心理学报 ›› 2021, Vol. 53 ›› Issue (1): 38-54.doi: 10.3724/SP.J.1041.2021.00038
金花1,2,3(), 梁紫平1,2,3, 朱子良1,2,3, 严世振1,2,3, 林琳1,2,3, 艾克旦·艾斯卡尔4, 尹建忠4, 姜云鹏1,2,3, 田鑫5
收稿日期:
2020-06-05
发布日期:
2020-11-24
出版日期:
2021-01-25
通讯作者:
金花
E-mail:jinhua@tjnu.edu.cn
基金资助:
JIN Hua1,2,3(), LIANG Ziping1,2,3, ZHU Ziliang1,2,3, YAN Shizhen1,2,3, LIN Lin1,2,3, AISIKAER Aikedan4, YIN Jianzhong4, JIANG Yunpeng1,2,3, TIAN Xin5
Received:
2020-06-05
Online:
2020-11-24
Published:
2021-01-25
Contact:
JIN Hua
E-mail:jinhua@tjnu.edu.cn
摘要:
以个体整体运动一致性阈值为指标, 探讨老年人整体运动敏感性(GMS)下降和静息态下兴趣脑区功能活动的关系。发现与阈值负相关且老年人低于青年人的指标主要有:MT/V5区的ReHo和ALFF值, 各网络拓扑属性; 与阈值正相关且老年人显著高于青年人的有:MT/V5区与前运动皮层之间的、各兴趣脑区之间的功能连接。结果用“去分化”等观点进行了解释, 提示老年人GMS的下降可能不仅与安静状态下MT/V5区的功能改变有关, 还可能与全脑更广泛区域的功能改变有关。
中图分类号:
金花, 梁紫平, 朱子良, 严世振, 林琳, 艾克旦·艾斯卡尔, 尹建忠, 姜云鹏, 田鑫. (2021). 整体运动知觉老化伴随颞中回静息态功能改变. 心理学报, 53(1), 38-54.
JIN Hua, LIANG Ziping, ZHU Ziliang, YAN Shizhen, LIN Lin, AISIKAER Aikedan, YIN Jianzhong, JIANG Yunpeng, TIAN Xin. (2021). Aging of global motion perception is accompanied by the changes of resting-state functional activity in the middle temporal gyrus. Acta Psychologica Sinica, 53(1), 38-54.
指标 | AAL分区 | BA分区 | 体素数量 | t值 | MNI坐标(x, y, z) | ||
---|---|---|---|---|---|---|---|
ReHo | 增强脑区 | 左小脑_上端 | 19(V3) | 视觉联合皮层 | 44 | 5.82 | -18, -60, -24 |
右小脑_上端 | 18(V2) | 次级视皮层 | 32 | 4.30 | 10, -62, -22 | ||
右舌回 | 19(V3) | 视觉联合皮层 | 38 | 4.37 | 22, -60, -4 | ||
减弱脑区 | 右枕下回 | 19(V3) | 视觉联合皮层 | 783 | -10.34 | 36, -86, -2 | |
右舌回 | 19(V3) | 视觉联合皮层 | 712 | ||||
左舌回 | 19(V3) | 视觉联合皮层 | 670 | ||||
左枕下回 | 19(V3) | 视觉联合皮层 | 709 | ||||
右颞中回 | 21(MT/V5) | 颞中回 | 916 | -6.40 | 50, -56, 20 | ||
左颞中回 | 21(MT/V5) | 颞中回 | 126 | -5.71 | -66, -28, -6 | ||
ALFF | 减弱脑区 | 右颞上回 | 21(MT/V5) | 颞中回 | 208 | -8.74 | 50, -56, 22 |
左颞中回 | 21(MT/V5) | 颞中回 | 1371 | -9.67 | -58, -54, 8 |
表1 老年组较青年组ReHo和ALFF存在显著差异的脑区
