[1] |
Argolo, F.C., Cavalcanti-Ribeiro, P., Netto, L.R., & Quarantini, L.C. (2015). Prevention of posttraumatic stress disorder with propranolol: A meta-analytic review. Journal of Psychosomatic Research, 79(2),89-93.
doi: 10.1016/j.jpsychores.2015.04.006
URL
|
[2] |
American Psychiatric Association. (2013). Diagnostic and Statistical Manual of Mental Disorders(DSM-5®). American Psychiatric Pub.
|
[3] |
Borodovitsyna, O., Joshi, N., & Chandler, D. (2018). Persistent stress-induced neuroplastic changes in the locus coeruleus/ norepinephrine system. Neural Plasticity, 2018,1892570.
doi: 10.1155/2018/1892570
pmid: 30008741
|
[4] |
Cain, C.K., Blouin, A.M., & Barad, M. (2004). Adrenergic transmission facilitates extinction of conditional fear in mice. Learning & Memory, 11(2),179-187.
|
[5] |
Careaga, M.B.L., Girardi, C.E.N., & Suchecki, D. (2016). Understanding posttraumatic stress disorder through fear conditioning, extinction and reconsolidation. Neuroscience & Biobehavioral Reviews, 71,48-57.
doi: 10.1016/j.neubiorev.2016.08.023
URL
|
[6] |
Chalkia, A., Weermeijer, J., van Oudenhove, L., & Beckers, T. (2019). Acute but not permanent effects of propranolol on fear memory expression in humans. Frontiers in Human Neuroscience, 13,51.
doi: 10.3389/fnhum.2019.00051
URL
|
[7] |
Chang, C.H., & Maren, S. (2009). Early extinction after fear conditioning yields a context-independent and short-term suppression of conditional freezing in rats. Learning & Memory, 16(1),62-68.
|
[8] |
Chang, C.H., & Maren, S. (2011). Medial prefrontal cortex activation facilitates re-extinction of fear in rats. Learning & Memory, 18(4),221-225.
|
[9] |
Cho, J.H., Deisseroth, K., & Bolshakov, V.Y. (2013). Synaptic encoding of fear extinction in mPFC-amygdala circuits. Neuron, 80(6),1491-1507.
doi: 10.1016/j.neuron.2013.09.025
URL
|
[10] |
Dunsmoor, J.E., Kroes, M.C.W., Moscatelli, C.M., Evans, M.D., Davachi, L., & Phelps, E.A. (2018). Event segmentation protects emotional memories from competing experiences encoded close in time. Nature Human Behaviour, 2(4),291-299.
doi: 10.1038/s41562-018-0317-4
pmid: 30221203
|
[11] |
Fan, S.J., Jiang, H., Yang, L.-J., Liu, X., Song, J., & Pan, F. (2011). Effects of adrenergic agents on stress-induced brain microstructural and immunochemical changes in adult male Wistar rats. Annals of Anatomy-Anatomischer Anzeiger, 193(5),418-424.
doi: 10.1016/j.aanat.2011.06.001
URL
|
[12] |
Fitzgerald, P.J., Giustino, T.F., Seemann, J.R., & Maren, S. (2015). Noradrenergic blockade stabilizes prefrontal activity and enables fear extinction under stress. Proceedings of the National Academy of Sciences of the United States of America, 112(28),E3729-3737.
|
[13] |
Giustino, T.F., Fitzgerald, P.J., & Maren, S. (2016). Revisiting propranolol and PTSD: Memory erasure or extinction enhancement? Neurobiology of Learning and Memory, 130,26-33.
doi: 10.1016/j.nlm.2016.01.009
pmid: 26808441
|
[14] |
Giustino, T.F., Fitzgerald, P.J., Ressler, R.L., & Maren, S. (2019). Locus coeruleus toggles reciprocal prefrontal firing to reinstate fear. Proceedings of the National Academy of Sciences of the United States of America, 116(17),8570-8575.
doi: 10.1073/pnas.1814278116
pmid: 30971490
|
[15] |
Giustino, T.F., & Maren, S. (2018). Noradrenergic modulation of fear conditioning and extinction. Frontiers in Behavioral Neuroscience, 12,43.
doi: 10.3389/fnbeh.2018.00043
pmid: 29593511
|
[16] |
Giustino, T.F., Ramanathan, K.R., Totty, M.S., Miles, O.W., & Maren, S. (2020). Locus coeruleus norepinephrine drives stress-induced increases in basolateral amygdala firing and impairs extinction learning. Journal of Neuroscience, 40(4),907-916.
doi: 10.1523/JNEUROSCI.1092-19.2019
URL
|
[17] |
Giustino, T.F., Seemann, J.R., Acca, G.M., Goode, T.D., Fitzgerald, P.J., & Maren, S. (2017). Beta-adrenoceptor blockade in the basolateral amygdala, but not the medial prefrontal cortex, rescues the immediate extinction deficit. Neuropsychopharmacology, 42(13),2537-2544.
doi: 10.1038/npp.2017.89
pmid: 28462941
|
[18] |
Gökçek-Saraç, Ç., Wesierska, M., & Jakubowska-Doğru, E. (2015). Comparison of spatial learning in the partially baited radial-arm maze task between commonly used rat strains: Wistar, Spargue-Dawley, Long-Evans, and outcrossed Wistar/ Sprague-Dawley. Learning & Behavior, 43(1),83-94.
|
[19] |
Hölscher, C. (2002). Different strains of rats show different sensitivity to block of long-term potentiation by nitric oxide synthase inhibitors. European Journal of Pharmacology, 457(2-3),99-106.
|
[20] |
Huff, N.C., Hernandez, J.A., Blanding, N.Q., & LaBar, K.S. (2009). Delayed extinction attenuates conditioned fear renewal and spontaneous recovery in humans. Behavioral Neuroscience, 123(4),834-843.
doi: 10.1037/a0016511
URL
|
[21] |
Khan, V., Sharma, S., Bhandari, U., Ali, S.M., & Haque, S.E. (2018). Raspberry ketone protects against isoproterenol- induced myocardial infarction in rats. Life Sciences, 194,205-212.
doi: 10.1016/j.lfs.2017.12.013
URL
|
[22] |
Kyriazi, P., Headley, D.B., & Pare, D. (2018). Multi-dimensional coding by basolateral amygdala neurons. Neuron, 99(6),1315-1328.e1315.
doi: 10.1016/j.neuron.2018.07.036
URL
|
[23] |
Maren, S. (2014). Nature and causes of the immediate extinction deficit: A brief review. Neurobiology of Learning and Memory, 113,19-24.
doi: 10.1016/j.nlm.2013.10.012
URL
|
[24] |
Maren, S., & Chang, C.H. (2006). Recent fear is resistant to extinction. Proceedings of the National Academy of Sciences of the United States of America, 103(47),18020-18025.
|
[25] |
McCall, J.G., Al-Hasani, R., Siuda, E.R., Hong, D.Y., Norris, A.J., Ford, C.P., & Bruchas, M.R. (2015). CRH engagement of the locus coeruleus noradrenergic system mediates stress-induced anxiety. Neuron, 87(3),605-620.
doi: 10.1016/j.neuron.2015.07.002
URL
|
[26] |
McGaugh, J.L. (2000). Memory - a century of consolidation. Science, 287(5451),248-251.
doi: 10.1126/science.287.5451.248
URL
|
[27] |
Merz, C.J., Hamacher-Dang, T.C., & Wolf, O.T. (2016). Immediate extinction promotes the return of fear. Neurobiology of Learning and Memory, 131,109-116.
doi: 10.1016/j.nlm.2016.03.013
URL
|
[28] |
Muravieva, E.V., & Alberini, C.M. (2010). Limited efficacy of propranolol on the reconsolidation of fear memories. Learning & Memory, 17(6),306-313.
|
[29] |
Przybyslawski, J., Roullet, P., & Sara, S.J. (1999). Attenuation of emotional and nonemotional memories after their reactivation: Role of beta adrenergic receptors. Journal of Neuroscience, 19(15),6623-6628.
pmid: 10414990
|
[30] |
Robinson, M.J.F., & Franklin, K.B.J. (2010). Reconsolidation of a morphine place preference: Impact of the strength and age of memory on disruption by propranolol and midazolam. Behavioural Brain Research, 213(2),201-207.
doi: 10.1016/j.bbr.2010.04.056
pmid: 20457186
|
[31] |
Rodriguez-Romaguera, J., Sotres-Bayon, F., Mueller, D., & Quirk, G.J. (2009). Systemic propranolol acts centrally to reduce conditioned fear in rats without impairing extinction. Biological Psychiatry, 65(10),887-892.
doi: 10.1016/j.biopsych.2009.01.009
pmid: 19246030
|
[32] |
Rothbaum, B.O., Kearns, M.C., Reiser, E., Davis, J.S., Kerley, K.A., Rothbaum, A.O.,… Ressler, K.J. (2014). Early intervention following trauma may mitigate genetic risk for PTSD in civilians: A pilot prospective emergency department study. Journal of Clinical Psychiatry, 75(12),1380-1387.
|
[33] |
Sah, P. (2017). Fear, anxiety, and the amygdala. Neuron, 96(1),1-2.
doi: 10.1016/j.neuron.2017.09.013
URL
|
[34] |
Sharp, B.M. (2017). Basolateral amygdala and stress-induced hyperexcitability affect motivated behaviors and addiction. Translational Psychiatry, 7(8),e1194.
doi: 10.1038/tp.2017.161
URL
|
[35] |
Siddiqui, S.A., Singh, S., Ranjan, V., Ugale, R., Saha, S., & Prakash, A. (2017). Enhanced histone acetylation in the infralimbic prefrontal cortex is associated with fear extinction. Cellular and Molecular Neurobiology, 37(7),1287-1301.
doi: 10.1007/s10571-017-0464-6
pmid: 28097489
|
[36] |
Sierra-Mercado, D., Padilla-Coreano, N., & Quirk, G.J. (2011). Dissociable roles of prelimbic and infralimbic cortices, ventral hippocampus, and basolateral amygdala in the expression and extinction of conditioned fear. Neuropsychopharmacology, 36(2),529-538.
doi: 10.1038/npp.2010.184
pmid: 20962768
|
[37] |
Singewald, N., & Holmes, A. (2019). Rodent models of impaired fear extinction. Psychopharmacology, 236(1),21-32.
doi: 10.1007/s00213-018-5054-x
pmid: 30377749
|
[38] |
Singh, S., Siddiqui, S.A., Tripathy, S., Kumar, S., Saha, S., Ugale, R.,… Prakash, A. (2018). Decreased level of histone acetylation in the infralimbic prefrontal cortex following immediate extinction may result in deficit of extinction memory. Brain Research Bulletin, 140,355-364.
doi: 10.1016/j.brainresbull.2018.06.004
URL
|
[39] |
Stafford, J.M., Maughan, D.K., Ilioi, E.C., & Lattal, K.M. (2013). Exposure to a fearful context during periods of memory plasticity impairs extinction via hyperactivation of frontal-amygdalar circuits. Learning & Memory, 20(3),156-163.
|
[40] |
Taherian, F., Vafaei, A.A., Vaezi, G.H., Eskandarian, S., Kashef, A., & Rashidy-Pour, A. (2014). Propranolol-induced impairment of contextual fear memory reconsolidation in rats: A similar effect on weak and strong recent and remote memories. Basic & Clinical Neuroscience, 5(3),231-239.
|
[41] |
Totty, M.S., Payne, M.R., & Maren, S. (2019). Event boundaries do not cause the immediate extinction deficit after Pavlovian fear conditioning in rats. Scientific Reports, 9(1),9459.
doi: 10.1038/s41598-019-46010-4
URL
|
[42] |
van Marle, H. J. F. V., Hermans, E. J., Qin, S., & Fernández, G. (2009). From specificity to sensitivity: How acute stress affects amygdala processing of biologically salient stimuli. Biological Psychiatry, 66(7),649-655.
doi: 10.1016/j.biopsych.2009.05.014
pmid: 19596123
|
[43] |
Vervliet, B., Craske, M.G., & Hermans, D. (2013). Fear extinction and relapse: State of the art. Annual Review of Clinical Psychology, 9,215-248.
doi: 10.1146/annurev-clinpsy-050212-185542
pmid: 23537484
|
[44] |
Wicking, M., Steiger, F., Nees, F., Diener, S.J., Grimm, O., Ruttorf, M.… Flor, H. (2016). Deficient fear extinction memory in posttraumatic stress disorder. Neurobiology of Learning and Memory, 136,116-126.
doi: S1074-7427(16)30202-7
pmid: 27686278
|
[45] |
Woods, A.M., & Bouton, M.E. (2008). Immediate extinction causes a less durable loss of performance than delayed extinction following either fear or appetitive conditioning. Learning & Memory, 15(12),909-920.
|
[46] |
Wright, L.A., Sijbrandij, M., Sinnerton, R., Lewis, C., Roberts, N.P., & Bisson, J.I. (2019). Pharmacological prevention and early treatment of post-traumatic stress disorder and acute stress disorder: A systematic review and meta-analysis. Translational Psychiatry, 9(1),334.
doi: 10.1038/s41398-019-0673-5
URL
|