Please wait a minute...
Advances in Psychological Science    2020, Vol. 28 Issue (5) : 752-765     DOI: 10.3724/SP.J.1042.2020.00752
Regular Articles |
Neural mechanisms for voice processing
WU Ke1,2,CHEN Jie1,2(),LI Wenjie1,2,CHEN Jiejia1,2,LIU Lei3,LIU Cuihong1,2
1 School of Education Science, Hunan Normal University
2 Cognition and Human Behavior Key Laboratory of Hunan Province, Hunan Normal University, Changsha 410081, China
3 School of Psychological and Cognitive Sciences, Peking University, Beijing 100080, China
Download: PDF(687 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks     Supporting Info
Guide   
Abstract  

The human voice is the most familiar and important sound in the human auditory environment, conveying large amounts of socially relevant information. Similar to face processing, there is also a functional specialization in brain for voice processing. Neuroimaging and electrophysiology studies have demonstrated that the temporal voice areas (TVAs) showed specific response to human voices. In addition, researchers have also observed the homologues of TVAs in non-human brain. Human voices can convey speech, affective and identity information, which are extracted and further processed in three interacting but partially dissociated neural pathways. To explicate these three functional pathways, researchers have proposed three corresponding models including the dual-stream model of speech processing, multi-stage model of vocal emotional processing and integrative model of voice-identity processing. In the future, researchers should further investigate whether voice-selective activity can be explained by the selective processing of specific acoustic features of voice and focus on neural mechanisms of voice processing in special populations (e.g. schizophrenia and autism).

Keywords voice processing      specialization      the temporal voice areas (TVA)      speech processing      emotional prosody      voice-identity recognition     
PACS:  B842  
Corresponding Authors: Jie CHEN     E-mail: xlxchen@163.com
Issue Date: 27 March 2020
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ke WU
Jie CHEN
Wenjie LI
Jiejia CHEN
Lei LIU
Cuihong LIU
Cite this article:   
Ke WU,Jie CHEN,Wenjie LI, et al. Neural mechanisms for voice processing[J]. Advances in Psychological Science, 2020, 28(5): 752-765.
URL:  
http://journal.psych.ac.cn/xlkxjz/EN/10.3724/SP.J.1042.2020.00752     OR     http://journal.psych.ac.cn/xlkxjz/EN/Y2020/V28/I5/752
1 Agus T. R., Paquette S., Suied C., Pressnitzer D., & Belin P . ( 2017). Voice selectivity in the temporal voice area despite matched low-level acoustic cues. Scientific Reports, 7( 1), 11526.
2 Andermann M., Patterson R. D., Vogt C., Winterstetter L., & Rupp A . ( 2017). Neuromagnetic correlates of voice pitch, vowel type, and speaker size in auditory cortex. Neuroimage, 158, 79-89.
3 Andics A., Gácsi M., Faragó T., Kis A., & Miklósi á . ( 2014). Voice-sensitive regions in the dog and human brain are revealed by comparative fMRI. Current Biology, 24( 5), 574-578.
4 Andics A. &Miklósi á. , ( 2018). Neural processes of vocal social perception: Dog-human comparative fMRI studies. Neuroscience & Biobehavioral Reviews, 85, 54-64.
5 Apoux F., Yoho S. E., Youngdahl C. L., & Healy E. W . ( 2013). Role and relative contribution of temporal envelope and fine structure cues in sentence recognition by normal- hearing listeners. The Journal of the Acoustical Society of America, 134( 3), 2205-2212.
6 Armony J. L., Aubé W., Angulo-Perkins A., Peretz I., & Concha L . ( 2015). The specificity of neural responses to music and their relation to voice processing: An fMRI- adaptation study. Neuroscience Letters, 593, 35-39.
7 Belin, P. ( 2017). Similarities in face and voice cerebral processing. Visual Cognition, 25( 4-6), 658-665.
8 Belin P., Bestelmeyer P. E. G., Latinus M., & Watson R . ( 2011). Understanding voice perception. British Journal of Psychology, 102( 4), 711-725.
9 Belin P., Bodin C., & Aglieri V . ( 2018). A “voice patch” system in the primate brain for processing vocal information? Hearing Research, 366, 65-74.
10 Belin P., Fecteau S., & Bédard C . ( 2004). Thinking the voice: Neural correlates of voice perception. Trends in Cognitive Sciences, 8( 3), 129-135.