指标 | AAL分区 | BA分区 | 体素数量 | t值 | MNI坐标(x, y, z) | ||
---|---|---|---|---|---|---|---|
ReHo | 增强脑区 | 左小脑_上端 | 19(V3) | 视觉联合皮层 | 44 | 5.82 | -18, -60, -24 |
右小脑_上端 | 18(V2) | 次级视皮层 | 32 | 4.30 | 10, -62, -22 | ||
右舌回 | 19(V3) | 视觉联合皮层 | 38 | 4.37 | 22, -60, -4 | ||
减弱脑区 | 右枕下回 | 19(V3) | 视觉联合皮层 | 783 | -10.34 | 36, -86, -2 | |
右舌回 | 19(V3) | 视觉联合皮层 | 712 | ||||
左舌回 | 19(V3) | 视觉联合皮层 | 670 | ||||
左枕下回 | 19(V3) | 视觉联合皮层 | 709 | ||||
右颞中回 | 21(MT/V5) | 颞中回 | 916 | -6.40 | 50, -56, 20 | ||
左颞中回 | 21(MT/V5) | 颞中回 | 126 | -5.71 | -66, -28, -6 | ||
ALFF | 减弱脑区 | 右颞上回 | 21(MT/V5) | 颞中回 | 208 | -8.74 | 50, -56, 22 |
左颞中回 | 21(MT/V5) | 颞中回 | 1371 | -9.67 | -58, -54, 8 |
种子点 | AAL分区 | BA分区 | 体素数量 | t值 | MNI坐标(x, y, z) | ||
---|---|---|---|---|---|---|---|
V1区 | 增强脑区 | 右中央旁小叶 | 4 | 初级运动皮层 | 721 | 6.95 | 4, -28, 66 |
V2区 | 增强脑区 | 左中央旁小叶 | 4 | 初级运动皮层 | 1174 | 6.51 | -8, -22, 60 |
V3区 | 增强脑区 | 左距状裂周围皮层 | 18 | 次级视皮层 | 315 | 6.43 | -26, -64, 12 |
减弱脑区 | 右枕上回 | 19 | 视觉联合皮层 | 129 | -6.91 | 28, -76, 20 | |
MT/V5区 | 增强脑区 | 左补充运动区 | 6 | 前运动皮层 | 1347 | 7.13 | -8, -12, 56 |
减弱脑区 | 右角回 | 39 | 角回 | 72 | -6.32 | 42, -52, 24 |
表2 老年组较青年组voxel-wise FC存在显著差异的脑区
种子点 | AAL分区 | BA分区 | 体素数量 | t值 | MNI坐标(x, y, z) | ||
---|---|---|---|---|---|---|---|
V1区 | 增强脑区 | 右中央旁小叶 | 4 | 初级运动皮层 | 721 | 6.95 | 4, -28, 66 |
V2区 | 增强脑区 | 左中央旁小叶 | 4 | 初级运动皮层 | 1174 | 6.51 | -8, -22, 60 |
V3区 | 增强脑区 | 左距状裂周围皮层 | 18 | 次级视皮层 | 315 | 6.43 | -26, -64, 12 |
减弱脑区 | 右枕上回 | 19 | 视觉联合皮层 | 129 | -6.91 | 28, -76, 20 | |
MT/V5区 | 增强脑区 | 左补充运动区 | 6 | 前运动皮层 | 1347 | 7.13 | -8, -12, 56 |
减弱脑区 | 右角回 | 39 | 角回 | 72 | -6.32 | 42, -52, 24 |
AAL分区 | BA分区 | t值 | |||
---|---|---|---|---|---|
度K | 效率Enodal | 介数b | |||
老年组 > 青年组 | |||||
左距状裂周围皮层 | 17/18 | 初级/次级视皮层 | 3.12** | 1.89 | 1.04 |
右距状裂周围皮层 | 17/18 | 初级/次级视皮层 | 4.34*** | 2.91** | 2.59* |
