Please wait a minute...
心理科学进展  2018, Vol. 26 Issue (8): 1417-1428    DOI: 10.3724/SP.J.1042.2018.01417
     研究前沿 本期目录 | 过刊浏览 | 高级检索 |
啮齿动物主动母性行为动态改变的神经机制
张一帆1,齐星亮2,蔡厚德1,2()
1南京师范大学心理学院, 南京 210097
2南京晓庄学院幼儿师范学院, 南京 211171
Neural mechanisms underlying dynamic changes of active maternal behavior in rodents
Yifan ZHANG1,Xingliang QI2,Houde CAI1,2()
1 School of Psychology, Nanjing Normal University, Nanjing 210097, China
2 College of Preschool Education, Nanjing Xiaozhuang University, Nanjing 211171, China
全文: PDF(603 KB)   HTML
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 

主动母性行为是雌性哺乳动物在哺乳期内有效照料幼崽的一种动机行为, 对幼崽的生存和行为发展有重要影响。证据显示, 啮齿动物的主动母性行为会经历从产后早期的发动和维持到晚期衰退的动态改变, 反映了雌鼠对幼崽奖赏价值阶段性变化的适应; 这一过程不仅涉及分娩激素事件开启下丘脑内侧视前区(MPOA)-中脑腹侧被盖(VTA)-伏隔核(NA)-腹侧苍白球(VP)通路, 还需要杏仁核基底外侧核(BLA)和内侧前额皮层(MPFC)等脑区对上述通路进行实时调节。哺乳期主动母性行为动态改变及其神经机制的研究, 可以加深对行为进化和早期发展的认识, 也对人类母亲产后抑郁等临床问题的干预有借鉴意义。本文首先利用条件化位置偏好(CPP)任务的行为学证据分析幼崽奖赏价值与主动母性行为动态改变的关系; 然后系统阐述调控这一动态改变的神经机制; 最后对未来需要研究的一些重要问题或方向进行探讨。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张一帆
齐星亮
蔡厚德
关键词 主动母性行为动态改变奖赏价值神经机制    
Abstract

Active maternal behavior refers to a set of motivated behaviors that promote female mammals to effectively care for the pups during their lactation, so it has a vital important role for the survival and behavioral development in pups. Evidence has shown that the active maternal behavior in rodents could dynamically change from the onset and maintenance in early postpartum to the decline in late postpartum, which reflects female rodents’ adaptation to the stage changes of incentive values in pups. This process not only involves in the pathway of medial preoptic area (MPOA)-ventral tegmental area (VTA)-nucleus accumbens (NA)-ventral pallidum (VP) opened by hormone profile at parturition, but also requires the basolateral amygdala (BLA), medial prefrontal cortex (MPFC), and other areas to real-timely regulate this pathway. Studies on the dynamic changes about active maternal behavior and its neural mechanisms in lactating rodents could deepen our knowledge about the evolution and early development of behaviors, and also be helpful for the clinical intervention to postpartum depression in humans. This review illustrates the relationship between incentive values in pups and dynamic changes in active maternal behavior with evidence used by conditioned place preference (CPP), then systematically elaborates the neural mechanisms underlying dynamic changes of active maternal behavior, and finally discusses several major issues or future research directions.

Key wordsactive maternal behavior    dynamic changes    incentive values    neural mechanisms
收稿日期: 2017-06-06      出版日期: 2018-07-02
ZTFLH:  B845  
基金资助:国家社科基金教育学一般项目(BHA170130)
通讯作者: 蔡厚德     E-mail: caihoude@163.com
引用本文:   
张一帆,齐星亮,蔡厚德. 啮齿动物主动母性行为动态改变的神经机制[J]. 心理科学进展, 2018, 26(8): 1417-1428.
Yifan ZHANG,Xingliang QI,Houde CAI. Neural mechanisms underlying dynamic changes of active maternal behavior in rodents. Advances in Psychological Science, 2018, 26(8): 1417-1428.