11 Belin P. &Grosbras M. H . ( 2010). Before speech: Cerebral voice processing in infants. Neuron, 65( 6), 733-735.
12 Belin P. &Zatorre R. J . ( 2003). Adaptation to speaker's voice in right anterior temporal lobe. Neuroreport, 14( 16), 2105-2109.
13 Belin P., Zatorre R. J., Lafaille P., Ahad P., & Pike B . ( 2000). Voice-selective areas in human auditory cortex. Nature, 403( 6767), 309-312.
14 Besson G., Barragan-Jason G., Thorpe J., Fabre-Thorpe M., Puma S., Ceccaldi M., & Barbeau E. J . ( 2017). From face processing to face recognition: Comparing three different processing levels. Cognition, 158, 33-43.
15 Bestelmeyer P. E. G., Belin P., & Grosbras M. H . ( 2011). Right temporal TMS impairs voice detection. Current Biology, 21( 20), R838-R839.
16 Bestelmeyer P. E. G., Maurage P., Rouger J., Latinus M., & Belin P . ( 2014). Adaptation to vocal expressions reveals multistep perception of auditory emotion. Journal of Neuroscience, 34( 24), 8098-8105.
17 Bestelmeyer P. E. G., Rouger J., DeBruine L. M., & Belin P . ( 2010). Auditory adaptation in vocal affect perception. Cognition, 117( 2), 217-223.
18 Bidet-Caulet A., Latinus M., Roux S., Malvy J., Bonnet- Brilhault F., & Bruneau N . ( 2017). Atypical sound discrimination in children with ASD as indicated by cortical ERPs. Journal of Neurodevelopmental Disorders, 9( 1), 13.
19 Blank H., Kiebel S. J., & von Kriegstein K . ( 2015). How the human brain exchanges information across sensory modalities to recognize other people. Human Brain Mapping, 36( 1), 324-339.
20 Blank H., Wieland N., & von Kriegstein K . ( 2014). Person recognition and the brain: Merging evidence from patients and healthy individuals. Neuroscience & Biobehavioral Review, 47, 717-734.
21 Blasi A., Mercure E., Lloyd-Fox S., Thomson A., Brammer M., Sauter D., .. Deoni S . ( 2011). Early specialization for voice and emotion processing in the infant brain. Current Biology, 21( 14), 1220-1224.
22 Blasi A., Lloyd-Fox S., Sethna V., Brammer M. J., Mercure E., Murray L., .. Johnson M. H . ( 2015). Atypical processing of voice sounds in infants at risk for autism spectrum disorder. Cortex, 71, 122-133.
23 Bonilha L., Hillis A. E., Hickok G., den Ouden D. B., Rorden C., & Fridriksson J . ( 2017). Temporal lobe networks supporting the comprehension of spoken words. Brain, 140( 9), 2370-2380.
24 Brennan J. &Pylkkaenen L. , ( 2012). The time-course and spatial distribution of brain activity associated with sentence processing. Neuroimage, 60( 2), 1139-1148.
25 Brennan J. R., &Pylkkanen L. , ( 2017). MEG evidence for incremental sentence composition in the anterior temporal lobe. Cognitive Science, 41( S6), 1515-1531.
26 Bruce V. &Young A. , ( 1986). Understanding face recognition. British Journal of Psychology, 77( 3), 305-327.
27 Caharel S., Montalan B., Fromager E., Bernard C., Lalonde R., & Mohamed R . ( 2011). Other-race and inversion effects during the structural encoding stage of face processing in a race categorization task: An event-related brain potential study. International Journal of Psychophysiology, 79( 2), 266-271.
28 Capilla A., Belin P., & Gross J . ( 2013). The early spatio- temporal correlates and task independence of cerebral voice processing studied with MEG. Cerebral Cortex, 23( 6), 1388-1395.
29 Charest I., Pernet C. R., Rousselet G. A., Qui?ones I., Latinus M., Fillion-Bilodeau S., .. Belin P . ( 2009). Electrophysiological evidence for an early processing of human voices. BMC Neuroscience, 10( 1), 127.
30 Charpentier J., Kovarski K., Houy-Durand E., Malvy J., Saby A., Bonnet-Brilhault F., .. Gomot M . ( 2018). Emotional prosodic change detection in autism spectrum disorder: An electrophysiological investigation in children and adults. Journal of Neurodevelopmental Disorders, 10( 1), 28.
