Please wait a minute...
Advances in Psychological Science    2019, Vol. 27 Issue (1) : 60-69     DOI: 10.3724/SP.J.1042.2019.00060
Regular Articles |
Reward circuits and opioid addiction: The moderating effect of the rostromedial tegmental nucleus
WU Jing1,CUI Ruisi1,SUN Cuicui2,LI Xinwang1()
1 School of Psychology, Capital Normal University, Beijing 100037, China
2 School of Psychology, Central China Normal University, Wuhan 430079, China
Download: PDF(572 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks     Supporting Info
Guide   
Abstract  

The rostromedial tegmental nucleus (RMTg) is located caudally to the ventral tegmental area (VTA), which is rich in inhibitory γ-aminobutyric acid (GABAergic) neurons. The RMTg is an integrative modulator of the mesolimbic dopamine system. Its GABAergic neurons receive input from the lateral habenula (LHb) and then project to VTA dopaminergic neurons, which inhibits the release of dopamine. These three brain areas are an important part of the reward circuit, in which the RMTg plays a particularly important role in reward circuits activated by opioids. GABA neurons in the RMTg are strongly inhibited by opioids, and this is followed by disinhibition of VTA dopaminergic neurons, which activates the reward system. Therefore, the RMTg is a potentially important target for the treatment of drug addiction (especially opioid addiction). Furthermore, cholinergic feedback to the RMTg, acting on muscarinic receptors, can be inhibitory for an opioid-induced reward effect. Future studies should further explore the negative reward circuit regulated by the RMTg, which is of great significance for weakening drug-seeking motivation and promoting extinction and withdrawal.

Keywords reward circuits      rostromedial tegmental nucleus      GABAergic neurons      lateral habenula      opioid addiction     
ZTFLH:  B845  
Issue Date: 23 November 2018
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jing WU
Ruisi CUI
Cuicui SUN
Xinwang LI
Cite this article:   
Jing WU,Ruisi CUI,Cuicui SUN, et al. Reward circuits and opioid addiction: The moderating effect of the rostromedial tegmental nucleus[J]. Advances in Psychological Science, 2019, 27(1): 60-69.
URL:  
http://journal.psych.ac.cn/xlkxjz/EN/10.3724/SP.J.1042.2019.00060     OR     http://journal.psych.ac.cn/xlkxjz/EN/Y2019/V27/I1/60
  
1 Adamantidis A. R., Tsai H-C., Boutrel B., Zhang F., Stuber G. D., Budygin E. A ., et al. de Lecea, L. (2011). Optogenetic interrogation of dopaminergic modulation of the multiple phases of reward-seeking behavior. The Journal of Neuroscience, 31(30), 10829-10835.
pmid: 3171183 url: http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM21795535
2 American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Arlington, VA: American Psychiatric Publishing.
3 Balcita-Pedicino J. J., Omelchenko N., Bell R., & Sesack S. R . (2015). The inhibitory influence of the lateral habenula on midbrain dopamine cells: Ultrastructural evidence for indirect mediation via the rostromedial mesopontine tegmental nucleus. Journal of Comparative Neurology, 519(6), 1143-1164.
4 Bourdy R., & Barrot M. (2012). A new control center for dopaminergic systems: Pulling the VTA by the tail. Trends in Neurosciences, 35(11), 681-690.
pmid: 22824232 url: http://www.sciencedirect.com/science/article/pii/S016622361200118X
5 Bowers M. S., Chen B. T., & Bonci A . (2010). AMPA receptor synaptic plasticity induced by psychostimulants: The past, present, and therapeutic future. Neuron, 67(1), 11-24.
pmid: 2904302 url: http://www.sciencedirect.com/science/article/pii/S0896627310004629
6 Brown P. L., Palacorolla H., Brady D., Riegger K., Elmer G. I., & Shepard P. D . (2017). Habenula-induced inhibition of midbrain dopamine neurons is diminished by lesions of the rostromedial tegmental nucleus. The Journal of Neuroscience, 37(1), 217-225.