右楔叶 | 18/19 | 次级/联合视皮层 | 3.09** | 1.69 | 1.13 |
左舌回 | 18/19 | 次级/联合视皮层 | 2.27* | 0.67 | 0.14 |
右舌回 | 18/19 | 次级/联合视皮层 | 3.47*** | 1.58 | 1.33 |
左枕中回 | 19/39 | 视觉联合皮层/角回 | 2.25* | -0.54 | -2.95** |
右枕中回 | 19/39 | 视觉联合皮层/角回 | 2.39* | 0.37 | -0.42 |
右枕下回 | 19 | 视觉联合皮层 | 3.02** | 0.85 | 2.42* |
老年组 < 青年组 | |||||
右颞横回 | 48 | 下脚后区 | -2.27* | -3.73*** | -1.26 |
右颞上回 | 22 | 颞上回 | -0.50 | -2.01* | -0.33 |
颞极:左颞上回 | 38/21 | 颞极区/颞中回 | -2.97** | -4.06*** | -3.32** |
颞极:右颞上回 | 38/21 | 颞极区/颞中回 | -1.79 | -2.92** | -1.97 |
右颞中回 | 21/20 | 颞中回/颞下回 | 0.18 | -1.50 | -2.28* |
颞极:左颞中回 | 38/20/21 | 颞极区/颞下回/颞中回 | -2.33* | -3.24* | -1.52 |
颞极:右颞中回 | 38/20/21 | 颞极区/颞下回/颞中回 | -2.08* | -2.81** | 0.05 |
右颞下回 | 20 | 颞下回 | 0.27 | -1.35 | -2.07* |
表3 两组被试兴趣区功能网络局部拓扑属性存在差异的脑区(t值)
AAL分区 | BA分区 | t值 | |||
---|---|---|---|---|---|
度K | 效率Enodal | 介数b | |||
老年组 > 青年组 | |||||
左距状裂周围皮层 | 17/18 | 初级/次级视皮层 | 3.12** | 1.89 | 1.04 |
右距状裂周围皮层 | 17/18 | 初级/次级视皮层 | 4.34*** | 2.91** | 2.59* |
右楔叶 | 18/19 | 次级/联合视皮层 | 3.09** | 1.69 | 1.13 |
左舌回 | 18/19 | 次级/联合视皮层 | 2.27* | 0.67 | 0.14 |
右舌回 | 18/19 | 次级/联合视皮层 | 3.47*** | 1.58 | 1.33 |
左枕中回 | 19/39 | 视觉联合皮层/角回 | 2.25* | -0.54 | -2.95** |
右枕中回 | 19/39 | 视觉联合皮层/角回 | 2.39* | 0.37 | -0.42 |
右枕下回 | 19 | 视觉联合皮层 | 3.02** | 0.85 | 2.42* |
老年组 < 青年组 | |||||
右颞横回 | 48 | 下脚后区 | -2.27* | -3.73*** | -1.26 |
右颞上回 | 22 | 颞上回 | -0.50 | -2.01* | -0.33 |
颞极:左颞上回 | 38/21 | 颞极区/颞中回 | -2.97** | -4.06*** | -3.32** |
颞极:右颞上回 | 38/21 | 颞极区/颞中回 | -1.79 | -2.92** | -1.97 |
右颞中回 | 21/20 | 颞中回/颞下回 | 0.18 | -1.50 | -2.28* |
颞极:左颞中回 | 38/20/21 | 颞极区/颞下回/颞中回 | -2.33* | -3.24* | -1.52 |
颞极:右颞中回 | 38/20/21 | 颞极区/颞下回/颞中回 | -2.08* | -2.81** | 0.05 |
右颞下回 | 20 | 颞下回 | 0.27 | -1.35 | -2.07* |
[1] |
Achard, S., & Bullmore, E. (2007). Efficiency and cost of economical brain functional networks. PLoS Computational Biology, 3(2), e17.
