Please wait a minute...
Advances in Psychological Science    2020, Vol. 28 Issue (4) : 579-587     DOI: 10.3724/SP.J.1042.2020.00579
Regular Articles |
Spatial frequencies affect the processing of fearful facial expression in neural pathways
HE Zeyu,ZHANG Ziqi,LI Kexuan,HE Weiqi()
Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian 116029, China
Download: PDF(545 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Fear has been often given priority to effective processing for the need to evade threatening stimuli. Most of researches have probed the influence of high and low spatial frequencies on the processing of fearful faces from the perspective of the two-channel model. Low spatial frequency components of the fearful face can be processed preferentially in the subcortical pathway. The high spatial frequency mainly processes the fearful faces through the cortical pathway. On this basis, researchers have proposed multiple pathways. The purpose of this paper is to review the subcortical, cortical and multiple pathways from the physiological perspective, and then organize the effects that high/low spatial frequencies on the processing of fearful faces in the various pathways and propose the controversies. Finally, we suggested several focuses that could be studied in the future.

Keywords spatial frequency      fearful facial expression      subcortical pathway      cortical pathway      multiple pathways     
PACS:  B842  
  B845  
Corresponding Authors: Weiqi HE     E-mail: weiqi79920686@sina.com
Issue Date: 24 February 2020
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zeyu HE
Ziqi ZHANG
Kexuan LI
Weiqi HE
Cite this article:   
Zeyu HE,Ziqi ZHANG,Kexuan LI, et al. Spatial frequencies affect the processing of fearful facial expression in neural pathways[J]. Advances in Psychological Science, 2020, 28(4): 579-587.
URL:  
http://journal.psych.ac.cn/xlkxjz/EN/10.3724/SP.J.1042.2020.00579     OR     http://journal.psych.ac.cn/xlkxjz/EN/Y2020/V28/I4/579
1 陈珊珊, 蔡厚德 . ( 2015). 丘脑枕核参与情绪信息加工的多条通路. 心理科学进展, 23( 2), 234-240.
2 Adolphs, R . ( 2008). Fear, faces, and the human amygdala. Current Opinion in Neurobiology, 18( 2), 166-172.
3 Adolphs R., Gosselin F., Buchanan T. W., Tranel D., Schyns P., & Damasio A. R . ( 2005). A mechanism for impaired fear recognition after amygdala damage. Nature, 433( 7021), 68-72.
4 Alorda C., Serrano-Pedraza I., Campos-Bueno J. J., Sierra-Vázquez V., & Montoya P . ( 2007). Low spatial frequency filtering modulates early brain processing of affective complex pictures. Neuropsychologia, 45( 14), 3223-3233.
5 Bar, M . ( 2003). A cortical mechanism for triggering top-down facilitation in visual object recognition. Journal of Cognitive Neuroscience, 15( 4), 600-609.
6 Bocanegra, B. R., & Zeelenberg, R . ( 2009). Emotion improves and impairs early vision. Psychological science, 20( 6), 707-713.
7 Bridge H., Leopold D. A., & Bourne J. A . ( 2016). Adaptive pulvinar circuitry supports visual cognition. Trends in Cognitive Ssciences, 20( 2), 146-157.
8 Bullier J., Hupé J.-M., James A. C., & Girard P . ( 2001). The role of feedback connections in shaping the responses of visual cortical neurons. Hofman, Michel A.(Ed.), Progress in Brain Research, 134, 193-204.
9 Burra N., Hervais-Adelman A., Celeghin A., de Gelder B., & Pegna A. J . ( 2017). Affective blindsight relies on low spatial frequencies. Neuropsychologia, 128, 44-49.
10 Burra N., Hervais-Adelman A., Kerzel D., Tamietto M., de Gelder B., & Pegna A. J . ( 2013). Amygdala activation for eye contact despite complete cortical blindness. Journal of Neuroscience, 33( 25), 10483-10489.
11 Carretié L., Hinojosa J. A., López-Martín S., & Tapia M . ( 2007). An electrophysiological study on the interaction between emotional content and spatial frequency of visual stimuli. Neuropsychologia, 45( 6), 1187-1195.
12 Cushing C. A., Im H. Y., Adams Jr R. B., Ward N., & Kveraga K . ( 2019). Magnocellular and parvocellular pathway contributions to facial threat cue processing. Social Cognitive and Affective Neuroscience, 14( 2), 151-162.
13 Das P., Kemp A. H., Liddell B. J., Brown K. J., Olivieri G., Peduto A., .. Williams L. M . ( 2005). Pathways for fear perception: Modulation of amygdala activity by thalamo-cortical systems. Neuroimage, 26( 1), 141-148.
14 de Cesarei, A.., & Codispoti, M., . ( 2013). Spatial frequencies and emotional perception. Reviews in the Neurosciences, 24( 1), 89-104.
15 de Valois R. L., Albrecht D. G., & Thorell L. G . ( 1982). Spatial frequency selectivity of cells in macaque visual cortex. Vision Research, 22( 5), 545-559.