链接本文:  
http://journal.psych.ac.cn/xlkxjz/CN/10.3724/SP.J.1042.2018.01417      或      http://journal.psych.ac.cn/xlkxjz/CN/Y2018/V26/I8/1417
  主动母性行为动态改变的神经通路机制
注: (A) 产后早期 (发动); (B) 产后早期 (维持); (C) 产后晚期 (衰退)。实线段表示神经投射的功能增强, 虚线段表示神经投射的功能减弱; 末端为箭头的线段为兴奋性投射, 末端为圆点的线段为抑制性投射; 线段上的小圆圈处标注神经投射的递质类型; 虚线椭圆表示VP中可以被强化的神经回路。
Amygdala=杏仁核; MeA/CA=杏仁核内侧核/皮质核; BLA=杏仁核基底外侧核; MPFC=内侧前额皮层; IL=边缘下区; PrL=边缘前区; Hypothalamus=下丘脑; PVN=室旁核; MPOA=内侧视前区; VTA=中脑腹侧被盖; NA=伏隔核; VP=腹侧苍白球; MSN=中型多棘神经元; DA=多巴胺; GLU=谷氨酸; GABA= γ-氨基丁酸; OT=催产素; OTR=催产素受体。
1 陈磊磊, 聂莉娜, 李钰, 程鹏, 李鸣, 高军 . ( 2017). 五羟色胺系统对母性行为的调控及其机制. 心理科学进展, 25( 12), 2089-2098.
2 刘飞, 蔡厚德 . ( 2010). 情绪生理机制研究的外周与中枢神经系统整合模型. 心理科学进展, 18( 4), 616-622.
3 Afonso, V. M, King, S., Chatterjee D., & Fleming A. S . ( 2009). Hormones that increase maternal responsiveness affect accumbal dopaminergic responses to pup- and food-stimuli in the female rat. Hormones and Behavior, 56( 1), 11-23.
4 Afonso V. M., Shams W. M., Jin D., & Fleming A. S . ( 2013). Distal pup cues evoke dopamine responses in hormonally primed rats in the absence of pup experience or ongoing maternal behavior. Journal of Neuroscience, 33( 6), 2305-2312.
5 Afonso V. M., Sison M., Lovic V., & Fleming A. S . ( 2007). Medial prefrontal cortex lesions in the female rat affect sexual and maternal behavior and their sequential organization. Behavioral Neuroscience, 121( 3), 515-526.
6 Atzil S., Hendler T., & Feldman R . ( 2011). Specifying the neurobiological basis of human attachment: Brain, hormones, and behavior in synchronous and intrusive mothers. Neuropsychopharmacology, 36( 13), 2603-2615.
7 Balleine, B. W., & Dickinson, A . ( 1998). Goal-directed instrumental action: Contingency and incentive learning and their cortical substrates. Neuropharmacology, 37( 4-5), 407-419.
8 Banerjee S. B., & Liu R. C . ( 2013). Storing maternal memories: Hypothesizing an interaction of experience and estrogen on sensory cortical plasticity to learn infant cues. Frontiers in Neuroendocrinology, 34( 4), 300-314.
9 Benedetto L., Pereira M., Ferreira A., & Torterolo P . ( 2014). Melanin-concentrating hormone in the medial preoptic area reduces active components of maternal behavior in rats. Peptides, 58, 20-25.
10 Cortés-Mendoza J., Díaz de León-Guerrero S., Pedraza-Alva G., & Pérez-Martínez L . ( 2013). Shaping synaptic plasticity: The role of activity-mediated epigenetic regulation on gene transcription. International Journal of Developmental Neuroscience, 31( 6), 359-369.
11 Dalley J. W., Cardinal R. N., & Robbins T. W . ( 2004). Prefrontal executive and cognitive functions in rodents: Neural and neurochemical substrates. Neuroscience and Biobehavioral Reviews, 28, 771-784.
12 D'Cunha T. M., King S. J., Fleming A. S., & Lévy F . ( 2011). Oxytocin receptors in the nucleus accumbens shell are involved in the consolidation of maternal memory in postpartum rats. Hormones & Behavior, 59( 1), 14-21.
13 Dilgen J., Tejeda H. A., & O'Donnell P . ( 2013). Amygdala inputs drive feedforward inhibition in the medial prefrontal cortex. Journal of Neurophysiology, 110( 1), 221-229.
14 Dobolyi A., Grattan D. R., & Stolzenberg D. S . ( 2014). Preoptic inputs and mechanisms that regulate maternal responsiveness. Journal of Neuroendocrinology, 26( 10), 627-640.
15 Febo M., Numan M., & Ferris C. F . ( 2005). Functional magnetic resonance imaging shows oxytocin activates brain regions associated with mother-pup bonding during suckling. Journal of Neuroscience, 25( 50), 11637-11644.
16 Fleming A. S., Ruble D., Krieger H., & Wong P. Y . ( 1997). Hormonal and experiential correlates of maternal responsiveness during pregnancy and the puerperium in human mothers. Hormones & Behavior, 31( 2), 145-158.