URL pmid: 17274684 |
[2] |
Ajilore, O., Lamar, M., & Kumar, A. (2014). Association of brain network efficiency with aging, depression, and cognition. The American Journal of Geriatric Psychiatry, 22(2), 102-110.
URL pmid: 24200596 |
[3] |
Antonenko, D., Meinzer, M., Lindenberg, R., Witte, A. V., & Flöel, A. (2012). Grammar learning in older adults is linked to white matter microstructure and functional connectivity. NeuroImage, 62(3), 1667-1674.
URL pmid: 22659480 |
[4] | Barthelemy, M. (2010). Spatial networks. Physics Reports, 499(1-3), 1-101. |
[5] |
Bennett, P. J., Sekuler, R., & Sekuler, A. B. (2007). The effects of aging on motion detection and direction identification. Vision Research, 47(6), 799-809.
URL pmid: 17289106 |
[6] |
Biehl, S. C., Andersen, M., Waiter, G. D., & Pilz, K. S. (2017). Neural changes related to motion processing in healthy aging. Neurobiology of Aging, 57, 162-169.
doi: 10.1016/j.neurobiolaging.2017.05.018 URL pmid: 28648917 |
[7] |
Billino, J., & Pilz, K. S. (2019). Motion perception as a model for perceptual aging. Journal of Vision, 19(4), 1-28.
URL pmid: 30933237 |
[8] | Braddick, O., & Qian, N.(2001). The organization of global motion and transparency. In: J. M. Zanker & J. Zeil (Eds.), Motion vision (pp. 85-112). Springer Berlin Heidelberg. |
[9] |
Cabeza, R. (2002). Hemispheric asymmetry reduction in older adults: the HAROLD model. Psychology and Aging, 17(1), 85-100.
URL pmid: 11931290 |
[10] |
Cai, P., Chen, N., Zhou, T., Thompson, B., & Fang, F. (2014). Global versus local: double dissociation between mt+ and v3a in motion processing revealed using continuous theta burst transcranial magnetic stimulation. Experimental Brain Research, 232(12), 4035-4041.
URL pmid: 25200175 |
[11] |
Cao, M., Wang, J.-H., Dai, Z.-J., Cao, X.-Y., Jiang, L.-L., Fan, F.-M., ... He, Y. (2014). Topological organization of the human brain functional connectome across the lifespan. Developmental Cognitive Neuroscience, 7, 76-93.
URL pmid: 24333927 |
[12] |
Chen, N., Cai, P., Zhou, T., Thompson, B., & Fang, F. (2016). Perceptual learning modifies the functional specializations of visual cortical areas. Proceedings of the National Academy of Sciences of the United States of America, 113(20), 5724-5729.
URL pmid: 27051066 |
[13] |
Damoiseaux, J. S. (2017). Effects of aging on functional and structural brain connectivity. NeuroImage, 160, 32-40.
URL pmid: 28159687 |
[14] |
Damoiseaux, J. S., Beckmann, C. F., Arigita, E. J. S., Barkhof, F., Scheltens, P., Stam, C. J., ... Rombouts, S. A. R. B. (2008). Reduced resting-state brain activity in the “default network” in normal aging. Cerebral Cortex, 18(8), 1856-1864.
URL pmid: 18063564 |
[15] | Farràs-Permanyer, L., Mancho-Fora, N., Montalà-Flaquer, M., Bartrés-Faz, D., Vaqué-Alcázar, L., Peró-Cebollero, M., & Guàrdia-Olmos, J. (2019). Age-related changes in resting-state functional connectivity in older adults. Neural Regeneration Research, 14(9), 1544-1555. |
[16] |
Ferreira, L. K., & Busatto, G. F. (2013). Resting-state functional connectivity in normal brain aging. Neuroscience & Biobehavioral Reviews, 37(3), 384-400.
URL pmid: 23333262 |
[17] |
Fountain-Zaragoza, S., Samimy, S., Rosenberg, M. D., & Prakash, R. S. (2019). Connectome-based models predict attentional control in aging adults. Neuroimage, 186, 1-13.