pmid: 5214632 url: http://www.ncbi.nlm.nih.gov/pubmed/28053043
7 Fields H.L., &Margolis E.B . (2015). Understanding opioid reward. Trends in Neurosciences, 38(4), 217-225.
url: http://dx.doi.org/10.1016/j.tins.2015.01.002
8 Friedman A., Lax E., Dikshtein Y., Abraham L., Flaumenhaft Y., Sudai E ., et al. Yadid, G. (2010). Electrical stimulation of the lateral habenula produces enduring inhibitory effect on cocaine seeking behavior. Neuropharmacology, 59(6), 452-459.
pmid: 20600170 url: http://www.sciencedirect.com/science/article/pii/S0028390810001565
9 Gysling K., &Wang R.Y . (1983). Morphine-induced activation of A10 dopamine neurons in the rat. Brain Research, 277(1), 119-127.
pmid: 6315137 url: http://www.sciencedirect.com/science/article/pii/0006899383909137
10 Haber S.N., & Knutson B. (2009). The reward circuit: Linking primate anatomy and human imaging. Neuropsychopharmacology, 35, 4-26.
pmid: 19812543 url: http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM19812543
11 Hong S., & Hikosaka O. (2008). The globus pallidus sends reward-related signals to the lateral habenula. Neuron, 60(4), 720-729.
pmid: 19038227 url: http://onlinelibrary.wiley.com/resolve/reference/PMED?id=19038227
12 Hong S., Jhou T. C., Smith M., Saleem K. S., & Hikosaka O . (2011). Negative reward signals from lateral habenula to dopamine neurons are mediated by rostromedial tegmental nucleus in primates. The Journal of Neuroscience, 31(32), 11457-11471.
pmid: 21832176 url: http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM21832176
13 Huff M.L., &LaLumiere R.T . (2015). The rostromedial tegmental nucleus modulates behavioral inhibition following cocaine self-administration in rats. Neuropsychopharmacology, 40(4), 861-873.
pmid: 4330500 url: http://europepmc.org/abstract/med/25257212
14 Ikemoto S., & Bonci A. (2014). Neurocircuitry of drug reward. Neuropharmacology, 76(Part B), 329-341.
url: http://dx.doi.org/10.1016/j.neuropharm.2013.04.031
15 Jalabert M., Bourdy R., Courtin J., Veinante P., Manzoni O. J., Barrot M., & Georges F . (2011). Neuronal circuits underlying acute morphine action on dopamine neurons. Proceedings of the National Academy of Sciences of the United States of America, 108(39), 16446-16450.
pmid: 21930931 url: http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM21930931
16 Jennings J. H., Sparta D. R., Stamatakis A. M., Ung R. L., Pleil K. E., Kash T. L., & Stuber G. D . (2013). Distinct extended amygdala circuits for divergent motivational states. Nature, 496(7444), 224-228.
pmid: 3778934 url: http://onlinelibrary.wiley.com/resolve/reference/PMED?id=23515155
17 Jhou T. C., Fields H. L., Baxter M. G., Saper C. B., & Holland P. C . (2009). The rostromedial tegmental nucleus (RMTg), a GABAergic afferent to midbrain dopamine neurons, encodes aversive stimuli and inhibits motor responses. Neuron, 61(5), 786-800.
url: http://118.145.16.217/magsci/article/article?id=15273200
18 Jhou T. C., Geisler S., Marinelli M., Degarmo B. A., & Zahm D. S . (2009). The mesopontine rostromedial tegmental nucleus: A structure targeted by the lateral habenula that projects to the ventral tegmental area of Tsai and substantia nigra compacta. Journal of Comparative Neurology, 513(6), 566-596.
pmid: 3116663 url: http://onlinelibrary.wiley.com/doi/10.1002/cne.21891/full
19 Jhou T. C., Good C. H., Rowley C. S., Xu S-P., Wang H., Burnham N. W ., et al. Ikemoto, S. (2013). Cocaine drives aversive conditioning via delayed activation of dopamine- responsive habenular and midbrain pathways. The Journal of Neuroscience, 33(17), 7501-7512.
