Please wait a minute...
Advances in Psychological Science    2019, Vol. 27 Issue (1) : 60-69     DOI: 10.3724/SP.J.1042.2019.00060
Regular Articles |
Reward circuits and opioid addiction: The moderating effect of the rostromedial tegmental nucleus
WU Jing1,CUI Ruisi1,SUN Cuicui2,LI Xinwang1()
1 School of Psychology, Capital Normal University, Beijing 100037, China
2 School of Psychology, Central China Normal University, Wuhan 430079, China
Download: PDF(572 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks     Supporting Info

The rostromedial tegmental nucleus (RMTg) is located caudally to the ventral tegmental area (VTA), which is rich in inhibitory γ-aminobutyric acid (GABAergic) neurons. The RMTg is an integrative modulator of the mesolimbic dopamine system. Its GABAergic neurons receive input from the lateral habenula (LHb) and then project to VTA dopaminergic neurons, which inhibits the release of dopamine. These three brain areas are an important part of the reward circuit, in which the RMTg plays a particularly important role in reward circuits activated by opioids. GABA neurons in the RMTg are strongly inhibited by opioids, and this is followed by disinhibition of VTA dopaminergic neurons, which activates the reward system. Therefore, the RMTg is a potentially important target for the treatment of drug addiction (especially opioid addiction). Furthermore, cholinergic feedback to the RMTg, acting on muscarinic receptors, can be inhibitory for an opioid-induced reward effect. Future studies should further explore the negative reward circuit regulated by the RMTg, which is of great significance for weakening drug-seeking motivation and promoting extinction and withdrawal.

Keywords reward circuits      rostromedial tegmental nucleus      GABAergic neurons      lateral habenula      opioid addiction     
ZTFLH:  B845  
Issue Date: 23 November 2018
E-mail this article
E-mail Alert
Articles by authors
Jing WU
Ruisi CUI
Cuicui SUN
Xinwang LI
Cite this article:   
Jing WU,Ruisi CUI,Cuicui SUN, et al. Reward circuits and opioid addiction: The moderating effect of the rostromedial tegmental nucleus[J]. Advances in Psychological Science, 2019, 27(1): 60-69.
URL:     OR
1 Adamantidis A. R., Tsai H-C., Boutrel B., Zhang F., Stuber G. D., Budygin E. A ., et al. de Lecea, L. (2011). Optogenetic interrogation of dopaminergic modulation of the multiple phases of reward-seeking behavior. The Journal of Neuroscience, 31(30), 10829-10835.
pmid: 3171183 url:
2 American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Arlington, VA: American Psychiatric Publishing.
3 Balcita-Pedicino J. J., Omelchenko N., Bell R., & Sesack S. R . (2015). The inhibitory influence of the lateral habenula on midbrain dopamine cells: Ultrastructural evidence for indirect mediation via the rostromedial mesopontine tegmental nucleus. Journal of Comparative Neurology, 519(6), 1143-1164.
4 Bourdy R., & Barrot M. (2012). A new control center for dopaminergic systems: Pulling the VTA by the tail. Trends in Neurosciences, 35(11), 681-690.
pmid: 22824232 url:
5 Bowers M. S., Chen B. T., & Bonci A . (2010). AMPA receptor synaptic plasticity induced by psychostimulants: The past, present, and therapeutic future. Neuron, 67(1), 11-24.
pmid: 2904302 url:
6 Brown P. L., Palacorolla H., Brady D., Riegger K., Elmer G. I., & Shepard P. D . (2017). Habenula-induced inhibition of midbrain dopamine neurons is diminished by lesions of the rostromedial tegmental nucleus. The Journal of Neuroscience, 37(1), 217-225.
pmid: 5214632 url:
7 Fields H.L., &Margolis E.B . (2015). Understanding opioid reward. Trends in Neurosciences, 38(4), 217-225.
8 Friedman A., Lax E., Dikshtein Y., Abraham L., Flaumenhaft Y., Sudai E ., et al. Yadid, G. (2010). Electrical stimulation of the lateral habenula produces enduring inhibitory effect on cocaine seeking behavior. Neuropharmacology, 59(6), 452-459.
pmid: 20600170 url:
9 Gysling K., &Wang R.Y . (1983). Morphine-induced activation of A10 dopamine neurons in the rat. Brain Research, 277(1), 119-127.