URL pmid: 30394324 |
[18] | Friston, K. J. (1994). Functional and effective connectivity in neuroimaging: a synthesis. Human Brain Mapping, 2(1-2), 56-78. |
[19] |
Friston, K. J. (2011). Functional and effective connectivity: a review. Brain Connectivity, 1(1), 13-36.
URL pmid: 22432952 |
[20] |
Geerligs, L., Renken, R. J., Saliasi, E., Maurits, N. M., & Lorist, M. M. (2015). A brain-wide study of age-related changes in functional connectivity. Cerebral Cortex, 25(7), 1987-1999.
URL pmid: 24532319 |
[21] | Grill-Spector, K., & Malach, R. (2004). The human visual cortex. Annual Review of Neuroscience, 27(1), 649-677. |
[22] | He, Y., Dagher, A., Chen, Z., Charil, A., Zijdenbos, A., Worsley, K., & Evans, A. (2009). Impaired small-world efficiency in structural cortical networks in multiple sclerosis associated with white matter lesion load. Brain, 132(12), 3366-3379. |
[23] | Hutchinson, C. V., Arena, A., Allen, H. A., & Ledgeway, T. (2012). Psychophysical correlates of global motion processing in the aging visual system: a critical review. Neuroscience and Biobehavioral Reviews, 36(4), 1266-1272. |
[24] |
Itahashi, T., Yamada, T., Watanabe, H., Nakamura, M., Jimbo, D., Shioda, S., ... Hashimoto, R. (2014). Altered network topologies and hub organization in adults with autism: a resting-state fMRI study. PloS One, 9(4), e94115.
URL pmid: 24714805 |
[25] | Jacob, Y., Morris, L. S., Huang, K.-H., Schneider, M., Rutter, S., Verma, G., … Balchandani, P. (2020). Neural correlates of rumination in major depressive disorder: a brain network analysis. NeuroImage: Clinical, 25, 102142. |
[26] | Jia, B., Liu, Z., Min, B., Wang, Z., Zhou, A., Li, Y.,… Jia, J. (2015). The effects of acupuncture at real or sham acupoints on the intrinsic brain activity in mild cognitive impairment patients. Evidence-Based Complementary and Alternative Medicine, 2015, Article ID: 529675. |
[27] |
Kavcic, V., Martin, T., & Zalar, B. (2013). Aging effects on visual evoked potentials (VEPs) for motion direction discrimination. International Journal of Psychophysiology, 89(1), 78-87.
URL pmid: 23721981 |
[28] | Kong, X.-M., Xu, S.-X., Sun, Y., Wang, K.-Y., Wang, C., Zhang, J.,… Xie, X.-H. (2017). Electroconvulsive therapy changes the regional resting state function measured by regional homogeneity (ReHo) and amplitude of low frequency fluctuations (ALFF) in elderly major depressive disorder patients: An exploratory study. Psychiatry Research: Neuroimaging, 264, 13-21. |
[29] |
Kravitz, D. J., Saleem, K. S., Baker, C. I., & Mishkin, M. (2011). A new neural framework for visuospatial processing. Nature Reviews Neuroscience, 12(4), 217-230.
URL pmid: 21415848 |
[30] |
Kunchulia, M., Kotaria, N., Pilz, K., Kotorashvili, A., & Herzog, M. H. (2019). Associations between genetic variations and global motion perception. Experimental Brain Research, 237(10), 2729-2734.
doi: 10.1007/s00221-019-05627-7 URL pmid: 31432227 |
[31] |
Lacherez, P., Turner, L., Lester, R., Burns, Z., & Wood, J. M. (2014). Age-related changes in perception of movement in driving scenes. Ophthalmic & Physiological Optics, 34(4), 445-451.
URL pmid: 24845410 |
[32] |
Lee, H.-H., & Hsieh, S. (2017). Resting-state fMRI associated with stop-signal task performance in healthy middle-aged and elderly people. Frontiers in Psychology, 8, 766.
