Please wait a minute...
Advances in Psychological Science    2020, Vol. 28 Issue (6) : 945-958     DOI: 10.3724/SP.J.1042.2020.00945
Regular Articles |
The influences of prestimulus alpha oscillation on visual perception
ZHONG Chupeng1,QU Zhe1(),DING Yulong2
1 Department of Psychology, Sun Yat-sen University, Guangzhou 510006, China
2 School of Psychology, South China Normal University, Guangzhou 510631, China
Download: PDF(796 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    

Human perception to near-threshold visual stimuli is not always reliable. To investigate variability of visual perception and its neural mechanism, some researchers focus on the influences of prestimulus ongoing alpha oscillations (8~13 Hz) on visual perception. Recently, studies found that decrease of prestimulus alpha power associated with improvement of observers’ detection rate, but no such effect on perception accuracy was found. In addition, phase of prestimulus alpha was reported to predict whether an observer can detect the following visual stimulus or not. Thus, power of prestimulus alpha is considered to reflect the excitability of visual cortex; decrease of alpha power indicates increase of cortical excitability, which results in higher detection rate of near-threshold stimuli. Nevertheless, phase of prestimulus alpha might play a role in regulating the time of excitation and inhibition of the cortex, and the different brain states (excitation or inhibition) at stimulus onset would lead to different perceptions of the stimulus.

Keywords prestimulus      neural oscillation      alpha power      alpha phase      visual perception     
ZTFLH:  B842  
Corresponding Authors: Zhe QU     E-mail:
Issue Date: 22 April 2020
E-mail this article
E-mail Alert
Articles by authors
Chupeng ZHONG
Zhe QU
Yulong DING
Cite this article:   
Chupeng ZHONG,Zhe QU,Yulong DING. The influences of prestimulus alpha oscillation on visual perception[J]. Advances in Psychological Science, 2020, 28(6): 945-958.
URL:     OR
[1] 武侠, 钟楚鹏, 丁玉珑, 曲折 . (2018). 利用时频分析研究非相位锁定脑电活动. 心理科学进展, 26(8), 1349-1364.
[2] Achim, A., Bouchard, J., & Braun, C. M. J . (2013). EEG amplitude spectra before near threshold visual presentations differentially predict detection/omission and short-long reaction time outcomes. International Journal of Psychophysiology, 89(1), 88-98.
[3] Babiloni, C., Vecchio, F., Bultrini, A., Luca Romani, G., & Rossini, P. M . (2005). Pre-and poststimulus alpha rhythms are related to conscious visual perception: A high-resolution EEG study. Cerebral Cortex, 16(12), 1690-1700.
[4] Bae, G.-Y., & Luck, S. J . (2018). Dissociable decoding of spatial attention and working memory from EEG oscillations and sustained potentials. Journal of Neuroscience, 38(2), 409-422.
[5] Bahramisharif, A., van Gerven,, M. A. J, Aarnoutse,, E. J., Mercier, M. R., Schwartz, T. H., Foxe, J. J., ... Jensen, O . (2013). Propagating neocortical gamma bursts are coordinated by traveling alpha waves. Journal of Neuroscience, 33(48), 18849-18854.
[6] Bastiaansen, M. C. M., Posthuma, D., Groot, P. F. C., & de Geus, E. J. C . (2002). Event-related alpha and theta responses in a visuo-spatial working memory task. Clinical Neurophysiology, 113(12), 1882-1893.
[7] Benwell, C. S. Y., Tagliabue, C. F., Veniero, D., Cecere, R., Savazzi, S., & Thut, G . (2017). Prestimulus EEG power predicts conscious awareness but not objective visual performance. eNeuro, 4(6).
[8] Bernat, E., Shevrin, H., & Snodgrass, M . (2001). Subliminal visual oddball stimuli evoke a P300 component. Clinical Neurophysiology, 112(1), 159-171.
[9] Bonaiuto, J. J., Meyer, S. S., Little, S., Rossiter, H., Callaghan, M. F., Dick, F., ... Bestmann, S . (2018). Lamina-specific cortical dynamics in human visual and sensorimotor cortices. eLife, 7, e33977.
[10] Bonnefond, M., & Jensen, O . (2012). Alpha oscillations serve to protect working memory maintenance against anticipated distracters. Current Biology, 22(20), 1969-1974.