pmid: 6315137 url:
10 Haber S.N., & Knutson B. (2009). The reward circuit: Linking primate anatomy and human imaging. Neuropsychopharmacology, 35, 4-26.
pmid: 19812543 url:
11 Hong S., & Hikosaka O. (2008). The globus pallidus sends reward-related signals to the lateral habenula. Neuron, 60(4), 720-729.
pmid: 19038227 url:
12 Hong S., Jhou T. C., Smith M., Saleem K. S., & Hikosaka O . (2011). Negative reward signals from lateral habenula to dopamine neurons are mediated by rostromedial tegmental nucleus in primates. The Journal of Neuroscience, 31(32), 11457-11471.
pmid: 21832176 url:
13 Huff M.L., &LaLumiere R.T . (2015). The rostromedial tegmental nucleus modulates behavioral inhibition following cocaine self-administration in rats. Neuropsychopharmacology, 40(4), 861-873.
pmid: 4330500 url:
14 Ikemoto S., & Bonci A. (2014). Neurocircuitry of drug reward. Neuropharmacology, 76(Part B), 329-341.
15 Jalabert M., Bourdy R., Courtin J., Veinante P., Manzoni O. J., Barrot M., & Georges F . (2011). Neuronal circuits underlying acute morphine action on dopamine neurons. Proceedings of the National Academy of Sciences of the United States of America, 108(39), 16446-16450.
pmid: 21930931 url:
16 Jennings J. H., Sparta D. R., Stamatakis A. M., Ung R. L., Pleil K. E., Kash T. L., & Stuber G. D . (2013). Distinct extended amygdala circuits for divergent motivational states. Nature, 496(7444), 224-228.
pmid: 3778934 url:
17 Jhou T. C., Fields H. L., Baxter M. G., Saper C. B., & Holland P. C . (2009). The rostromedial tegmental nucleus (RMTg), a GABAergic afferent to midbrain dopamine neurons, encodes aversive stimuli and inhibits motor responses. Neuron, 61(5), 786-800.
18 Jhou T. C., Geisler S., Marinelli M., Degarmo B. A., & Zahm D. S . (2009). The mesopontine rostromedial tegmental nucleus: A structure targeted by the lateral habenula that projects to the ventral tegmental area of Tsai and substantia nigra compacta. Journal of Comparative Neurology, 513(6), 566-596.
pmid: 3116663 url:
19 Jhou T. C., Good C. H., Rowley C. S., Xu S-P., Wang H., Burnham N. W ., et al. Ikemoto, S. (2013). Cocaine drives aversive conditioning via delayed activation of dopamine- responsive habenular and midbrain pathways. The Journal of Neuroscience, 33(17), 7501-7512.
pmid: 23616555 url:
20 Ji H., &Shepard P.D . (2007). Lateral habenula stimulation inhibits rat midbrain dopamine neurons through a GABA (A) receptor-mediated mechanism. The Journal of Neuroscience, 27(26), 6923-6930.
pmid: 17596440 url:
21 Johnson L. R., Aylward R. L. M., Hussain Z., & Totterdell S . (1994). Input from the amygdala to the rat nucleus accumbens: Its relationship with tyrosine hydroxylase immunoreactivity and identified neurons. Neuroscience, 61(4), 851-865.
pmid: 7530817 url:
22 Johnson S.W., &North R.A . (1992). Opioids excite dopamine neurons by hyperpolarization of local interneurons. The Journal of Neuroscience, 12(2), 483-488.
23 Juarez B., & Han M-H. (2016). Diversity of dopaminergic neural circuits in response to drug exposure. Neuropsychopharmacology, 41(10), 2424-2446.
pmid: 26934955 url:
24 Kaufling J., & Aston-Jones G. (2015). Persistent adaptations in afferents to ventral tegmental dopamine neurons after opiate withdrawal. The Journal of Neuroscience, 35(28), 10290-10303.
pmid: 26180204 url:
25 Kaufling J., Veinante P., Pawlowski S. A., Freund-Mercier M-J., & Barrot M . (2009). Afferents to the GABAergic tail of the ventral tegmental area in the rat. The Journal of Comparative Neurology, 513(6), 597-621.
pmid: 19235223 url:
26 Kotecki L., Hearing M., McCall N. M., de Velasco, E. M. F., Pravetoni M., Arora D ., et al. Wickman, K. (2015). GIRK channels modulate opioid-induced motor activity in a cell type- and subunit-dependent manner. The Journal of Neuroscience, 35(18), 7131-7142.