pmid: 23616555 url: http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM23616555
20 Ji H., &Shepard P.D . (2007). Lateral habenula stimulation inhibits rat midbrain dopamine neurons through a GABA (A) receptor-mediated mechanism. The Journal of Neuroscience, 27(26), 6923-6930.
pmid: 17596440 url: http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM17596440
21 Johnson L. R., Aylward R. L. M., Hussain Z., & Totterdell S . (1994). Input from the amygdala to the rat nucleus accumbens: Its relationship with tyrosine hydroxylase immunoreactivity and identified neurons. Neuroscience, 61(4), 851-865.
pmid: 7530817 url: http://www.sciencedirect.com/science/article/pii/0306452294904081
22 Johnson S.W., &North R.A . (1992). Opioids excite dopamine neurons by hyperpolarization of local interneurons. The Journal of Neuroscience, 12(2), 483-488.
url: http://dx.doi.org/10.1523/JNEUROSCI.12-02-00483.1992
23 Juarez B., & Han M-H. (2016). Diversity of dopaminergic neural circuits in response to drug exposure. Neuropsychopharmacology, 41(10), 2424-2446.
pmid: 26934955 url: http://europepmc.org/articles/PMC4987841/
24 Kaufling J., & Aston-Jones G. (2015). Persistent adaptations in afferents to ventral tegmental dopamine neurons after opiate withdrawal. The Journal of Neuroscience, 35(28), 10290-10303.
pmid: 26180204 url: http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM26180204
25 Kaufling J., Veinante P., Pawlowski S. A., Freund-Mercier M-J., & Barrot M . (2009). Afferents to the GABAergic tail of the ventral tegmental area in the rat. The Journal of Comparative Neurology, 513(6), 597-621.
pmid: 19235223 url: http://onlinelibrary.wiley.com/doi/10.1002/cne.21983/full
26 Kotecki L., Hearing M., McCall N. M., de Velasco, E. M. F., Pravetoni M., Arora D ., et al. Wickman, K. (2015). GIRK channels modulate opioid-induced motor activity in a cell type- and subunit-dependent manner. The Journal of Neuroscience, 35(18), 7131-7142.
pmid: 4420781 url: http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM25948263
27 Lammel S., Hetzel A., H?ckel O., Jones I., Liss B., & Roeper J . (2008). Unique properties of mesoprefrontal neurons within a dual mesocorticolimbic dopamine system. Neuron, 57(5), 760-773.
pmid: 18341995 url: http://www.sciencedirect.com/science/article/pii/S0896627308001074
28 Lammel S., Ion D. I., Roeper J., & Malenka R. C . (2011). Projection-Specific modulation of dopamine neuron synapses by aversive and rewarding stimuli. Neuron, 70(5), 855-862.
pmid: 21658580 url: http://www.sciencedirect.com/science/article/pii/S0896627311003059
29 Lammel S., Lim B. K., Ran C., Huang K. W., Betley M. J., Tye K. M ., et al. Malenka, R. C. (2012). Input-specific control of reward and aversion in the ventral tegmental area. Nature, 491(7423), 212-217.
pmid: 23064228 url: http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM23064228
30 Lavezzi H.N., &Zahm D.S . (2011). The mesopontine rostromedial tegmental nucleus: An integrative modulator of the reward system. Basal Ganglia, 1(4), 191-200.
pmid: 3233474 url: http://www.sciencedirect.com/science/article/pii/S2210533611001699
31 Lecca S., Melis M., Luchicchi A., Ennas M. G., Castelli M. P., Muntoni A. L., & Pistis M . (2011). Effects of drugs of abuse on putative rostromedial tegmental neurons, inhibitory afferents to midbrain dopamine cells. Neuropsychopharmacology, 36(3), 589-602.
pmid: 3055682 url: http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM21048703
32 Lecca S., Melis M., Luchicchi A., Muntoni A. L., & Pistis M . (2012). Inhibitory inputs from rostromedial tegmental neurons regulate spontaneous activity of midbrain dopamine cells and their responses to drugs of abuse. Neuropsychopharmacology, 37(5), 1164-1176.
pmid: 3306878 url: http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM22169942
33 Lobb C. J., Wilson C. J., & Paladini C. A . (2010). A dynamic role for GABA receptors on the firing pattern of midbrain dopaminergic neurons. J Neurophysiol, 104(1), 403-413.
