[1] | 陈希孺. (1991). 变点统计分析简介. 数理统计与管理, (1), 52-59. | [2] | Abahous, H., Ronchail, J., Sifeddine, A., Kenny, L., & Bouchaou, L. (2018). Trend and change point analyses of annual precipitation in the Souss-Massa Region in Morocco during 1932-2010. Theoretical and Applied Climatology, 134(3-4), 1153-1163. | [3] | Allen, D. E., McAleer, M., Powell, R. J., & Singh, A. K. (2018). Non-parametric multiple change point analysis of the global financial crisis. Annals of Financial Economics, 13(02), 1850008. | [4] | American Educational Research Association, American Psychological Association, & National Council for Measurement in Education. (2014). Standards for educational and psychological testing. Washington, DC: American Educational Research Association. | [5] | Aminikhanghahi, S., & Cook, D. J. (2017). A survey of methods for time series change point detection. Knowledge and Information Systems, 51, 339-367. | [6] | Andrews, D. (1993). Tests for parameter instability and structural change with unknown change point. Econometrica, 61(4), 821-856. | [7] | Armstrong, R. D., & Shi, M. (2009). A parametric cumulative sum statistic for person fit. Applied Psychological Measurement, 33(5), 391-410. | [8] | Baker, F. B., & Kim, H. S. (2004). Item response theory: Parameter estimation techniques (2nd ed.). New York, NY: Marcel Dekker. | [9] | Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B (Methodological), 57(1), 289-300. | [10] | Bolt, D. M., Cohen, A. S., & Wollack, J. A. (2002). Item parameter estimation under conditions of test speededness: Application of a mixture Rasch model with ordinal constraints. Journal of Educational Measurement, 39(4), 331-348. | [11] | Bolt, D. M., Mroch, A. A., & Kim, J.-S. (2003, April). An empirical investigation of the hybrid IRT model for improving item parameter estimation in speeded tests. Paper presented at the meeting of the American Educational Research Association, Chicago, IL. | [12] | Bradlow, E., & Weiss, R. E. (2001). Outlier measures and norming methods for computerized adaptive tests. Journal of Educational and Behavioral Statistics, 26(1), 85-104. | [13] | Bradlow, E., Weiss, R. E., & Cho, M. (1998). Bayesian identification of outliers in computerized adaptive tests. Journal of the American Statistical Association, 93, 910-919. | [14] | Chen, J., & Gupta, A. K. (2012). Parametric statistical change point analysis: With applications to genetics, medicine, and finance (2nd ed.). New York: Springer. | [15] | Csorgo, M., & Horvath, L. (1997). Limit theorems in change-point analysis. New York, NY: Wiley. | [16] | de Boeck, P., Cho, S. J., & Wilson, M. (2011). Explanatory secondary dimension modeling of latent differential item functioning. Applied Psychological Measurement, 35(8), 583-603. | [17] | Embretson, S. E., & Reise, S. P. (2000). Item response theory for psychologists. Mahwah, NJ: Erlbaum, Inc. | [18] | Estrella, A., & Rodrigues, A. (2005). One-sided test for an unknown breakpoint: Theory, computation, and application to monetary theory (Staff Reports No. 232). Federal Reserve Bank of New York. | [19] | Evans, F. R., & Reilly, R. R. (1972). A study of speededness as a source of test bias. Journal of Educational Measurement, 9, 123-131. | [20] | Fox, J. P., & Marianti, S. (2016). Joint modeling of ability and differential speed using responses and response times. Multivariate behavioral research, 51(4), 540-553. | [21] | Genovese, C. R., Lazar, N. A., & Nichols, T. (2002). Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage, 15(4), 870-878. | [22] | Goegebeur, Y., de Boeck, P., Wollack, J. A., & Cohen, A. S. (2008). A speeded item response model with gradual process change. Psychometrika, 73(1), 65. | [23] | Hawkins, D. M., Qiu, P., & Kang, C. W. (2003). The changepoint model for statistical process control. Journal of Quality Technology, 35(4), 355-366. | [24] | Hong, M. R., & Cheng, Y. (2019). Robust maximum marginal likelihood (RMML) estimation for item response theory models. Behavior Research Methods, 51(2), 573-588. | [25] | Karabatsos, & George.(2003). Comparing the aberrant response detection performance of thirty-six person-fit statistics. Applied Measurement in Education, 16(4), 277-298. | [26] | Kass-Hout, T. A., Xu, Z., McMurray, P., Park, S., Buckeridge, D. L., Brownstein, J. S., ... Groseclose, S. L. (2012). Application of change point analysis to daily influenza-like illness emergency department visits. Journal of the American Medical Informatics Association, 19(6), 1075-1081. | [27] | Lai, T. L. (2001). Sequential analysis: Some classical problems and new challenges. Statistica Sinica, 11(2), 303-408. | [28] | Lee, Y. H., & von, Davier, A., A. (2013). Monitoring scale scores over time via quality control charts, model-based approaches, and time series techniques. Psychometrika, 78(3), 557-575. | [29] | Li, J., Witten, D.M., Johnstone, I.M., & Tibshirani, R. (2012). Normalization, testing, and false discovery rate estimation for RNA-sequencing data. Biostatistics, 13(3), 523-538. | [30] | Maleki, S., Bingham, C., & Zhang, Y. (2016). Development and realization of changepoint analysis for the detection of emerging faults on industrial systems. IEEE Transactions on Industrial Informatics, 12(3), 1180-1187. | [31] | Meade, A. W. (2016). Understanding and detecting careless responding in survey research. Retrieved February 15, 2020, from https://cba.unl.edu/outreach/carma/documents/ CARMA-Meade-Presentation.pdf | [32] | Meijer, R. R. (2002). Outlier detection in high-stakes certification testing. Journal of Educational Measurement, 39(3), 219-233. | [33] | Mortaji, S. T. H., Noorossana, R., & Bagherpour, M. (2015). Project completion time and cost prediction using change point analysis. Journal of Management in Engineering, 31(5), 04014086. | [34] | Nam, C. F. H., Aston, J. A. D., & Johansen, A. M. (2012). Quantifying the uncertainty in change points. Journal of Time Series Analysis, 33(5), 807-823. | [35] | Nigro, M. B., Pakzad, S. N., & Dorvash, S. (2014). Localized structural damage detection: A change point analysis. Computer-Aided Civil and Infrastructure Engineering, 29(6), 416-432. | [36] | Oshima, T. C. (1994). The effect of speededness on parameter estimation in item response theory. Journal of Educational Measurement, 31(3), 200-219. | [37] | Page, E. S. (1954). Continuous inspection schemes. Biometrika, 41(1-2), 100-115. | [38] | Patton, J. M., Cheng, Y., Hong, M. R., & Diao, Q. (2019). Detection and treatment of careless responses to improve item parameter estimation. Journal of Educational and Behavioral Statistics, 44(3), 309-341. | [39] | Rost, J. (1990). Rasch models in latent classes: An integration of two approaches to item analysis. Applied Psychological Measurement, 14(3), 271-282. | [40] | Schwartzman, A., & Lin, X. (2011). The effect of correlation in false discovery rate estimation. Biometrika, 98(1), 199-214. | [41] | Shao, C. (2016). Aberrant response detection using change-point analysis (Unpublished Doctoral dissertation). University of Notre Dame, Notre Dame, IN. | [42] | Shao, C., Li, J., & Cheng, Y. (2016). Detection of test speededness using change-point analysis. Psychometrica, 81(4), 1118-1141. | [43] | Sinharay, S. (2016). Person fit analysis in computerized adaptive testing using tests for a change point. Journal of Educational and Behavioral Statistics, 41(5), 521-549. | [44] | Sinharay, S. (2017a). Detection of item preknowledge using likelihood ratio test and score test. Journal of Educational and Behavioral Statistics, 42(1), 46-68. | [45] | Sinharay, S. (2017b). Some remarks on applications of tests for detecting a change point to psychometric problems. Psychometrika, 82(4), 1149-1161. | [46] | Sinharay, S. (2017c). Which statistic should be used to detect item preknowledge when the set of compromised items is known?. Applied Psychological Measurement, 41(6), 403-421. | [47] | Storey, J. D., & Tibshirani, R. (2003). Statistical significance for genomewide studies. Proceedings of the National Academy of Sciences, 100(16), 9440-9445. | [48] | Suh, Y., Cho, S. J., & Wollack, J. A. (2012). A comparison of item calibration procedures in the presence of test speededness. Journal of Educational Measurement, 49(3), 285-311. | [49] | Suhaila, J., & Yusop, Z. (2018). Trend analysis and change point detection of annual and seasonal temperature series in Peninsular Malaysia. Meteorology and Atmospheric Physics, 130(5), 565-581. | [50] | Tendeiro, J. N., & Meijer, R. R. (2012). A CUSUM to detect person misfit: A discussion and some alternatives for existing procedures. Applied Psychological Measurement, 36(5), 420-442. | [51] | Tendeiro, J. N., & Meijer, R. R. (2014). Detection of invalid test scores: The usefulness of simple nonparametric statistics. Journal of Educational Measurement, 51(3), 239-259. | [52] | Thies, S., & Molnár, P. (2018). Bayesian change point analysis of Bitcoin returns. Finance Research Letters, 27, 223-227. | [53] | United States Department of Education. (2013). Testing integrity: Issues and recommendations for best practice. Retrieved November 21, 2019, from http://nces.ed.gov/ pubs2013/2013454.pdf. | [54] | van der, Linden, W., J. (2007). A hierarchical framework for modeling speed and accuracy on test items. Psychometrika, 72(3), 287-308. | [55] | van Krimpen-Stoop, E. M. L. A., Meijer, R. R. (2000). Detecting person misfit in adaptive testing using statistical process control techniques. In W. J. van der Linden & G. A. Glas (Eds.), Computerized Adaptive Testing: Theory and Practice (pp. 201-219). Dordrecht, Netherlands: Springer. | [56] | van, Krimpen-Stoop, E. M. L., A., & Meijer, R. R. (2001). CUSUM-based person-fit statistics for adaptive testing. Journal of Educational and Behavioral Statistics, 26(2), 199-217. | [57] | van, Krimpen-Stoop, E. M. L., A., & Meijer, R. R. (2002). Detection of person misfit in computerized adaptive tests with polytomous items. Applied Psychological Measurement, 26(2), 164-180. | [58] | Vostrikova, L. Y. (1981). Detecting “disorder” in multidimensional random processes. Doklady Akademii Nauk, 259(2), 270-274. | [59] | Wang, C., & Xu, G. (2015). A mixture hierarchical model for response times and response accuracy. British Journal of Mathematical and Statistical Psychology, 68(3), 456-477. | [60] | Wang, T., & Hanson, B. A. (2005). Development and calibration of an item response model that incorporates response time. Applied Psychological Measurement, 29(5), 323-339. | [61] | Wollack, J. A., & Cohen, A. S. (2004, April). A model for simulating speeded test data. Paper presented at the meeting of the American Educational Research Association. San Diego, CA. | [62] | Worsley, K. J. (1979). On the likelihood ratio test for a shift in location of normal populations. Journal of the American Statistical Association, 74, 365-367. | [63] | Yamamoto, K., & Everson, H. (1997). Modeling the effects of test length and test time on parameter estimation using the HYBRID model. In J. Rost & R. Langeheine (Eds.), Applications of latent trait and latent class models in the social sciences (pp. 89-98). New York: Waxmann. | [64] | Ye, W., Liu, X., & Miao, B. (2012). Measuring the subprime crisis contagion: Evidence of change point analysis of copula functions. European Journal of Operational Research, 222(1), 96-103. | [65] | Yu, M., & Ruggieri, E. (2019). Change point analysis of global temperature records. International Journal of Climatology, 39(8), 3679-3688. | [66] | Yu, X., & Cheng, Y. (2019). A change-point analysis procedure based on weighted residuals to detect back random responding. Psychological Methods, 24(5), 658-674. | [67] | Zhang, J. (2014). A sequential procedure for detecting compromised items in the item pool of a CAT system. Applied Psychological Measurement, 38(2), 87-104. |
|