pmid: 4420781 url:
27 Lammel S., Hetzel A., H?ckel O., Jones I., Liss B., & Roeper J . (2008). Unique properties of mesoprefrontal neurons within a dual mesocorticolimbic dopamine system. Neuron, 57(5), 760-773.
pmid: 18341995 url:
28 Lammel S., Ion D. I., Roeper J., & Malenka R. C . (2011). Projection-Specific modulation of dopamine neuron synapses by aversive and rewarding stimuli. Neuron, 70(5), 855-862.
pmid: 21658580 url:
29 Lammel S., Lim B. K., Ran C., Huang K. W., Betley M. J., Tye K. M ., et al. Malenka, R. C. (2012). Input-specific control of reward and aversion in the ventral tegmental area. Nature, 491(7423), 212-217.
pmid: 23064228 url:
30 Lavezzi H.N., &Zahm D.S . (2011). The mesopontine rostromedial tegmental nucleus: An integrative modulator of the reward system. Basal Ganglia, 1(4), 191-200.
pmid: 3233474 url:
31 Lecca S., Melis M., Luchicchi A., Ennas M. G., Castelli M. P., Muntoni A. L., & Pistis M . (2011). Effects of drugs of abuse on putative rostromedial tegmental neurons, inhibitory afferents to midbrain dopamine cells. Neuropsychopharmacology, 36(3), 589-602.
pmid: 3055682 url:
32 Lecca S., Melis M., Luchicchi A., Muntoni A. L., & Pistis M . (2012). Inhibitory inputs from rostromedial tegmental neurons regulate spontaneous activity of midbrain dopamine cells and their responses to drugs of abuse. Neuropsychopharmacology, 37(5), 1164-1176.
pmid: 3306878 url:
33 Lobb C. J., Wilson C. J., & Paladini C. A . (2010). A dynamic role for GABA receptors on the firing pattern of midbrain dopaminergic neurons. J Neurophysiol, 104(1), 403-413.
pmid: 20445035 url:
34 Matsui A., Jarvie B. C., Robinson B. G., Hentges S. T., & Williams J. T . (2014). Separate GABA afferents to dopamine neurons mediate acute action of opioids, development of tolerance, and expression of withdrawal. Neuron, 82(6), 1346-1356.
pmid: 24857021 url:
35 Matsui A., &Williams J.T . (2011). Opioid-Sensitive GABA inputs from rostromedial tegmental nucleus synapse onto midbrain dopamine neurons. The Journal of Neuroscience, 31(48), 17729-17735.
pmid: 22131433 url:
36 Matsumoto M., & Hikosaka O. (2007). Lateral habenula as a source of negative reward signals in dopamine neurons. Nature, 447(7148), 1111-1115.
pmid: 17522629 url:
37 Matsumoto M., & Hikosaka O. (2009). Two types of dopamine neuron distinctly convey positive and negative motivational signals. Nature, 459(7248), 837-841.
38 Miesenb?ck G. . (2009). The optogenetic catechism. Science, 326(5951), 395-399.
39 Paladini C. A., Celada P., & Tepper J. M . (1999). Striatal, pallidal, and pars reticulata evoked inhibition of nigrostriatal dopaminergic neurons is mediated by GABAA receptors in vivo. Neuroscience, 89(3), 799-812.
pmid: 10199614 url:
40 Petzel A., Bernard R., Poller W. C., & Veh R. W . (2017). Anterior and posterior parts of the rat ventral tegmental area and the rostromedial tegmental nucleus receive topographically distinct afferents from the lateral habenular complex. The Journal of Comparative neurology, 525(10), 2310-2327.
pmid: 28295296 url:
41 Pignatelli M., & Bonci A. (2015). Role of dopamine neurons in reward and aversion: A synaptic plasticity perspective. Neuron, 86(5), 1145-1157.
pmid: 26050034 url:
42 Rezayof A., Nazari-Serenjeh F., Zarrindast M-R., Sepehri H., & Delphi L . (2007). Morphine-induced place preference: Involvement of cholinergic receptors of the ventral tegmental area. European Journal of Pharmacology, 562(1-2), 92-102.
pmid: 17336285 url:
43 Russo S.J., &Nestler E.J . (2013). The brain reward circuitry in mood disorders. Nature Reviews Neuroscience, 14(9), 609-625.