16 Du S., Tao Y., & Martinez A. M . ( 2014). Compound facial expressions of emotion. Proceedings of the National Academy of Sciences, 111( 15), E1454-E1462.
17 Fradcourt B., Peyrin C., Baciu M., & Campagne A . ( 2013). Behavioral assessment of emotional and motivational appraisal during visual processing of emotional scenes depending on spatial frequencies. Brain and Cognition, 83( 1), 104-113.
18 Furl N., Henson R. N., Friston K. J., & Calder A. J . ( 2013). Top-down control of visual responses to fear by the amygdala. Journal of Neuroscience, 33( 44), 17435-17443.
19 Garvert M. M., Friston K. J., Dolan R. J., & Garrido M. I . ( 2014). Subcortical amygdala pathways enable rapid face processing. Neuroimage, 102, 309-316.
20 Goffaux V., Jemel B., Jacques C., Rossion B., & Schyns P. G . ( 2003). ERP evidence for task modulations on face perceptual processing at different spatial scales. Cognitive Science, 27( 2), 313-325.
21 Hariri A. R., Mattay V. S., Tessitore A., Fera F., & Weinberger D. R . ( 2003). Neocortical modulation of the amygdala response to fearful stimuli. Biological Psychiatry, 53( 6), 494-501.
22 Hassin R. R., Aviezer H., & Bentin S . ( 2013). Inherently ambiguous: Facial expressions of emotions, in context. Emotion Review, 5( 1), 60-65.
23 Holmes A., Green S., & Vuilleumier P . ( 2005). The involvement of distinct visual channels in rapid attention towards fearful facial expressions. Cognition & Emotion, 19( 6), 899-922.
24 Isbell, L. A . ( 2006). Snakes as agents of evolutionary change in primate brains. Journal of Human Evolution, 51( 1), 1-35.
25 Jack R. E., Blais C., Scheepers C., Schyns P. G., & Caldara R . ( 2009). Cultural confusions show that facial expressions are not universal. Current Biology, 19( 18), 1543-1548.
26 Jeantet C., Caharel S., Schwan R., Lighezzolo-Alnot J., & Laprevote V . ( 2018). Factors influencing spatial frequency extraction in faces: A review. Neuroscience & Biobehavioral Reviews, 93, 123-138.
27 LeDoux, J . ( 1998). The emotional brain: The mysterious underpinnings of emotional life. Simon and Schuster.
28 Liu C. H., Collin C. A., Rainville S. J., & Chaudhuri A . ( 2000). The effects of spatial frequency overlap on face recognition. Journal of Experimental Psychology: Human Perception and Performance, 26( 3), 956-979.
29 Márkus Z., Berényi A., Paróczy Z., Wypych M., Waleszczyk W. J., Benedek G., & Nagy A . ( 2009). Spatial and temporal visual properties of the neurons in the intermediate layers of the superior colliculus. Neuroscience Letters, 454( 1), 76-80.
30 McFadyen J., Mattingley J. B., & Garrido M. I . ( 2019). An afferent white matter pathway from the pulvinar to the amygdala facilitates fear recognition. eLife, 8, e40766.
31 McFadyen J., Mermillod M., Mattingley J. B., Halász V., & Garrido M. I . ( 2017). A rapid subcortical amygdala route for faces irrespective of spatial frequency and emotion. Journal of Neuroscience, 37( 14), 3864-3874.
32 Méndez-Bértolo C., Moratti S., Toledano R., Lopez-Sosa F., Martínez-Alvarez R., Mah Y. H., .. Strange B. A . ( 2016). A fast pathway for fear in human amygdala. Nature Neuroscience, 19( 8), 1041-1049.
33 Merigan, W. H., & Maunsell, J. H. R . ( 1993). How parallel are the primate visual pathways? Annual Review of Neuroscience, 16( 1), 369-402.
34 Mermillod M., Droit-Volet S., Devaux D., Schaefer A., & Vermeulen N . ( 2010). Are coarse scales sufficient for fast detection of visual threat? Psychological Science, 21( 10), 1429-1437.
35 Morris J. S., ?hman A., & Dolan R. J . ( 1999). A subcortical pathway to the right amygdala mediating “unseen” fear. Proceedings of the National Academy of Sciences, 96( 4), 1680-1685.
36 ?hman, A . ( 2005). The role of the amygdala in human fear: Automatic detection of threat. Psychoneuroendocrinology, 30( 10), 953-958.
37 ?hman, A., & Mineka, S . ( 2001). Fears, phobias, and preparedness: Toward an evolved module of fear and fear learning. Psychological Review, 108( 3), 483-522.
38 Padmala S., Lim S.-L., & Pessoa L . ( 2010). Pulvinar and affective significance: Responses track moment-to- moment stimulus visibility. Frontiers in Human Neuroscience, 4, 64.
39 Pessoa, L . ( 2010). Emotion and attention effects: Is it all a matter of timing? Not yet. Frontiers in Human Neuroscience, 4, 172.
40 Pessoa, L., & Adolphs, R . ( 2010). Emotion processing and the amygdala: From a 'low road' to 'many roads' of evaluating biological significance. Nature Reviews Neuroscience, 11( 11), 773-782.