31 Cheng Y., Lee S.-Y., Chen H.-Y., Wang P.-Y., & Decety J . ( 2012). Voice and emotion processing in the human neonatal brain. Journal of Cognitive Neuroscience, 24( 6), 1411-1419.
32 Conde T., Gon?alves ó. F., & Pinheiro A. P . ( 2015). Paying attention to my voice or yours: An ERP study with words. Biological Psychology, 111, 40-52.
33 Conde T., Goncalves O. F., & Pinheiro A. P . ( 2018). Stimulus complexity matters when you hear your own voice: Attention effects on self-generated voice processing. International Journal of Psychophysiology, 133, 66-78.
34 Creel S. C., &Bregman M. R . ( 2011). How talker identity relates to language processing. Language and Linguistics Compass, 5( 5), 190-204.
35 Demonet J. F., Chollet F., Ramsay S., Cardebat D., Nespoulous J. L., Wise R., .. Frackowiak R . ( 1992). The anatomy of phonological and semantic processing in normal subjects. Brain, 115( 6), 1753-1768.
36 den Ouden D.-B., Malyutina S., Basilakos A., Bonilha L., Gleichgerrcht E., Yourganov G., .. Fridriksson J . ( 2019). Cortical and structural-connectivity damage correlated with impaired syntactic processing in aphasia. Human Brain Mapping, 40( 7), 2153-2173.
37 Dial H. &Martin R. , ( 2017). Evaluating the relationship between sublexical and lexical processing in speech perception: Evidence from aphasia. Neuropsychologia, 96, 192-212.
38 Dial H. R., Mcmurray B., & Martin R. C . ( 2019). Lexical processing depends on sublexical processing: Evidence from the visual world paradigm and aphasia. Attention, Perception, & Psychophysics, 81, 1047-1064.
39 Edgar J. C., Fisk IV, C. L. F., Berman J. I., Chudnovskaya D., Liu S., Pandey J ., . Roberts, T. P. L. ( 2015). Auditory encoding abnormalities in children with autism spectrum disorder suggest delayed development of auditory cortex. Molecular Autism, 6( 1), 69.
40 Ellis H. D., Jones D. M., & Mosdell N . ( 1997). Intra- and inter-modal repetition priming of familiar faces and voices. British Journal of Psychology, 88( 1), 143-156.
41 Elmer S., H?nggi J., & J?ncke L . ( 2016). Interhemispheric transcallosal connectivity between the left and right planum temporale predicts musicianship, performance in temporal speech processing, and functional specialization. Brain Structure & Function, 221( 1), 331-344.
42 Fecteau S., Armony J. L., Joanette Y., & Belin P . ( 2004). Is voice processing species-specific in human auditory cortex? An fMRI study. Neuroimage, 23( 3), 840-848.
43 Fischer, J. ( 2017). Primate vocal production and the riddle of language evolution. Psychonomic Bulletin & Review, 24( 1), 72-78.
44 Fleming D., Giordano B. L., Caldara R., & Belin P . ( 2014). A language-familiarity effect for speaker discrimination without comprehension. Proceedings of the National Academy of Sciences, 111( 38), 13795-13798.
45 Fontaine M., Love S. A., & Latinus M . ( 2017). Familiarity and voice representation: From acoustic-based representation to voice averages. Frontiers in Psychology, 8, 1180.
46 Friederici A. D., &Alter K. , ( 2004). Lateralization of auditory language functions: a dynamic dual pathway model. Brain and Language, 89( 2), 267-276.
47 Frühholz S. &Grandjean D. , ( 2013). Processing of emotional vocalizations in bilateral inferior frontal cortex. Neuroscience & Biobehavioral Reviews, 37( 10), 2847-2855.
48 Frühholz S., Trost W., & Kotz S. A . ( 2016). The sound of emotions—Towards a unifying neural network perspective of affective sound processing. Neuroscience & Biobehavioral Reviews, 68, 96-110.
49 Fusaroli R., Lambrechts A., Bang D., Bowler D. M., & Gaigg S. B . ( 2016). Is voice a marker for autism spectrum disorder? A systematic review and meta-analysis. Autism Research, 10( 3), 384-407.