44 Sánchez-Catalán M. J., Faivre F., Yalcin I., Muller M. A., Massotte D., Majchrzak M., & Barrot M . (2017). Response of the tail of the ventral tegmental area to aversive stimuli. Neuropsychopharmacology, 42(3), 638-648.
pmid: 27468916 url:
45 Salas R., Baldwin P., de Biasi M., & Montague P. R . (2010). BOLD responses to negative reward prediction errors in human habenula. Frontiers in Human Neuroscience, 4, 36. doi: 10.3389/fnhum.2010.00036
doi: 10.3389/fnhum.2010.00036 pmid: 20485575 url:
46 Sanchez-Catalan M. J., Kaufling J., Georges F., Veinante P., & Barrot M . (2014). The antero-posterior heterogeneity of the ventral tegmental area. Neuroscience, 282, 198-216.
pmid: 25241061 url:
47 Stamatakis A. M., Jennings J. H., Ung R. L., Blair G. A., Weinberg R. J., Neve R. L ., et al. Stuber, G. D. (2013). A unique population of ventral tegmental area neurons inhibits the lateral habenula to promote reward. Neuron, 80(4), 1039-1053.
pmid: 3873746 url:
48 Stamatakis A.M., &Stuber G.D . (2012). Activation of lateral habenula inputs to the ventral midbrain promotes behavioral avoidance. Nature Neuroscience, 15(8), 1105-1107.
pmid: 3411914 url:
49 Steffensen S. C., Svingos A. L., Pickel V. M., & Henriksen S. J . (1998). Electrophysiological characterization of GABAergic neurons in the ventral tegmental area. The Journal of Neuroscience, 18(19), 8003-8015.
50 Steidl S., Dhillon E. S., Sharma N., & Ludwig J . (2017). Muscarinic cholinergic receptor antagonists in the VTA and RMTg have opposite effects on morphine-induced locomotion in mice. Behavioural Brain Research, 323, 111-116.
pmid: 28143769 url:
51 Steidl S., Miller A. D., Blaha C. D., & Yeomans J. S . (2011). M5 muscarinic receptors mediate striatal dopamine activation by ventral tegmental morphine and pedunculopontine stimulation in mice. PLoS ONE, 6(11), e27538.
pmid: 22102904 url:
52 Steidl S., Myal S., & Wise R. A . (2015). Supplemental morphine infusion into the posterior ventral tegmentum extends the satiating effects of self-administered intravenous heroin. Pharmacology Biochemistry and Behavior, 134, 1-5.
pmid: 25913296 url:
53 Steidl S., Wasserman D. I., Blaha C. D., & Yeomans J. S . (2017). Opioid-induced rewards, locomotion, and dopamine activation: A proposed model for control by mesopontine and rostromedial tegmental neurons. Neuroscience & Biobehavioral Reviews, 83, 72-82.
pmid: 28951251 url:
54 Steinberg E. E., Keiflin R., Boivin J. R., Witten I. B., Deisseroth K., & Janak P. H . (2013). A causal link between prediction errors, dopamine neurons and learning. Nature Neuroscience, 16(7), 966-973.
pmid: 23708143 url:
55 Wasserman D. I., Tan J. M. J., Kim J. C., & Yeomans J. S . (2016). Muscarinic control of rostromedial tegmental nucleus GABA neurons and morphine-induced locomotion. European Journal of Neuroscience, 44(1), 1761-1770.
pmid: 26990801 url:
56 Wasserman D. I., Wang H. G., Rashid A. J., Josselyn S. A., & Yeomans J. S . (2013). Cholinergic control of morphine- induced locomotion in rostromedial tegmental nucleus versus ventral tegmental area sites. European Journal of Neuroscience, 38(5), 2774-2785.
pmid: 23773170 url:
57 World Health Organ . (2010). ATLAS on substance use (2010): Resources for the prevention and treatment of substance use disorders. World Health Organ. Geneva.
[1] LIU Haoran, ZHANG Chenfeng, YANG Li. The neural mechanism underlying resilience[J]. Advances in Psychological Science, 2019, 27(2): 312-321.
[2] ZENG Hong;YE Haosheng;YANG Wendeng. The Role and Mechanism of Mirror Neuro System in the Forming Process of Drug Cue-induced Craving[J]. Advances in Psychological Science, 2013, 21(4): 581-588.
Full text



Copyright © Advances in Psychological Science
Support by Beijing Magtech