17 Gagnidze K., Weil Z. M., Faustino L. C., Schaafsma S. M., & Pfaff D. W . ( 2013). Early histone modifications in the ventromedial hypothalamus and preoptic area following oestradiol administration. Journal of Neuroendocrinology, 25( 10), 939-955.
18 Jin S. H., Blendy J. A., & Thomas S. A . ( 2005). Cyclic AMP response element-binding protein is required for normal maternal nurturing behavior. Neuroscience, 133( 3), 647-655.
19 Kesner R. P . ( 2000). Subregional analysis of mnemonic functions of the prefrontal cortex in the rat. Psychobiology, 28( 2), 219-228.
20 Killcross, S., & Coutureau, E . ( 2003). Coordination of actions and habits in the medial prefrontal cortex of rats. Cerebral Cortex, 13( 4), 400-408.
21 Kim P., Strathearn L., & Swain J. E . ( 2016). The maternal brain and its plasticity in humans. Hormones & Behavior, 77, 113-123.
22 Kuroda K. O., Meaney M. J., Uetani N., Fortin Y., Ponton A., & Kato T . ( 2007). ERK-fosB signaling in dorsal MPOA neurons plays a major role in the initiation of parental behavior in mice. Molecular and Cellular Neuroscience, 36( 2), 121-131.
23 Laurent, H. K., & Ablow, J. C . ( 2012). A cry in the dark: Depressed mothers show reduced neural activation to their own infant’s cry. Social Cognitive & Affective Neuroscience, 7( 2), 125-134.
24 Lee A., Clancy S., & Fleming A. S . ( 1999). Mother rats bar-press for pups: Effects of lesions of the MPOA and limbic sites on maternal behavior and operant responding for pup-reinforcement. Behavioural Brain Research, 100( 1-2), 15-31.
25 Li, M., & Fleming, A. S . ( 2003). The nucleus accumbens shell is critical for normal expression of pup-retrieval in postpartum female rats. Behavioural Brain Research, 145( 1-2), 99-111.
26 Lonstein J. S., Lévy F., & Fleming A. S . ( 2015). Common and divergent psychobiological mechanisms underlying maternal behaviors in non-human and human mammals. Hormones and Behavior, 73, 156-185.
27 Marlin B. J., Mitre M., D'Amour J. A., Chao M. V., & Froemke R. C . ( 2015). Oxytocin enables maternal behaviour by balancing cortical inhibition. Nature, 520( 7548), 499-504.
28 Mattson, B. J., & Morrell, J. I . ( 2005). Preference for cocaine- versus pup-associated cues differentially activates neurons expressing either Fos or cocaine- and amphetamine- regulated transcript in lactating, maternal rodents. Neuroscience, 135( 2), 315-328.
29 Mattson B. J., Williams S., Rosenblatt J. S., & Morrell J. I . ( 2001). Comparison of two positive reinforcing stimuli: Pups and cocaine throughout the postpartum period. Behavioral Neuroscience, 115( 3), 683-694.
30 Moltz, H., & Wiener, E . ( 1966). Effects of ovariectomy on maternal behavior of primiparous and multiparous rats. Journal of Comparative & Physiological Psychology, 62( 3), 382-387.
31 Nicola, S. M . ( 2007). The nucleus accumbens as part of a basal ganglia action selection circuit. Psychopharmacology, 191( 3), 521-550.
32 Numan, M . ( 2006). Hypothalamic neural circuits regulating maternal responsiveness toward infants. Behavioral and Cognitive Neuroscience Reviews, 5( 4), 163-190.
33 Numan M., Bress J. A., Ranker L. R., Gary A. J., Denicola A. L., Bettis J. K., & Knapp S. E . ( 2010). The importance of the basolateral/basomedial amygdala for goal-directed maternal responses in postpartum rats. Behavioural Brain Research, 214( 2), 368-376.
34 Numan M., Rosenblatt J. S., & Komisaruk B. R . ( 1977). Medial preoptic area and onset of maternal behavior in the rat. Journal of Comparative & Physiological Psychology, 91( 1), 146-164.
35 Numan, M., & Stolzenberg, D. S . ( 2009). Medial preoptic area interactions with dopamine neural systems in the control of the onset and maintenance of maternal behavior in rats. Frontiers in Neuroendocrinology, 30( 1), 46-64.
36 Numan, M., & Young, L. J . ( 2016). Neural mechanisms of mother-infant bonding and pair bonding: Similarities, differences, and broader implications. Hormones and Behavior, 77, 98-112.