50 Ghazanfar A. A., &Rendall D. , ( 2008). Evolution of human vocal production. Current Biology, 18( 11), R457-R460.
51 Graux J., Gomot M., Roux S., .. Camus V . ( 2013). My voice or yours? An electrophysiological study. Brain Topography, 26( 1), 72-82.
52 Graux J., Gomot M., Roux S., Bonnet-Brilhault F., & Bruneau N . ( 2015). Is my voice just a familiar voice? An electrophysiological study. Social Cognitive & Affective Neuroscience, 10( 1), 101-105.
53 Grossmann T., Oberecker R., Koch S. P., & Friederici A. D . ( 2010). The developmental origins of voice processing in the human brain. Neuron, 65( 6), 852-858.
54 Guranski K. &Podemski R. , ( 2015). Emotional prosody expression in acoustic analysis in patients with right hemisphere ischemic stroke. Neurologia i Neurochirurgia Polska, 49( 2), 113-120.
55 Hasan B. A. S., Valdessosa M., Gross J., & Belin P . ( 2016). “Hearing faces and seeing voices”: Amodal coding of person identity in the human brain. Scientific Reports, 108( 37494), 44.
56 Hickok G. &Poeppel D. , ( 2007). The cortical organization of speech processing. Nature Reviews Neuroscience, 8( 5), 393-402.
57 Hickok G. &Poeppel D. , ( 2016). Neural basis of speech perception. Handbook of Clinical Neurology, 129, 149-160.
58 Jiang X., Chevillet M. A., Rauschecker J. P., & Riesenhuber M . ( 2018). Training humans to categorize monkey calls: Auditory feature- and category-selective neural tuning changes. Neuron, 98( 2), 405-416.
59 Jones E. J. H., Gliga T., Bedford R., Charman T., & Johnson M. H . ( 2014). Developmental pathways to autism: A review of prospective studies of infants at risk. Neuroscience and Biobehavioral Reviews, 39, 1-33.
60 Kanwisher N., McDermott J., & Chun M. M . ( 1997). The fusiform face area: A module in human extrastriate cortex specialized for face perception. The Journal of neuroscience, 17( 11), 4302-4311.
61 Latinus M. &Belin P. , ( 2011). Human voice perception. Current Biology, 21( 4), R143-R145.
62 Latinus M., McAleer P., Bestelmeyer P. E. G., & Belin P . ( 2013). Norm-based coding of voice identity in human auditory cortex. Current Biology, 23( 12), 1075-1080.
63 Leaver A. M., &Rauschecker J. P . ( 2010). Cortical representation of natural complex sounds: Effects of acoustic features and auditory object category. Journal of Neuroscience, 30( 22), 7604-7612.
64 Leech R. &Saygin A. P . ( 2011). Distributed processing and cortical specialization for speech and environmental sounds in human temporal cortex. Brain and Language, 116( 2), 83-90.
65 Leitman D. I., Edgar C., Berman J., Gamez K., Fruhholz S., & Roberts T. P . ( 2016). Amygdala and insula contributions to dorsal-ventral pathway integration in the prosodic neural network. arXiv preprint arXiv, 1611, 01643.
66 Leonard M. K., Cai R., Babiak M. C., Ren A., & Chang E. F . ( 2016). The peri-Sylvian cortical network underlying single word repetition revealed by electrocortical stimulation and direct neural recordings. Brain & Language, 193, 58-72.
67 Levy D. A., Granot R., & Bentin S ., ( 2001). Processing specificity for human voice stimuli: Electrophysiological evidence. Neuroreport, 12( 12), 2653-2657.
68 Lewis J. W., Talkington W. J., Walker N. A., Spirou G. A., Jajosky A., Frum C., & Brefczynski-Lewis J. A . ( 2009). Human cortical organization for processing vocalizations indicates representation of harmonic structure as a signal attribute. Journal of Neuroscience, 29( 7), 2283-2296.
69 Liu R. R., Corrow S. L., Pancaroglu R., Duchaine B., & Barton J. J . ( 2015). The processing of voice identity in developmental prosopagnosia. Cortex, 71, 390-397.
70 Lloyd-Fox S., Blasi A., Mercure E., Elwell C. E., & Johnson M. H . ( 2012). The emergence of cerebral specialization for the human voice over the first months of life. Social Neuroscience, 7( 3), 317-330.