[11] Brüers, S., & VanRullen, R . (2017). At what latency does the phase of brain oscillations influence perception?. eNeuro, 4(3).
[12] Busch, N. A., Dubois, J., & VanRullen, R . (2009). The phase of ongoing EEG oscillations predicts visual perception. Journal of Neuroscience, 29(24), 7869-7876.
[13] Busch, N. A., & VanRullen, R . (2010). Spontaneous EEG oscillations reveal periodic sampling of visual attention. Proceedings of the National Academy of Sciences, 107(37), 16048-16053.
[14] Callaway, E., & Yeager, C. L . (1960). Relationship between reaction time and electroencephalographic alpha phase. Science, 132(3441), 1765-1766.
[15] Chaumon, M., & Busch, N. A . (2014). Prestimulus neural oscillations inhibit visual perception via modulation of response gain. Journal of Cognitive Neuroscience, 26(11), 2514-2529.
[16] Cohen, M. X . (2017). Where does EEG come from and what does it mean?. Trends in Neurosciences, 40(4), 208-218.
[17] Dalal, S. S., Vidal, J. R., Hamamé, C. M., Ossandón, T., Bertrand, O., Lachaux, J. P., & Jerbi, K . (2011). Spanning the rich spectrum of the human brain: Slow waves to gamma and beyond. Brain Structure and Function, 216(2), 77-84.
[18] de Pesters, A., Coon, W. G., Brunner, P., Gunduz, A., Ritaccio, A. L., Brunet, N. M., ... Schalk, G . (2016). Alpha power indexes task-related networks on large and small scales: A multimodal ECoG study in humans and a non-human primate. Neuroimage, 134, 122-131.
[19] Devrim, M., Demiralp, T., & Kurt, A . (1997). The effects of subthreshold visual stimulation on P300 response. Neuroreport, 8(14), 3113-3117.
[20] Dougherty, K., Cox, M. A., Ninomiya, T., Leopold, D. A., & Maier, A . (2017). Ongoing alpha activity in V1 regulates visually driven spiking responses. Cerebral Cortex, 27(2), 1113-1124.
[21] Drewes, J., & VanRullen, R . (2011). This is the rhythm of your eyes: The phase of ongoing electroencephalogram oscillations modulates saccadic reaction time. Journal of Neuroscience, 31(12), 4698-4708.
[22] Dugué, L., Marque, P., & VanRullen, R . (2011). The phase of ongoing oscillations mediates the causal relation between brain excitation and visual perception. Journal of Neuroscience, 31(33), 11889-11893.
[23] Dustman, R. E., & Beck, E. C . (1965). Phase of alpha brain waves, reaction time and visually evoked potentials. Electroencephalography and Clinical Neurophysiology, 18(5), 433-440.
[24] Ergenoglu, T., Demiralp, T., Bayraktaroglu, Z., Ergen, M., Beydagi, H., & Uresin, Y . (2004). Alpha rhythm of the EEG modulates visual detection performance in humans. Cognitive Brain Research, 20(3), 376-383.
[25] Foster, J. J., & Awh, E . (2018). The role of alpha oscillations in spatial attention: Limited evidence for a suppression account. Current Opinion in Psychology, 29, 34-40.
[26] Foster, J. J., Bsales, E. M., Jaffe, R. J., & Awh, E . (2017). Alpha-band activity reveals spontaneous representations of spatial position in visual working memory. Current Biology, 27(20), 3216-3223.
[27] Foster, J. J., Sutterer, D. W., Serences, J. T., Vogel, E. K., & Awh, E . (2017). Alpha-band oscillations enable spatially and temporally resolved tracking of covert spatial attention. Psychological Science, 28(7), 929-941.
[28] Gruber, W. R., Zauner, A., Lechinger, J., Schabus, M., Kutil, R., & Klimesch, W . (2014). Alpha phase, temporal attention, and the generation of early event related potentials. Neuroimage, 103, 119-129.
[29] Haegens, S., Barczak, A., Musacchia, G., Lipton, M. L., Mehta, A. D., Lakatos, P., & Schroeder, C. E . (2015). Laminar profile and physiology of the α rhythm in primary visual, auditory, and somatosensory regions of neocortex. Journal of Neuroscience, 35(42), 14341-14352.