37 Olazábal D., Pereira M., Agrati D., Ferreira A., Fleming A. S., González-Mariscal G.,.. Uriarte N . ( 2013 a). New theoretical and experimental approaches on maternal motivation in mammals. Neuroscience and Biobehavioral Reviews, 37, 1860-1874.
38 Olazábal D., Pereira M., Agrati D., Ferreira A., Fleming A. S., González-Mariscal G.,.. Uriarte N . ( 2013 b). Flexibility and adaptation of the neural substrate that supports maternal behavior in mammals. Neuroscience and Biobehavioral Reviews, 37, 1875-1892.
39 Parada M., King S., Li M., & Fleming A. S . ( 2008). The roles of accumbal dopamine D1 and D2 receptors in maternal memory in rats. Behavioral Neuroscience, 122( 2), 368-376.
40 Peña, C. J., & Champagne, F. A . ( 2015). Neonatal overexpression of estrogen receptor-α alters midbrain dopamine neuron development and reverses the effects of low maternal care in female offspring. Developmental Neurobiology, 75( 10), 1114-1124.
41 Pereira, M . ( 2016). Structural and functional plasticity in the maternal brain circuitry. In H. J. V. Rutherford & L. C. Mayes (Eds.), Maternal brain plasticity: Preclinical and human research and implications for intervention. New Directions for Child and Adolescent Development (no. 153, pp. 23-46). Wiley Periodicals, Inc.
42 Pereira, M., & Ferreira, A . ( 2016). Neuroanatomical and neurochemical basis of parenting: Dynamic coordination of motivational, affective and cognitive processes. Hormones and Behavior, 77, 72-85.
43 Pereira, M., & Morrell, J. I . ( 2009). The changing role of the medial preoptic area in the regulation of maternal behavior across the postpartum period: Facilitation followed by inhibition. Behavioural Brain Research, 205( 1), 238-248.
44 Pereira, M., & Morrell, J. I . ( 2010). The medial preoptic area is necessary for motivated choice of pup- over cocaine- associated environments by early postpartum rats. Neuroscience, 167( 2), 216-231.
45 Pereira, M., & Morrell, J. I . ( 2011). Functional mapping of the neural circuitry of rat maternal motivation: Effects of site-specific transient neural inactivation. Journal of Neuroendocrinology, 23( 11), 1020-1035.
46 Reisbick S., Rosenblatt J. S., & Mayer A. D . ( 1975). Decline of maternal behavior in the virgin and lactating rat. Journal of Comparative & Physiological Psychology, 89( 7), 722-732.
47 Riccio, A . ( 2010). Dynamic epigenetic regulation in neurons: Enzymes, stimuli and signaling pathways. Nature Neuroscience, 13( 11), 1330-1337.
48 Romero-Fernandez W., Borroto-Escuela D. O., Agnati L. F., & Fuxe K . ( 2013). Evidence for the existence of dopamine D2-oxytocin receptor heteromers in the ventral and dorsal striatum with facilitatory receptor-receptor interactions. Molecular Psychiatry, 18( 8), 849-850.
49 Root D. H., Melendez R. I., Zaborszky L., & Napier T. C . ( 2015). The ventral pallidum: Subregion-specific functional anatomy and roles in motivated behaviors. Progress in Neurobiology, 130, 29-70.
50 Rosenblatt, J. S . ( 1967). Nonhormonal basis of maternal behavior in the rat. Science, 156( 3781), 1512-1513.
51 Rosenblatt, J. S., & Siegel, H. I . ( 1981). Factors governing the onset and maintenance of maternal behavior among nonprimate mammals. In D. J. Gubernick & P. H. Klopfer (Eds.), Parental care in mammals ( pp. 13-76). Boston, MA: Springer.
52 Sabihi S., Dong S. M., Durosko N. E., & Leuner B . ( 2014). Oxytocin in the medial prefrontal cortex regulates maternal care, maternal aggression and anxiety during the postpartum period. Frontiers in Behavioral Neuroscience, 8, 258.
53 Seifritz E., Esposito F., Neuhoff J. G., Lüthi A., Mustovic H., Dammann G.,.. Di Salle F . ( 2003). Differential sex-independent amygdala response to infant crying and laughing in parents versus nonparents. Biological Psychiatry, 54( 12), 1367-1375.
54 Seip, K. M., & Morrell, J. I . ( 2009). Transient inactivation of the ventral tegmental area selectively disrupts the expression of conditioned place preference for pup- but not cocaine- paired contexts. Behavioral Neuroscience, 123( 6), 1325-1338.