71 Luzzi S., Coccia M., Polonara G., Reverberi C., Ceravolo G., Silvestrini M., .. Gainotti G . ( 2018). Selective associative phonagnosia after right anterior temporal stroke. Neuropsychologia, 116, 154-161.
72 Maguinness C., Roswandowitz C., & von Kriegstein K . ( 2018). Understanding the mechanisms of familiar voice- identity recognition in the human brain. Neuropsychologia, 116, 179-193.
73 Miron O., Ari-Even R. D., Gabis L. V., Henkin Y., Shefer S., Dinstein I., & Geva R . ( 2016). Prolonged auditory brainstem responses in infants with autism. Autism Research, 9( 6), 689-695.
74 Moerel M., de Martino F., & Formisano E . ( 2012). Processing of natural sounds in human auditory cortex: Tonotopy, spectral tuning, and relation to voice sensitivity. Journal of Neuroscience, 32( 41), 14205-14216.
75 Moore B. C.J . ( 2008). The role of temporal fine structure processing in pitch perception, masking, and speech perception for normal-hearing and hearing-impaired people. Journal of the Association for Research in Otolaryngology, 9( 4), 399-406.
76 Navajas J., Nitka A. W., & Quiroga R. Q . ( 2017). Dissociation between the neural correlates of conscious face perception and visual attention. Psychophysiology, 54( 8), 1138-1150.
77 Okada K. &Hickok G. , ( 2006). Identification of lexical- phonological networks in the superior temporal sulcus using functional magnetic resonance imaging. Neuroreport, 17( 12), 1293-1296.
78 Okada K., Matchin W., & Hickok G . ( 2018). Phonological feature repetition suppression in the left inferior frontal gyrus. Journal of Cognitive Neuroscience, 30(10), 1549-1557.
79 Papagno C., Mattavelli G., Casarotti A., Bello L., & Gainotti G . ( 2017). Defective recognition and naming of famous people from voice in patients with unilateral temporal lobe tumours. Neuropsychologia, 116, 194-204.
80 Patel S., Oishi K., Wright A., Sutherland-Foggio H., Saxena S., Sheppard S. M., & Hillis A. E . ( 2018). Right hemisphere regions critical for expression of emotion through prosody. Frontiers in Neurology, 9, 224.
81 Peg B., Kotz S. A., & Belin P . ( 2017). Effects of emotional valence and arousal on the voice perception network. Social Cognitive & Affective Neuroscience, 12( 8), 1351-1358.
82 Pernet C. R., Mcaleer P., Latinus M., Gorgolewski K. J., Charest I., Bestelmeyer P. E. G., .. Valdes-Sosa M . ( 2015). The human voice areas: Spatial organization and inter-individual variability in temporal and extra-temporal cortices. Neuroimage, 119, 164-174.
83 Pernet C., Schyns P. G., & Demonet J. F . ( 2007). Specific, selective or preferential: Comments on category specificity in neuroimaging. Neuroimage, 35( 3), 991-997.
84 Perrachione T. K., Del Tufo S. N., & Gabrieli J. D . ( 2011). Human voice recognition depends on language ability. Science, 333( 6042), 595-595.
85 Perrachione T. K., Pierrehumbert J. B &Wong P. C. M. , ( 2009). Differential neural contributions to native- and foreign-language talker identification. Journal of Experimental Psychology: Human Perception and Performance, 35( 6), 1950-1960.
86 Perrodin C., Kayser C., Abel T. J., Logothetis N. K., & Petkov C. I . ( 2015). Who is that? Brain networks and mechanisms for identifying individuals. Trends in Cognitive Sciences, 19( 12), 783-796.
87 Perrodin C., Kayser C., Logothetis N. K., & Petkov C. I . ( 2011). Voice cells in the primate temporal lobe. Current Biology, 21( 16), 1408-1415.
88 Petkov C. I., Kayser C., Steudel T., Whittingstall K., Augath M., & Logothetis N. K . ( 2008). A voice region in the monkey brain. Nature Neuroscience, 11( 3), 367-374.
89 Pinheiro A. P., Farinha-Fernandes A., Roberto M. S., & Kotz S. A . ( 2019). Self-voice perception and its relationship with hallucination predisposition. Cognitive Neuropsychiatry, 24(4), 1-19.
90 Pinheiro A. P., Rezaii N., Rauber A., Nestor P. G., Spencer K. M., & Niznikiewicz M . ( 2017). Emotional self-other voice processing in schizophrenia and its relationship with hallucinations: ERP evidence. Psychophysiology, 54( 9), 1252-1265.
91 Rice G. E., Lambon Ralph M. A., & Hoffman P . ( 2015). The roles of left versus right anterior temporal lobes in conceptual knowledge: An ALE meta-analysis of 97 functional neuroimaging studies. Cerebral Cortex, 25( 11), 4374-4391.
92 Robson H., Pilkington E., Evans L., DeLuca V., & Keidel J. L . ( 2017). Phonological and semantic processing during comprehension in Wernicke's aphasia: An N400 and Phonological Mapping Negativity Study. Neuropsychologia, 100, 144-154.
93 Rodd J. M., Davis M. H., & Johnsrude I. S . ( 2005). The neural mechanisms of speech comprehension: fMRI studies of semantic ambiguity. Cerebral Cortex, 15( 8), 1261-1269.
94 Rong F., Isenberg A. L., Sun E., & Hickok G . ( 2018). The neuroanatomy of speech sequencing at the syllable level. PloS One, 13( 10), e0196381.
95 Ross E. D., &Monnot M. , ( 2011). Affective prosody: What do comprehension errors tell us about hemispheric lateralization of emotions, sex and aging effects, and the role of cognitive appraisal. Neuropsychologia, 49( 5), 866-877.
96 Roswandowitz C., Kappes C., Obrig H., & von Kriegstein K . ( 2017). Obligatory and facultative brain regions for voice-identity recognition. Brain, 141( 1), 234-247.
97 Roswandowitz C., Mathias S. R., Hintz F., Kreitewolf J., Schelinski S., & von Kriegstein K . ( 2014). Two cases of selective developmental voice-recognition impairments. Current Biology, 24( 19), 2348-2353.
98 Roswandowitz C., Schelinski S., & von Kriegstein K . ( 2017). Developmental phonagnosia: Linking neural mechanisms with the behavioural phenotype. Neuroimage, 155, 97-112.
99 Sammler D., Grosbras M. H., Anwander A., Bestelmeyer P. G., & Belin P . ( 2015). Dorsal and ventral pathways for prosody. Current Biology, 25( 23), 3079-3085.
100 Schall S., Kiebel S. J., Maess B., & von Kriegstein K . ( 2015). Voice identity recognition: Functional division of the right STS and its behavioral relevance. Journal of Cognitive Neuroscience, 27( 2), 280-291.
101 Schall S. & von Kriegstein , K. ( 2014). Functional connectivity between face-movement and speech-intelligibility areas during auditory-only speech perception. PloS One, 9( 1), e86325.
102 Schelinski S., Borowiak K., & von Kriegstein K . ( 2016). Temporal voice areas exist in autism spectrum disorder but are dysfunctional for voice identity recognition. Social Cognitive and Affective Neuroscience, 11( 11), 1812-1822.
103 Schirmer, A. ( 2018). Is the voice an auditory face? An ALE meta-analysis comparing vocal and facial emotion processing. Social Cognitive and Affective Neuroscience, 13( 1), 1-13.
104 Schirmer A. &Gunter T. C . ( 2017). Temporal signatures of processing voiceness and emotion in sound. Social Cognitive and Affective Neuroscience, 12( 6), 902-909.
105 Schirmer A. &Kotz S. A . ( 2006). Beyond the right hemisphere: Brain mechanisms mediating vocal emotional processing. Trends in Cognitive Sciences, 10( 1), 24-30.
106 Schroeder J., Kardas M., & Epley N . ( 2017). The humanizing voice: Speech reveals, and text conceals, a more thoughtful mind in the midst of disagreement. Psychological Science, 28( 12), 1745-1762.
107 Shamay-Tsoory S. G., Tomer R., Goldsher D., Berger B. D., & Aharon-Peretz J . ( 2004). Impairment in cognitive and affective empathy in patients with brain lesions: anatomical and cognitive correlates. Journal of Clinical and Experimental Neuropsychology, 26( 8), 1113-1127.
108 Sperdin H. F., &Schaer M. , ( 2016). Aberrant development of speech processing in young children with autism: New insights from neuroimaging biomarkers. Frontiers in Neuroscience, 10, 393.