pmid: 20445035 url: http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM20445035
34 Matsui A., Jarvie B. C., Robinson B. G., Hentges S. T., & Williams J. T . (2014). Separate GABA afferents to dopamine neurons mediate acute action of opioids, development of tolerance, and expression of withdrawal. Neuron, 82(6), 1346-1356.
pmid: 24857021 url: http://www.sciencedirect.com/science/article/pii/S0896627314003456
35 Matsui A., &Williams J.T . (2011). Opioid-Sensitive GABA inputs from rostromedial tegmental nucleus synapse onto midbrain dopamine neurons. The Journal of Neuroscience, 31(48), 17729-17735.
pmid: 22131433 url: http://pubmedcentralcanada.ca/pmcc/articles/PMC3617570/
36 Matsumoto M., & Hikosaka O. (2007). Lateral habenula as a source of negative reward signals in dopamine neurons. Nature, 447(7148), 1111-1115.
pmid: 17522629 url: http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM17522629
37 Matsumoto M., & Hikosaka O. (2009). Two types of dopamine neuron distinctly convey positive and negative motivational signals. Nature, 459(7248), 837-841.
url: http://dx.doi.org/10.1038/nature08028
38 Miesenb?ck G. . (2009). The optogenetic catechism. Science, 326(5951), 395-399.
url: http://dx.doi.org/10.1126/science.1174520
39 Paladini C. A., Celada P., & Tepper J. M . (1999). Striatal, pallidal, and pars reticulata evoked inhibition of nigrostriatal dopaminergic neurons is mediated by GABAA receptors in vivo. Neuroscience, 89(3), 799-812.
pmid: 10199614 url: http://www.sciencedirect.com/science/article/pii/S0306452298003558
40 Petzel A., Bernard R., Poller W. C., & Veh R. W . (2017). Anterior and posterior parts of the rat ventral tegmental area and the rostromedial tegmental nucleus receive topographically distinct afferents from the lateral habenular complex. The Journal of Comparative neurology, 525(10), 2310-2327.
pmid: 28295296 url: http://onlinelibrary.wiley.com/doi/10.1002/cne.24200/pdf
41 Pignatelli M., & Bonci A. (2015). Role of dopamine neurons in reward and aversion: A synaptic plasticity perspective. Neuron, 86(5), 1145-1157.
pmid: 26050034 url: http://www.sciencedirect.com/science/article/pii/S0896627315003657
42 Rezayof A., Nazari-Serenjeh F., Zarrindast M-R., Sepehri H., & Delphi L . (2007). Morphine-induced place preference: Involvement of cholinergic receptors of the ventral tegmental area. European Journal of Pharmacology, 562(1-2), 92-102.
pmid: 17336285 url: http://www.sciencedirect.com/science/article/pii/S001429990700146X
43 Russo S.J., &Nestler E.J . (2013). The brain reward circuitry in mood disorders. Nature Reviews Neuroscience, 14(9), 609-625.
url: http://118.145.16.217/magsci/article/article?id=19734261
44 Sánchez-Catalán M. J., Faivre F., Yalcin I., Muller M. A., Massotte D., Majchrzak M., & Barrot M . (2017). Response of the tail of the ventral tegmental area to aversive stimuli. Neuropsychopharmacology, 42(3), 638-648.
pmid: 27468916 url: http://www.nature.com/npp/journal/vaop/naam/abs/npp2016139a.html
45 Salas R., Baldwin P., de Biasi M., & Montague P. R . (2010). BOLD responses to negative reward prediction errors in human habenula. Frontiers in Human Neuroscience, 4, 36. doi: 10.3389/fnhum.2010.00036
doi: 10.3389/fnhum.2010.00036 pmid: 20485575 url: http://europepmc.org/articles/PMC2872503/
46 Sanchez-Catalan M. J., Kaufling J., Georges F., Veinante P., & Barrot M . (2014). The antero-posterior heterogeneity of the ventral tegmental area. Neuroscience, 282, 198-216.