55 Seip K. M., Pereira M., Wansaw M. P., Reiss J. I., Dziopa E. I., & Morrell J. I . ( 2008). Incentive salience of cocaine across the postpartum period of the female rat. Psychopharmacology, 199( 1), 119-130.
56 Sesack, S. R., & Grace, A. A . ( 2010). Cortico-basal ganglia reward network: Microcircuitry. Neuropsychopharmacology, 35( 1), 27-47.
57 Stolzenberg, D. S., & Champagne, F. A . ( 2016). Hormonal and non-hormonal bases of maternal behavior: The role of experience and epigenetic mechanisms. Hormones and Behavior, 77, 204-210.
58 Strathearn, L . ( 2011). Maternal neglect: Oxytocin, dopamine and the neurobiology of attachment. Journal of Neuroendocrinology, 23( 11), 1054-1065.
59 Swain J. E., Tasgin E., Mayes L. C., Feldman R., Constable R. T., & Leckman J. F . ( 2008). Maternal brain response to own baby-cry is affected by cesarean section delivery. Journal of Child Psychology & Psychiatry, 49( 10), 1042-1052.
60 Tzschentke T. M . ( 2007). Measuring reward with the conditioned place preference (CPP) paradigm: Update of the last decade. Addiction Biology, 12( 3-4), 227-462.
61 Wansaw M. P., Pereira M., & Morrell J. I . ( 2008). Characterization of maternal motivation in the lactating rat: Contrasts between early and late postpartum responses. Hormones and Behavior, 54( 2), 294-301.
62 Wu Z., Autry A. E., Bergan J. F., Watabe-Uchida M., & Dulac C. G . ( 2014). Galanin neurons in the medial preoptic area govern parental behaviour. Nature, 509( 7500), 325-330.
63 Zha, X., & Xu, X. H . ( 2015). Dissecting the hypothalamic pathways that underlie innate behaviors. Neuroscience Bulletin, 31( 6), 629-648.
[1] 黄欢, 刘博, 周晨琛, 姬鸣. 前瞻记忆意图后效中执行错误的机制[J]. 心理科学进展, 2018, 26(9): 1600-1607.
[2] 雷怡,梅颖,张文海,李红. 基于知觉的恐惧泛化的认知神经机制[J]. 心理科学进展, 2018, 26(8): 1391-1403.
[3] 任晓倩,方娴,隋雪,吴岩. 手写体文字识别的特点及神经机制[J]. 心理科学进展, 2018, 26(7): 1174-1185.
[4] 李开云, 陈功香, 傅小兰.  自闭症谱系障碍者的视运动知觉[J]. 心理科学进展, 2018, 26(5): 831-845.
[5] 林钰婷, 张得龙, 刘鸣. 视觉表象生成系统及其影响因素[J]. 心理科学进展, 2018, 26(4): 636-644.
[6] 于明阳, 李富洪, 曹碧华, .  愉快面孔识别优势及其认知神经机制[J]. 心理科学进展, 2018, 26(2): 254-261.
[7] 黄晨, 赵婧.  发展性阅读障碍的视觉空间注意加工能力[J]. 心理科学进展, 2018, 26(1): 72-80.
[8] 吴倩, 王韫佳.  声调的范畴知觉及其神经机制[J]. 心理科学进展, 2018, 26(1): 62-71.
[9] 陈一凡, 于洋澜, 刘莹.  外源性注意与视觉意识的关系[J]. 心理科学进展, 2017, 25(suppl.): 39-39.
[10] 何文广.  语言认知老化机制及其神经基础[J]. 心理科学进展, 2017, 25(9): 1479-1491.
[11] 衡书鹏, 周宗奎, 孙丽君.  视频游戏中的化身认同[J]. 心理科学进展, 2017, 25(9): 1565-1578.
[12] 张秀平, 张玉萍, 杨晓虹, 杨玉芳.  语篇情绪理解及其认知神经机制[J]. 心理科学进展, 2017, 25(8): 1289-1298.
[13] 贺金波, 聂余峰, 周宗奎, 柴 瑶.  网络游戏成瘾与海洛因成瘾存在相同的神经机制吗? ——基于MRI的证据[J]. 心理科学进展, 2017, 25(8): 1327-1336.
[14] 钟毅平, 占友龙, 李琎, 范伟. 道德决策的机制及干预研究: 自我相关性与风险水平的作用[J]. 心理科学进展, 2017, 25(7): 1093-1102.
[15] 靳宇倡, 丁美月, .  产后抑郁的预测因素及神经生理机制[J]. 心理科学进展, 2017, 25(7): 1145-1161.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《心理科学进展》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn