area (0.54) |
Table 1 Spatial Registration Information of 37 NIRS channels in the experiment
Channel | Emitter- Detector | MNI coordinate | Brodmann area and percentage of overlap * | ||
---|---|---|---|---|---|
x | y | z | |||
1 | Fp1-Fpz | -10 | 68 | -5 | 10 - Frontopolar area (0.62) |
2 | Fp1-AF3 | -25 | 66 | 4 | 10 - Frontopolar area (1.00) |
3 | Fp1-AF7 | -32 | 62 | -8 | 10 - Frontopolar area (0.58) 11 - Orbitofrontal area (0.42) |
4 | AFz-Fpz | 3 | 66 | 11 | 10 - Frontopolar area (1.00) |
5 | AFz-AF3 | -12 | 65 | 20 | 10 - Frontopolar area (1.00) |
6 | AFz-AF4 | 16 | 65 | 20 | 10 - Frontopolar area (1.00) |
7 | F5-AF7 | -46 | 48 | 0 | 10 - Frontopolar area (0.46) 47 - Inferior prefrontal gyrus (0.34) |
8 | F5-F7 | -52 | 39 | 0 | 47 - Inferior prefrontal gyrus (0.62) |
9 | F5-FC5 | -56 | 27 | 16 | 45 - pars triangularis, part of Broca's area (0.64) |
10 | FT7-F7 | -57 | 21 | -13 | 38 - Temporopolar area (0.68) |
11 | FT7-FC5 | -61 | 8 | 2 | 22 - Superior temporal gyrus (0.61) |
12 | FT7-T7 | -66 | -7 | -14 | 21 - Middle temporal gyrus (1.00) |
13 | C5-FC5 | -64 | -2 | 24 | 6 - Pre-motor and supplementary motor cortex (0.67) |
14 | C5-T7 | -68 | -17 | 8 | 42 - Primary and auditory association cortex (0.51) |
15 | C5-CP5 | -66 | -30 | 28 | 40 - Supramarginal gyrus, part of Wernicke's area (0.73) |
16 | TP7-T7 | -69 | -31 | -9 | 21 - Middle temporal gyrus (1.00) |
17 | TP7-CP5 | -67 | -44 | 11 | 22 - Superior temporal gyrus (0.92) |
18 | TP7-P7 | -64 | -55 | -4 | 21 - Middle temporal gyrus (0.58) 37 - Fusiform gyrus (0.42) |
19 | P5-CP5 | -60 | -56 | 28 | 40 - Supramarginal gyrus, part of Wernicke's area (0.58) |
20 | P5-P7 | -58 | -68 | 13 | 39 - Angular gyrus, part of Wernicke's area (0.42) |
21 | Fp2-Fpz | 14 | 68 | -5 | 10 - Frontopolar area (0.66) |
22 | Fp2-AF4 | 28 | 66 | 4 | 10 - Frontopolar area (1.00) |
23 | Fp2-AF8 | 35 | 63 | -8 | 10 - Frontopolar area (0.63) |
24 | F6-AF8 | 49 | 48 | 1 | 10 - Frontopolar area (0.45) |
25 | F6-F8 | 54 | 39 | 1 | 47 - Inferior prefrontal gyrus (0.56) |
26 | F6-FC6 | 58 | 25 | 16 | 45 - pars triangularis, part of Broca's area (0.69) |
27 | FT8-F8 | 59 | 21 | -12 | 38 - Temporopolar area (0.62) |
28 | FT8-FC6 | 63 | 7 | 3 | 22 - Superior temporal gyrus (0.63) |
29 | FT8-T8 | 67 | -7 | -12 | 21 - Middle temporal gyrus (1.00) |
30 | C6-FC6 | 66 | -3 | 24 | 6 - Pre-motor and supplementary motor cortex (0.66) |
31 | C6-T8 | 70 | -17 | 8 | 42 - Primary and auditory association cortex (0.50) |
32 | C6-CP6 | 67 | -30 | 28 | 40 - Supramarginal gyrus, part of Wernicke's area (0.78) |
33 | TP8-T8 | 70 | -30 | -9 | 21 - Middle temporal gyrus (0.98) |
34 | TP8-CP6 | 68 | -43 | 11 | 22 - Superior temporal gyrus (0.92) |
35 | TP8-P8 | 64 | -54 | -4 | 37 - Fusiform gyrus (0.54) 21 - Middle temporal gyrus (0.46) |
36 | P6-CP6 | 61 | -56 | 28 | 40 - Supramarginal gyrus, part of Wernicke's area (0.61) |
37 | P6-P8 | 57 | -67 | 13 | 39 - Angular gyrus, part of Wernicke's area (0.54) |
Channel | Brodmann area | F | p * | Angry β value | Fearful β value | Happy β value |
---|---|---|---|---|---|---|
3 | L Frontopolar/orbitofrontal area | 12.51 | 0.001 | 0.21 ± 0.20 | 0.12 ± 0.23 | 0.06 ± 0.20 |
9 | L pars triangularis/Broca's area | 24.24 | < 0.001 | 0.10 ± 0.16 | 0.10 ± 0.15 | 0.21 ± 0.15 |
32 | R Supramarginal gyrus | 12.48 | 0.001 | 0.10 ± 0.56 | 0.36 ± 0.51 | 0.11 ± 0.45 |
Table 2 Main effect of emotion
Channel | Brodmann area | F | p * | Angry β value | Fearful β value | Happy β value |
---|---|---|---|---|---|---|
3 | L Frontopolar/orbitofrontal area | 12.51 | 0.001 | 0.21 ± 0.20 | 0.12 ± 0.23 | 0.06 ± 0.20 |
9 | L pars triangularis/Broca's area | 24.24 | < 0.001 | 0.10 ± 0.16 | 0.10 ± 0.15 | 0.21 ± 0.15 |
32 | R Supramarginal gyrus | 12.48 | 0.001 | 0.10 ± 0.56 | 0.36 ± 0.51 | 0.11 ± 0.45 |
Figure 2. Activation of different brain regions in emotional and task conditions (only showing channels with significant effects). Error bar in figure represents the standard error of the mean.
Channel | Brodmann area | F | p* | Implicit β value | Explicit β value |
---|---|---|---|---|---|
27 | R Temporopolar area | 11.62 | 0.004 | 0.04 ± 0.36 | 0.32 ± 0.42 |
28 | R Superior temporal gyrus | 26.17 | < 0.001 | 0.05 ± 0.45 | 0.37 ± 0.43 |
29 | R Middle temporal gyrus | 15.84 | 0.003 | -0.03 ± 0.49 | 0.34 ± 0.53 |
Table 3 Main effect of task
Channel | Brodmann area | F | p* | Implicit β value | Explicit β value |
---|---|---|---|---|---|
27 | R Temporopolar area | 11.62 | 0.004 | 0.04 ± 0.36 | 0.32 ± 0.42 |
28 | R Superior temporal gyrus | 26.17 | < 0.001 | 0.05 ± 0.45 | 0.37 ± 0.43 |
29 | R Middle temporal gyrus | 15.84 | 0.003 | -0.03 ± 0.49 | 0.34 ± 0.53 |
[1] |
Adolphs, R., Damasio, H., Tranel, D., Cooper, G., & Damasio, A. R. (2000). A role for somatosensory cortices in the visual recognition of emotion as revealed by three-dimensional lesion mapping. The Journal of Neuroscience, 20(7), 2683-2690.
URL pmid: 10729349 |
[2] |
Alba-Ferrara, L., Kochen, S., & Hausmann, M. (2018). Affective prosody processing in epilepsy: Some insights on brain reorganization. Frontiers in Human Neuroscience, 12, 92.
doi: 10.3389/fnhum.2018.00092 URL pmid: 29593517 |
[3] |
Aryani, A., Hsu, C.-T., & Jacobs, A. M. (2018). The sound of words evokes affective brain responses. Brain Sciences, 8(6), 94.
doi: 10.3390/brainsci8060094 URL |
[4] |
Bach, D. R., Grandjean, D., Sander, D., Herdener, M., Strik, W. K., & Seifritz, E. (2008). The effect of appraisal level on processing of affective prosody in meaningless speech. Neuroimage, 42(2), 919-927.
doi: 10.1016/j.neuroimage.2008.05.034 URL pmid: 18586524 |
[5] |
Beaucousin, V., Zago, L., Herve, P.-Y., Strelnikov, K., Crivello, F., Mazoyer, B., & Tzourio-Mazoyer, N. (2011). Sex-dependent modulation of activity in the neural networks engaged during emotional speech comprehension. Brain Research, 1390, 108-117.
doi: 10.1016/j.brainres.2011.03.043 URL pmid: 21439268 |
[6] |
Belyk, M., & Brown, S. (2014). Perception of affective and linguistic prosody: An ALE meta-analysis of neuroimaging studies. Social Cognitive and Affective Neuroscience, 9(9), 1395-1403.
doi: 10.1093/scan/nst124 URL pmid: 23934416 |
[7] |
Ben-David, B. M., Multani, N., Shakuf, V., Rudzicz, F., & van Lieshout, P. H. H. M. (2016). Prosody and semantics are separate but not separable channels in the perception of emotional speech: test for rating of emotions in speech. Journal of Speech Language and Hearing Research, 59(1), 72-89.
doi: 10.1044/2015_JSLHR-H-14-0323 URL |
[8] |
Beyer, F., Munte, T. F., Gottlich, M., & Kramer, U. M. (2014). Orbitofrontal cortex reactivity to angry facial expression in a social interaction correlates with aggressive behavior. Cerebral Cortex, 25(9), 3057-3063.
doi: 10.1093/cercor/bhu101 URL pmid: 24842782 |
[9] |
Brück, C., Kreifelts, B., & Wildgruber, D. (2011). Emotional voices in context: A neurobiological model of multimodal affective information processing. Physics of Life Reviews, 8(4), 383-403.
doi: 10.1016/j.plrev.2011.10.002 URL pmid: 22035772 |
[10] |
Calvo, M. G., & Nummenmaa, L. (2016). Perceptual and affective mechanisms in facial expression recognition: An integrative review. Cognition and Emotion, 30(6), 1081-1106.
doi: 10.1080/02699931.2015.1049124 URL pmid: 26212348 |
[11] |
Dieler, A. C., Tupak, S. V., & Fallgatter, A. J. (2012). Functional near-infrared spectroscopy for the assessment of speech related tasks. Brain and Language, 121(2), 90-109.
doi: 10.1016/j.bandl.2011.03.005 URL pmid: 21507475 |
[12] |
Enea, V., & Iancu, S, (2016). Processing emotional body expressions: state-of-the-art. Social Neuroscience, 11(5), 495-506.
doi: 10.1080/17470919.2015.1114020 URL pmid: 26513592 |
[13] |
Ethofer, T., Anders, S., Erb, M., Herbert, C., Wiethoff, S., Kissler, J., … Wildgruber, D. (2006). Cerebral pathways in processing of affective prosody: a dynamic causal modeling study. Neuroimage, 30(2), 580-587.
doi: 10.1016/j.neuroimage.2005.09.059 URL pmid: 16275138 |
[14] |
Ethofer, T., Bretscher, J., Gschwind, M., Kreifelts, B., Wildgruber, D., & Vuilleumier, P. (2012). Emotional voice areas: Anatomic location, functional properties, and structural connections revealed by combined fMRI/DTI. Cerebral Cortex, 22(1), 191-200.
doi: 10.1093/cercor/bhr113 URL pmid: 21625012 |
[15] |
Ethofer, T., Kreifelts, B., Wiethoff, S., Wolf, J., Grodd, W., Vuilleumier, P., & Wildgruber, D. (2009b). Differential influences of emotion, task, and novelty on brain regions underlying the processing of speech melody. Journal of Cognitive Neuroscience, 21(7), 1255-1268.
doi: 10.1162/jocn.2009.21099 URL pmid: 18752404 |
[16] |
Ethofer, T., van de Ville, D., Scherer, K., & Vuilleumier, P. (2009a). Decoding of emotional information in voice-sensitive cortices. Current Biology, 19(12), 1028-1033.
doi: 10.1016/j.cub.2009.04.054 URL pmid: 19446457 |
[17] |
Fox, K. C. R., Yih, J., Raccah, O., Pendekanti, S. L., Limbach, L. E., Maydan, D. D., & Parvizi, J. (2018). Changes in subjective experience elicited by direct stimulation of the human orbitofrontal cortex. Neurology, 91(16), e1519-e1527.
doi: 10.1212/WNL.0000000000006358 URL pmid: 30232252 |
[18] |
Frühholz, S., Ceravolo, L., & Grandjean, D. (2012). Specific brain networks during explicit and implicit decoding of affective prosody. Cerebral Cortex, 22(5), 1107-1117.
doi: 10.1093/cercor/bhr184 URL pmid: 21750247 |
[19] |
Frühholz, S., & Grandjean, D. (2013a). Multiple subregions in superior temporal cortex are differentially sensitive to vocal expressions: A quantitative meta-analysis. Neuroscience and Biobehavioral Reviews, 37(1), 24-35.
doi: 10.1016/j.neubiorev.2012.11.002 URL pmid: 23153796 |
[20] |
Frühholz, S., & Grandjean, D. (2013b). Processing of emotional vocalizations in bilateral inferior frontal cortex. Neuroscience and Biobehavioral Reviews, 37(10), 2847-2855.
doi: 10.1016/j.neubiorev.2013.10.007 URL |
[21] |
Frühholz, S., Hofstetter, C., Cristinzio, C., Saj, A., Seeck, M Vuilleumier, P., & Grandjean, D. (2015). Asymmetrical effects of unilateral right or left amygdala damage on auditory cortical processing of vocal emotions. Proceedings of the National Academy of Sciences of the United States of America, 112(5), 1583-1588.
doi: 10.1073/pnas.1411315112 URL pmid: 25605886 |
[22] |
Frühholz, S., Trost, W., & Kotz, S. A. (2016). The sound of emotions-Towards a unifying neural network perspective of affective sound processing. Neuroscience and Biobehavioral Reviews, 68, 96-110.
doi: 10.1016/j.neubiorev.2016.05.002 URL pmid: 27189782 |
[23] |
Goucha, T., & Friederici, A. D. (2015). The language skeleton after dissecting meaning: A functional segregation within Broca’s Area. Neuroimage, 114, 294-302.
doi: 10.1016/j.neuroimage.2015.04.011 URL pmid: 25871627 |
[24] |
Hartwigsen, G., Baumgaertner, A., Price, C. J., Koehnke, M., Ulmer, S., & Siebner, H. R. (2010). Phonological decisions require both the left and right supramarginal gyri. Proceedings of the National Academy of Sciences of the United States of America, 107(38), 16494-16499.
doi: 10.1073/pnas.1008121107 URL pmid: 20807747 |
[25] |
Hensel, L., Bzdok, D., Müller, V. I., Zilles, K., & Eickhoff, S. B. (2015). Neural correlates of explicit social judgments on vocal stimuli. Cerebral Cortex, 25(5), 1152-1162.
doi: 10.1093/cercor/bht307 URL pmid: 24243619 |
[26] |
Herpertz, S. C., Nagy, K., Ueltzhöffer, K., Schmitt, R., Mancke, F., Schmahl, C., & Bertsch, K. (2017). Brain mechanisms underlying reactive aggression in borderline personality disorder-sex matters. Biological Psychiatry, 82(4), 257-266.
doi: 10.1016/j.biopsych.2017.02.1175 URL pmid: 28388995 |
[27] |
Hinojosa, J. A., Mercado, F., & Carretié, L. (2015). N170 sensitivity to facial expression: A meta-analysis. Neuroscience and Biobehavioral Reviews, 55, 498-509.
doi: 10.1016/j.neubiorev.2015.06.002 URL pmid: 26067902 |
[28] |
Johnstone, T., van Reekum, C. M., Oakes, T. R., & Davidson, R. J. (2006). The voice of emotion: an FMRI study of neural responses to angry and happy vocal expressions. Social Cognitive and Affective Neuroscience, 1(3), 242-249.
doi: 10.1093/scan/nsl027 URL pmid: 17607327 |
[29] |
Kirby, L. A. J., & Robinson, J. L. (2017). Affective mapping: An activation likelihood estimation (ALE) meta-analysis. Brain and Cognition, 118, 137-148.
doi: 10.1016/j.bandc.2015.04.006 URL pmid: 26074298 |
[30] |
Knight, M. J., & Baune, B. T. (2019). Social cognitive abilities predict psychosocial dysfunction in major depressive disorder. Depression and Anxiety, 36(1), 54-62.
doi: 10.1002/da.22844 URL pmid: 30211966 |
[31] |
Kotz, S. A., Kalberlah, C., Bahlmann, J., Friederici, A. D., & Haynes, J.-D. (2013). Predicting vocal emotion expressions from the human brain. Human Brain Mapping, 34(8), 1971-1981.
doi: 10.1002/hbm.22041 URL pmid: 22371367 |
[32] |
Kotz, S. A., Meyer, M., Alter, K., Besson, M., von Cramon, D. Y., & Friederici, A. D. (2003). On the lateralization of affective prosody: an event-related functional MR investigation. Brain and Language, 86(3), 366-376.
doi: 10.1016/s0093-934x(02)00532-1 URL pmid: 12972367 |
[33] | Köchel, A., Schöngassner, F., & Schienle, A. (2013). Cortical activation during auditory elicitation of fear and disgust: a near-infrared spectroscopy (NIRS) study. Neuroscience Letters, 9(549), 197-200. |
[34] |
Lancaster, J. L., Woldorff, M. G., Parsons, L. M., Liotti, M., Freitas, C. S., Rainey, L., … Fox, P. (2000). Automated Talairach atlas labels for functional brain mapping. Human Brain Mapping, 10(3), 120-131.
doi: 10.1002/1097-0193(200007)10:3<120::aid-hbm30>3.0.co;2-8 URL pmid: 10912591 |
[35] | Liebenthal, E., Silbersweig, D. A., & Stern, E. (2016). The Language, Tone and prosody of emotions: neural substrates and dynamics of spoken-word emotion perception. Frontiers in Aging Neuroscience, 10, 506. |
[36] |
Lin, Y., Ding, H., & Zhang, Y. (2018). Affective prosody processing in schizophrenic patients: A selective review and meta-analysis. Journal of Clinical Medicine, 7(10), 363.
doi: 10.3390/jcm7100363 URL |
[37] |
Lindquist, K. A., Wager, T. D., Kober, H., Bliss-Moreau, E., & Barrett, L. F. (2012). The brain basis of emotion: a meta-analytic review. Behavioral and Brain Sciences, 35(3), 121-143.
doi: 10.1017/S0140525X11000446 URL |
[38] |
Liu, P., & Pell, M. D. (2012). Recognizing vocal emotions in Mandarin Chinese: a validated database of Chinese vocal emotional stimuli. Behavior Research Methods, 44, 1042-1051.
doi: 10.3758/s13428-012-0203-3 URL pmid: 22539230 |
[39] |
Matsui, T., Nakamura, T., Utsumi, A., Sasaki, A. T., Koike, T., Yoshida, Y., … Sadato, N. (2016). The role of prosody and context in sarcasm comprehension: Behavioral and fMRI evidence. Neuropsychologia, 87, 74-84.
doi: 10.1016/j.neuropsychologia.2016.04.031 URL pmid: 27157883 |
[40] |
Mitchell, R. L. C. (2007). fMRI delineation of working memory for affective prosody in the brain: commonalities with the lexico-semantic emotion network. Neuroimage, 36(3), 1015-1025.
doi: 10.1016/j.neuroimage.2007.03.016 URL pmid: 17481919 |
[41] |
Mitchell, R. L. C., & Xu, Y. (2015). What is the value of embedding artificial affective prosody in human-computer interactions? Implications for theory and design in psychological science. Frontiers in Psychology, 6, 1750.
doi: 10.3389/fpsyg.2015.01750 URL pmid: 26617563 |
[42] |
Molavi, B., & Dumont, G. A. (2012). Wavelet-based motion artifact removal for functional near-infrared spectroscopy. Physiological Measurement, 33(2), 259-270.