pmid: 25241061 url: http://www.sciencedirect.com/science/article/pii/S0306452214007672
47 Stamatakis A. M., Jennings J. H., Ung R. L., Blair G. A., Weinberg R. J., Neve R. L ., et al. Stuber, G. D. (2013). A unique population of ventral tegmental area neurons inhibits the lateral habenula to promote reward. Neuron, 80(4), 1039-1053.
pmid: 3873746 url: http://www.sciencedirect.com/science/article/pii/S0896627313007575
48 Stamatakis A.M., &Stuber G.D . (2012). Activation of lateral habenula inputs to the ventral midbrain promotes behavioral avoidance. Nature Neuroscience, 15(8), 1105-1107.
pmid: 3411914 url: http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM22729176
49 Steffensen S. C., Svingos A. L., Pickel V. M., & Henriksen S. J . (1998). Electrophysiological characterization of GABAergic neurons in the ventral tegmental area. The Journal of Neuroscience, 18(19), 8003-8015.
url: http://dx.doi.org/10.1523/JNEUROSCI.18-19-08003.1998
50 Steidl S., Dhillon E. S., Sharma N., & Ludwig J . (2017). Muscarinic cholinergic receptor antagonists in the VTA and RMTg have opposite effects on morphine-induced locomotion in mice. Behavioural Brain Research, 323, 111-116.
pmid: 28143769 url: http://europepmc.org/abstract/MED/28143769
51 Steidl S., Miller A. D., Blaha C. D., & Yeomans J. S . (2011). M5 muscarinic receptors mediate striatal dopamine activation by ventral tegmental morphine and pedunculopontine stimulation in mice. PLoS ONE, 6(11), e27538.
pmid: 22102904 url: http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM22102904
52 Steidl S., Myal S., & Wise R. A . (2015). Supplemental morphine infusion into the posterior ventral tegmentum extends the satiating effects of self-administered intravenous heroin. Pharmacology Biochemistry and Behavior, 134, 1-5.
pmid: 25913296 url: http://www.sciencedirect.com/science/article/pii/S0091305715001239
53 Steidl S., Wasserman D. I., Blaha C. D., & Yeomans J. S . (2017). Opioid-induced rewards, locomotion, and dopamine activation: A proposed model for control by mesopontine and rostromedial tegmental neurons. Neuroscience & Biobehavioral Reviews, 83, 72-82.
pmid: 28951251 url: http://www.sciencedirect.com/science/article/pii/S014976341730444X
54 Steinberg E. E., Keiflin R., Boivin J. R., Witten I. B., Deisseroth K., & Janak P. H . (2013). A causal link between prediction errors, dopamine neurons and learning. Nature Neuroscience, 16(7), 966-973.
pmid: 23708143 url: http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM23708143
55 Wasserman D. I., Tan J. M. J., Kim J. C., & Yeomans J. S . (2016). Muscarinic control of rostromedial tegmental nucleus GABA neurons and morphine-induced locomotion. European Journal of Neuroscience, 44(1), 1761-1770.
pmid: 26990801 url: http://onlinelibrary.wiley.com/doi/10.1111/ejn.13237/pdf
56 Wasserman D. I., Wang H. G., Rashid A. J., Josselyn S. A., & Yeomans J. S . (2013). Cholinergic control of morphine- induced locomotion in rostromedial tegmental nucleus versus ventral tegmental area sites. European Journal of Neuroscience, 38(5), 2774-2785.
pmid: 23773170 url: http://onlinelibrary.wiley.com/doi/10.1111/ejn.12279/full
57 World Health Organ . (2010). ATLAS on substance use (2010): Resources for the prevention and treatment of substance use disorders. World Health Organ. Geneva.
[1] LIU Haoran, ZHANG Chenfeng, YANG Li. The neural mechanism underlying resilience[J]. Advances in Psychological Science, 2019, 27(2): 312-321.
[2] ZENG Hong;YE Haosheng;YANG Wendeng. The Role and Mechanism of Mirror Neuro System in the Forming Process of Drug Cue-induced Craving[J]. Advances in Psychological Science, 2013, 21(4): 581-588.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Advances in Psychological Science
Support by Beijing Magtech