41 Pessoa, L., & Adolphs, R . ( 2011). Emotion and the brain: Multiple roads are better than one. Nature Reviews Neuroscience, 12( 7), 425.
42 Peyrin C., Schwartz S., Seghier M., Michel C., Landis T., & Vuilleumier P . ( 2005). Hemispheric specialization of human inferior temporal cortex during coarse-to-fine and fine-to-coarse analysis of natural visual scenes. Neuroimage, 28( 2), 464-473.
43 Phelps, E. A., & LeDoux, J. E . ( 2005). Contributions of the amygdala to emotion processing: From animal models to human behavior. Neuron, 48( 2), 175-187.
44 Pourtois G., Dan E. S., Grandjean D., Sander D., & Vuilleumier P . ( 2005). Enhanced extrastriate visual response to bandpass spatial frequency filtered fearful faces: Time course and topographic evoked‐potentials mapping. Human Brain Mapping, 26( 1), 65-79.
45 Shi, C., & Davis, M . ( 2001). Visual pathways involved in fear conditioning measured with fear-potentiated startle: Behavioral and anatomic studies. Journal of Neuroscience, 21( 24), 9844-9855.
46 Silverstein, D. N., & Ingvar, M . ( 2015). A multi-pathway hypothesis for human visual fear signaling. Frontiers in Systems Neuroscience, 9, 101.
47 Skottun, B. C . ( 2015). On the use of spatial frequency to isolate contributions from the magnocellular and parvocellular systems and the dorsal and ventral cortical streams. Neuroscience & Biobehavioral Reviews, 56, 266-275.
48 Stein T., Seymour K., Hebart M. N., & Sterzer P . ( 2014). Rapid fear detection relies on high spatial frequencies. Psychological Science, 25( 2), 566-574.
49 Tamietto, M., & de Gelder, B . ( 2010). Neural bases of the non-conscious perception of emotional signals. Nature Reviews Neuroscience, 11( 10), 697-709.
50 Tamietto, M., & Morrone, M. C . ( 2016). Visual plasticity: Blindsight bridges anatomy and function in the visual system. Current Biology, 26( 2), R70-R73.
51 Tamietto M., Pullens P., de Gelder B., Weiskrantz L., & Goebel R . ( 2012). Subcortical connections to human amygdala and changes following destruction of the visual cortex. Current Biology, 22( 15), 1449-1455.
52 Tessari, M . ( 2012). Intracranial electrophysiological recordings of human orbitofrontal responses to emotional stimuli (Unpublished master dissertation). University of Padova, Italy.
53 Tian J., Wang J., Xia T., Zhao W., Xu Q., & He W . ( 2018). The influence of spatial frequency content on facial expression processing: An ERP study using rapid serial visual presentation. Scientific Reports, 8( 1), 2383.
54 Vlamings P. H. J. M., Goffaux V., & Kemner C . ( 2009). Is the early modulation of brain activity by fearful facial expressions primarily mediated by coarse low spatial frequency information? Journal of Vision, 9( 5), 12-12.
55 Vuilleumier, P . ( 2005). How brains beware: Neural mechanisms of emotional attention. Trends in Cognitive Sciences, 9( 12), 585-594.
56 Vuilleumier P., Armony J. L., Driver J., & Dolan R. J . ( 2003). Distinct spatial frequency sensitivities for processing faces and emotional expressions. Nature Neuroscience, 6( 6), 624-631.
57 Vuilleumier P., Richardson M. P., Armony J. L., Driver J., & Dolan R. J . ( 2004). Distant influences of amygdala lesion on visual cortical activation during emotional face processing. Nature Neuroscience, 7( 11), 1271-1278.
58 Webster M. A., de Valois K. K., & Switkes E . ( 1990). Orientation and spatial-frequency discrimination for luminance and chromatic gratings. Josa A, 7( 6), 1034-1049.
59 Willenbockel V., Lepore F., Nguyen D. K., Bouthillier A., & Gosselin F . ( 2012). Spatial frequency tuning during the conscious and non-conscious perception of emotional facial expressions-an intracranial ERP study. Frontiers in Psychology, 3, 237.
60 You, Y., & Li, W . ( 2015). Parallel processing of general and specific threat during early stages of perception. Social Cognitive and Affective Neuroscience, 11( 3), 395-404.
61 Zhang P., Zhou H., Wen W., & He S . ( 2015). Layer- specific response properties of the human lateral geniculate nucleus and superior colliculus. Neuroimage, 111, 159-166.
[1] WANG Lili; JIA Lina; LUO Yuejia. Automatic processing of emotions: Evidence and controversy[J]. Advances in Psychological Science, 2016, 24(8): 1185-1197.
[2] CHEN Shanshan; CAI Houde. Pulvinar Involves in Multiple Pathways of Emotion Processing[J]. Advances in Psychological Science, 2015, 23(2): 234-240.
[3] DU Lei. Brain Mechanisms of Threatening Information Detection[J]. Advances in Psychological Science, 2013, 21(2): 243-251.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Advances in Psychological Science
Support by Beijing Magtech