doi: 10.1088/0967-3334/33/2/259 URL pmid: 22273765 |
[43] |
Mothes-Lasch, M., Mentzel, H.-J., Miltner, W. H. R., & Straube, T. (2011). Visual attention modulates brain activation to angry voices. Journal of Neuroscience, 31(26), 9594-9598.
doi: 10.1523/JNEUROSCI.6665-10.2011 URL pmid: 21715624 |
[44] |
Patel, S., Oishi, K., Wright, A., Sutherland-Foggio, H., Saxena, S., Sheppard, S. M., & Hillis, A. E. (2018). Right hemisphere regions critical for expression of emotion through prosody. Frontiers in neurology, 9, 224.
doi: 10.3389/fneur.2018.00224 URL pmid: 29681885 |
[45] |
Patterson, R. D., Uppenkamp, S., Johnsrude, I. S., & Griffiths, T. D. (2002). The processing of temporal pitch and melody information in auditory cortex. Neuron, 36(4), 767-776.
doi: 10.1016/s0896-6273(02)01060-7 URL pmid: 12441063 |
[46] |
Paulmann, S., Seifert, S., & Kotz, S. A. (2010). Orbito-frontal lesions cause impairment during late but not early emotional prosodic processing. Social Neuroscience, 5(1), 59-75.
doi: 10.1080/17470910903135668 URL pmid: 19658025 |
[47] |
Quadflieg, S., Mohr, A., Mentzel, H.-J., Miltner, W. H. R., & Straube, T. (2008). Modulation of the neural network involved in the processing of angry prosody: the role of task-relevance and social phobia. Biological Psychology, 78(2), 129-137.
doi: 10.1016/j.biopsycho.2008.01.014 URL pmid: 18353521 |
[48] |
Ross, E. D. (1981). The aprosodias. Functional-anatomic organization of the affective components of language in the right hemisphere. Archives of Neurology, 38(9), 561-569.
doi: 10.1001/archneur.1981.00510090055006 URL pmid: 7271534 |
[49] |
Schirmer, A., & Kotz, S. A. (2006). Beyond the right hemisphere: brain mechanisms mediating vocal emotional processing. Trends in Cognitive Sciences, 10(1), 24-30.
doi: 10.1016/j.tics.2005.11.009 URL pmid: 16321562 |
[50] |
Steber, S., König, N., Stephan, F., & Rossi, S. (2020). Uncovering electrophysiological and vascular signatures of implicit affective prosody. Scientific Reports, 10(1), 5807.
doi: 10.1038/s41598-020-62761-x URL pmid: 32242032 |
[51] |
Tong, Y., Hocke, L. M., & Frederick, B. B., (2011). Isolating the sources of widespread physiological fluctuations in functional near-infrared spectroscopy signals. Journal of Biomedical Optics, 16(10), 106005.
doi: 10.1117/1.3638128 URL pmid: 22029352 |
[52] |
Witteman, J., van Heuven, V. J., & Schiller, N. O. (2012). Hearing feelings: a quantitative meta-analysis on the neuroimaging literature of affective prosody perception. Neuropsychologia, 50(12), 2752-2763.
doi: 10.1016/j.neuropsychologia.2012.07.026 URL pmid: 22841991 |
[53] |
Zhang, D., Chen, Y., Hou, X., & Wu, Y. J. (2019). Near-infrared spectroscopy reveals neural perception of vocal emotions in human neonates. Human Brain Mapping, 40(8), 2434-2448.
doi: 10.1002/hbm.24534 URL pmid: 30697881 |
[54] |
Zhang, D., Zhou, Y., Hou, X., Cui, Y., & Zhou, C. (2017). Discrimination of emotional prosodies in human neonates: A pilot fNIRS study. Neuroscience Letters, 658, 62-66.
doi: 10.1016/j.neulet.2017.08.047 URL pmid: 28842278 |
[55] |
Zhang, D., Zhou, Y., & Yuan, J. (2018). Speech prosodies of different emotional categories activate different brain regions in adult cortex: an fNIRS study. Scientific Reports, 8(1), 218.
doi: 10.1038/s41598-017-18683-2 URL pmid: 29317758 |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||