[30] Haegens, S., Nácher, V., Luna, R., Romo, R., & Jensen, O . (2011). α-Oscillations in the monkey sensorimotor network influence discrimination performance by rhythmical inhibition of neuronal spiking. Proceedings of the National Academy of Sciences, 108(48), 19377-19382.
[31] Hamm, J. P., Dyckman, K. A., McDowell, J. E., & Clementz, B. A . (2012). Pre-cue fronto-occipital alpha phase and distributed cortical oscillations predict failures of cognitive control. Journal of Neuroscience, 32(20), 7034-7041.
[32] Hanslmayr, S., Aslan, A., Staudigl, T., Klimesch, W., Herrmann, C. S., & Bäuml, K. H . (2007). Prestimulus oscillations predict visual perception performance between and within subjects. Neuroimage, 37(4), 1465-1473.
[33] Hanslmayr, S., Gross, J., Klimesch, W., & Shapiro, K. L . (2011). The role of alpha oscillations in temporal attention. Brain Research Reviews, 67(1-2), 331-343.
[34] Hanslmayr, S., Klimesch, W., Sauseng, P., Gruber, W., Doppelmayr, M., Freunberger, R., & Pecherstorfer, T . (2005). Visual discrimination performance is related to decreased alpha amplitude but increased phase locking. Neuroscience Letters, 375(1), 64-68.
[35] Hanslmayr, S., Volberg, G., Wimber, M., Dalal, S. S., & Greenlee, M. W . (2013). Prestimulus oscillatory phase at 7 Hz gates cortical information flow and visual perception. Current Biology, 23(22), 2273-2278.
[36] Harris, A. M., Dux, P. E., & Mattingley, J. B . (2018). Detecting unattended stimuli depends on the phase of prestimulus neural oscillations. Journal of Neuroscience, 38(12), 3092-3101.
[37] Herrmann, C. S . (2001). Human EEG responses to 1-100 Hz flicker: resonance phenomena in visual cortex and their potential correlation to cognitive phenomena. Experimental Brain Research, 137(3-4), 346-353.
[38] Hülsdünker, T., Strüder, H. K., & Mierau, A . (2018). The pre-stimulus oscillatory alpha phase affects neural correlates of early visual perception. Neuroscience Letters, 685, 90-95.
[39] Iemi, L., & Busch, N. A . (2018). Moment-to-Moment fluctuations in neuronal excitability bias subjective perception rather than strategic decision-making. eNeuro, 5( 3).
[40] Iemi, L., Chaumon, M., Crouzet, S. M., & Busch, N. A . (2017). Spontaneous neural oscillations bias perception by modulating baseline excitability. Journal of Neuroscience, 37(4), 807-819.
[41] Jansen, B. H., & Brandt, M. E . (1991). The effect of the phase of prestimulus alpha activity on the averaged visual evoked response. Electroencephalography and Clinical Neurophysiology/ Evoked Potentials Section, 80(4), 241-250.
[42] Jensen, O., Bonnefond, M., & VanRullen, R . (2012). An oscillatory mechanism for prioritizing salient unattended stimuli. Trends in Cognitive Sciences, 16(4), 200-206.
[43] Jensen, O., Gelfand, J., Kounios, J., & Lisman, J. E . (2002). Oscillations in the alpha band (9-12 Hz) increase with memory load during retention in a short-term memory task. Cerebral Cortex, 12(8), 877-882.
[44] Jensen, O., Gips, B., Bergmann, T. O., & Bonnefond, M . (2014). Temporal coding organized by coupled alpha and gamma oscillations prioritize visual processing. Trends in Neurosciences, 37(7), 357-369.
[45] Kelly, S. P., Lalor, E. C., Reilly, R. B., & Foxe, J. J . (2006). Increases in alpha oscillatory power reflect an active retinotopic mechanism for distracter suppression during sustained visuospatial attention. Journal of Neurophysiology, 95(6), 3844-3851.
[46] Klimesch, W . (2012). Alpha-band oscillations, attention, and controlled access to stored information. Trends in Cognitive Sciences, 16(12), 606-617.
[47] Klimesch, W., Sauseng, P., & Hanslmayr, S . (2007). EEG alpha oscillations: The inhibition-timing hypothesis. Brain Research Reviews, 53(1), 63-88.
[48] Koivisto, M., Grassini, S., Salminen-Vaparanta, N., & Revonsuo, A . (2017). Different electrophysiological correlates of visual awareness for detection and identification. Journal of Cognitive Neuroscience, 29(9), 1621-1631.
[49] Leenders, M. P., Lozano-Soldevilla, D., Roberts, M. J., Jensen, O., & de Weerd, P . (2016). Diminished alpha lateralization during working memory but not during attentional cueing in older adults. Cerebral Cortex, 28(1), 21-32.
[50] Limbach, K., & Corballis, P. M . (2016). Prestimulus alpha power influences response criterion in a detection task. Psychophysiology, 53(8), 1154-1164.
[51] Macmillan, N. A., & Creelman, C. D . (2005) . Detection theory: A user’s guide (2nd ed) New York, NY: Psychology Press.
[52] Makeig, S., & Jung, T. P . (1996). Tonic, phasic, and transient EEG correlates of auditory awareness in drowsiness. Cognitive Brain Research, 4(1), 15-25.
[53] Mathewson, K. E., Fabiani, M., Gratton, G., Beck, D. M., & Lleras, A . (2010). Rescuing stimuli from invisibility: Inducing a momentary release from visual masking with pre-target entrainment. Cognition, 115(1), 186-191.
[54] Mathewson, K. E., Gratton, G., Fabiani, M., Beck, D. M., & Ro, T . (2009). To see or not to see: Prestimulus α phase predicts visual awareness. Journal of Neuroscience, 29(9), 2725-2732.
[55] Mathewson, K. E., Prudhomme, C., Fabiani, M., Beck, D. M., Lleras, A., & Gratton, G . (2012). Making waves in the stream of consciousness: Entraining oscillations in EEG alpha and fluctuations in visual awareness with rhythmic visual stimulation. Journal of Cognitive Neuroscience, 24(12), 2321-2333.
[56] Michalareas, G., Vezoli, J., van Pelt, S., Schoffelen, J.-M., Kennedy, H., & Fries, P . (2016). Alpha-beta and gamma rhythms subserve feedback and feedforward influences among human visual cortical areas. Neuron, 89(2), 384-397.
[57] Pfurtscheller, G., Stancák, A., & Neuper, C . (1996). Event- related synchronization (ERS) in the alpha band — An electrophysiological correlate of cortical idling: A review. International Journal of Psychophysiology, 24(1-2), 39-46.
[58] Risner, M. L., Aura, C. J., Black, J. E., & Gawne, T. J . (2009). The visual evoked potential is independent of surface alpha rhythm phase. Neuroimage, 45(2), 463-469.
[59] Roberts, D. M., Fedota, J. R., Buzzell, G. A., Parasuraman, R., & McDonald, C. G . (2014). Prestimulus oscillations in the alpha band of the EEG are modulated by the difficulty of feature discrimination and predict activation of a sensory discrimination process. Journal of Cognitive Neuroscience, 26(8), 1615-1628.
[60] Romei, V., Gross, J., & Thut, G . (2010). On the role of prestimulus alpha rhythms over occipito-parietal areas in visual input regulation: Correlation or causation?. Journal of Neuroscience, 30(25), 8692-8697.
[61] Ruhnau, P., Hauswald, A., & Weisz, N . (2014). Investigating ongoing brain oscillations and their influence on conscious perception-network states and the window to consciousness. Frontiers in Psychology, 5, 1230.
[62] Rutiku, R., Aru, J., & Bachmann, T . (2016). General markers of conscious visual perception and their timing. Frontiers in Human Neuroscience, 10, 23.
[63] Samaha, J., Iemi, L., & Postle, B. R . (2017). Prestimulus alpha-band power biases visual discrimination confidence, but not accuracy. Consciousness and Cognition, 54, 47-55.
[64] Samaha, J., & Postle, B. R . (2015). The speed of alpha-band oscillations predicts the temporal resolution of visual perception. Current Biology, 25(22), 2985-2990.
[65] Sauseng, P., Klimesch, W., Doppelmayr, M., Pecherstorfer, T., Freunberger, R., & Hanslmayr, S . (2005). EEG alpha synchronization and functional coupling during top‐down processing in a working memory task. Human Brain Mapping, 26(2), 148-155.
[66] Steriade, M., McCormick, D. A., & Sejnowski, T. J . (1993). Thalamocortical oscillations in the sleeping and aroused brain. Science, 262(5134), 679-685.
[67] Thut, G., Nietzel, A., Brandt, S. A., & Pascual-Leone, A . (2006). α-Band electroencephalographic activity over occipital cortex indexes visuospatial attention bias and predicts visual target detection. Journal of Neuroscience, 26(37), 9494-9502.
[68] Thut, G., Schyns, P. G., & Gross, J . (2011). Entrainment of perceptually relevant brain oscillations by non-invasive rhythmic stimulation of the human brain. Frontiers in Psychology, 2, 170.
[69] Tran, T. T., Hoffner, N. C., LaHue, S. C., Tseng, L., & Voytek, B . (2016). Alpha phase dynamics predict age-related visual working memory decline. Neuroimage, 143, 196-203.
[70] van Dijk, H., Schoffelen, J.-M., Oostenveld, R., & Jensen, O . (2008). Prestimulus oscillatory activity in the alpha band predicts visual discrimination ability. Journal of Neuroscience, 28(8), 1816-1823.
[71] van Kerkoerle, T., Self, M. W., Dagnino, B., Gariel-Mathis, M.-A., Poort, J., van der Togt, C., & Roelfsema, P. R . (2014). Alpha and gamma oscillations characterize feedback and feedforward processing in monkey visual cortex. Proceedings of the National Academy of Sciences, 111(40), 14332-14341.
[72] VanRullen, R . (2016). Perceptual cycles. Trends in Cognitive Sciences, 20(10), 723-735.
[73] Varela, F., Lachaux, J.-P., Rodriguez, E., & Martinerie, J . (2001). The brainweb: phase synchronization and large-scale integration. Nature Reviews Neuroscience, 2(4), 229-239.
[74] Vosskuhl, J., Strüber, D., & Herrmann, C. S . (2018). Non-invasive brain stimulation: a paradigm shift in understanding brain oscillations. Frontiers in Human Neuroscience, 12.
[75] Wang, C.-H., Tseng, Y.-T., Liu, D., & Tsai, C.-L . (2017). Neural oscillation reveals deficits in visuospatial working memory in children with developmental coordination disorder. Child Development, 88(5), 1716-1726.
[76] Wang, X.-J . (2010). Neurophysiological and computational principles of cortical rhythms in cognition. Physiological Reviews, 90(3), 1195-1268.
[77] Ward, L. M . (2003). Synchronous neural oscillations and cognitive processes. Trends in Cognitive Sciences, 7(12), 553-559.
[78] Watson, B. O., Ding, M. X., & Buzsáki, G . (2018). Temporal coupling of field potentials and action potentials in the neocortex. European Journal of Neuroscience, 48(7), 2482-2497.
[79] Wilenius, M. E., & Revonsuo, A. T . (2007). Timing of the earliest ERP correlate of visual awareness. Psychophysiology, 44(5), 703-710.
[80] Witt, J. K., Taylor, J. E. T., Sugovic, M., & Wixted, J. T . (2015). Signal detection measures cannot distinguish perceptual biases from response biases. Perception, 44(3), 289-300.
[81] Worden, M. S., Foxe, J. J., Wang, N., & Simpson, G. V . (2000). Anticipatory biasing of visuospatial attention indexed by retinotopically specific α-band electroencephalography increases over occipital cortex. Journal of Neuroscience, 20( 6), RC63.
[1] LI Ping,ZHANG Mingming,LI Shuaixia,ZHANG Huoyin,LUO Wenbo. The integration of facial expression and vocal emotion and its brain mechanism[J]. Advances in Psychological Science, 2019, 27(7): 1205-1214.
[2] WANG Ping; PAN Zhihui; ZHANG Lijie; CHEN Xuhai. The Integration of Dynamic Facial and Vocal Emotion and Its Neurophysiological Mechanism[J]. Advances in Psychological Science, 2015, 23(7): 1109-1117.
[3] Ren Yanju; Xuan Yuming;Fu Xiaolan. Information Integration between
Visual Short-Term Memory and Visual Perception
[J]. , 2007, 15(02): 301-307.
Full text



Copyright © Advances in Psychological Science
Support by Beijing Magtech