109 Vaden Jr K. I., Muftuler L. T., & Hickok G . ( 2010). Phonological repetition-suppression in bilateral superior temporal sulci. Neuroimage, 49( 1), 1018-1023.
110 van der Burght, C. L. Goucha T., Friederici A. D., Kreitewolf J., & Hartwigsen G . ( 2019). Intonation guides sentence processing in the left inferior frontal gyrus. Cortex, 117, 122-134.
111 van Veluw, S. J., &Chance S. A . ( 2014). Differentiating between self and others: An ALE meta-analysis of fMRI studies of self-recognition and theory of mind. Brain Imaging and Behavior, 8( 1), 24-38.
112 von Kriegstein K., Dogan ?., Grüter M., Giraud A. L., Kell C. A., Grüter T., .. Kiebel S. J . ( 2008). Simulation of talking faces in the human brain improves auditory speech recognition. Proceedings of the National Academy of Sciences, 105( 18), 6747-6752.
113 von Kriegstein K., Kleinschmidt A., & Giraud A. L . ( 2006). Voice recognition and cross-modal responses to familiar speakers' voices in prosopagnosia. Cerebral Cortex, 16( 9), 1314-1322.
114 von Kriegstein K., Kleinschmidt A., Sterzer P., & Giraud A. L . ( 2005). Interaction of face and voice areas during speaker recognition. Journal of Cognitive Neuroscience, 17( 3), 367-376.
115 von Kriegstein K., Smith D. R. R., Patterson R. D., Kiebel S. J., & Griffiths T. D . ( 2010). How the human brain recognizes speech in the context of changing speakers. Journal of Neuroscience, 30( 2), 629-638.
116 Vouloumanos A., Hauser M. D., Werker J. F., & Martin A . ( 2010). The tuning of human neonates’ preference for speech. Child Development, 81( 2), 517-527.
117 Wester, M. ( 2012). Talker discrimination across languages. Speech Communication, 54( 6), 781-790.
118 Whitehead J. C., &Armony J. L . ( 2018). Singing in the brain: Neural representation of music and voice as revealed by fMRI. Human Brain Mapping, 39( 12), 4913-4924.
119 Wilson S. M., Demarco A. T., Henry M. L., Gesierich B., Babiak M., Mandelli M. L., .. Gorno-Tempini M. L . ( 2014). What role does the anterior temporal lobe play in sentence-level processing? Neural correlates of syntactic processing in semantic variant primary progressive aphasia. Journal of Cognitive Neuroscience, 26( 5), 970-985.
120 Z?ske R., Hasan B. A. S., & Belin P . ( 2017). It doesn’t matter what you say: fMRI correlates of voice learning and recognition independent of speech content. Cortex, 94, 100-112.
121 Zeng F. G., Nie K., Liu S., Stickney G., Del Rio E., Kong Y. Y., & Chen H . ( 2004). On the dichotomy in auditory perception between temporal envelope and fine structure cues (l). The Journal of the Acoustical Society of America, 116( 3), 1351.
122 Zhang D., Zhou Y., & Yuan J . ( 2018). Speech prosodies of different emotional categories activate different brain regions in adult cortex: an fNIRS study. Scientific Reports, 8( 1), 218.
[1] NAN Yun.  The facilitation effect of music learning on speech processing[J]. Advances in Psychological Science, 2017, 25(11): 1844-1853.
[2] WANG Qi; HU Jinsheng; LI Chengshi; LI Songze; . The emotional prosody recognition in autism spectrum disorders[J]. Advances in Psychological Science, 2016, 24(9): 1377-1390.
[3] SUN Dan; ZHANG Ye. The functional specialization and collaboration of #br# the bilateral fusiform face areas[J]. Advances in Psychological Science, 2016, 24(4): 510-516.
[4] JIANG Ai-Shi;CHEN Xu-Hai;YANG Yu-Fang. The Time Course of Verbal Emotional Prosody Processing[J]. , 2009, 17(06): 1109-1115.
[5] ZHANG Yu, YOU Xu-Qun. The Dissociation Between Categorical and Coordinate Spatial Relation Processing Systems: Evidence from Multi-Domain Studies[J]. Advances in Psychological Science, 2008, 16(06): 844-854.
[6] Shi Guoxing. The Professional Developments and Problems of British Psychological Counselling[J]. , 2004, 12(02): 304-311.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Advances in Psychological Science
Support by Beijing Magtech