URL pmid: 28553253 |
[33] |
Li, M., Chen, H., Wang, J., Liu, F., Long, Z., Wang, Y., ... Chen, H. (2014). Handedness-and hemisphere-related differences in small-world brain networks: a diffusion tensor imaging tractography study. Brain Connectivity, 4(2), 145-156.
URL pmid: 24564422 |
[34] |
Li, Y., Guo, S., Wang, Y., & Chen, H. (2017). Altered motion repulsion in alzheimer’s disease. Scientific Reports, 7(1), 1-13.
URL pmid: 28127051 |
[35] |
Liao, W., Zhang, Z., Mantini, D., Xu, Q., Wang, Z., Chen, G., ... Lu, G. (2013). Relationship between large-scale functional and structural covariance networks in idiopathic generalized epilepsy. Brain Connectivity, 3(3), 240-254.
URL pmid: 23510272 |
[36] |
Lindenberger, U., & Baltes, P. B. (1994). Sensory functioning and intelligence in old age: A strong connection. Psychology and Aging, 9(3), 339-355.
URL pmid: 7999320 |
[37] | Liu, X., Si, S., Hu, B., Zhao, H., & Zhu, J. (2020). A generative network model of the human brain normal aging process. Symmetry, 12(1), 91. |
[38] |
Lu, Z. L., & Dosher, B. A. (1999). Characterizing human perceptual inefficiencies with equivalent internal noise. Journal of the Optical Society of America, 16(3), 764-778.
URL pmid: 10069062 |
[39] |
Meier, T. B., Desphande, A. S., Vergun, S., Nair, V. A., Song, J., Biswal, B. B., … Prabhakaran, V. (2012). Support vector machine classification and characterization of age-related reorganization of functional brain networks. NeuroImage, 60(1), 601-613.
URL pmid: 22227886 |
[40] |
Narasimhan, S., & Giaschi, D. (2012). The effect of dot speed and density on the development of global motion perception. Vision Research, 62, 102-107.
URL pmid: 22521660 |
[41] | Newsome, W. T., & Paré, E. B. (1988). A selective impairment of motion perception following lesions of the middle temporal visual area (mt). Journal of Neuroscience, 8(6), 2201-2011. |
[42] |
Ng, K. K., Lo, J. C., Lim, J. K. W., Chee, M. W. L., & Zhou, J. (2016). Reduced functional segregation between the default mode network and the executive control network in healthy older adults: a longitudinal study. NeuroImage, 133, 321-330.
URL pmid: 27001500 |
[43] |
Owsley, C. (2011). Aging and vision. Vision Research, 51(13), 1610-1622.
URL pmid: 20974168 |
[44] |
Peters, R., White, D. J., & Scholey, A. (2020). Resting state fmri reveals differential effects of glucose administration on central appetite signalling in young and old adults. Journal of Psychopharmacology, 34(3), 304-314.
URL pmid: 31909672 |
[45] |
Pilz, K. S., Miller, L., & Agnew, H. C. (2017). Motion coherence and direction discrimination in healthy aging. Journal of Vision, 17(1), 31.
URL pmid: 28129415 |
[46] |
Pitzalis, S., Fattori, P., & Galletti, C. (2013). The functional role of the medial motion area V6. Frontiers in Behavioral Neuroscience, 6, 91.
URL pmid: 23335889 |
[47] |
Porter, G., Wattam-Bell, J., Bayer, A., Haworth, J., Braddick, O., Atkinson, J., & Tales, A. (2017). Different trajectories of decline for global form and global motion processing in aging, mild cognitive impairment and Alzheimer's disease. Neurobiology of Aging, 56, 17-24.
doi: 10.1016/j.neurobiolaging.2017.03.004 URL pmid: 28482210 |
[48] |
Raichle, M. E., & Snyder, A. Z. (2007). A default mode of brain function: a brief history of an evolving idea. Neuroimage, 37(4), 1083-1090.
URL pmid: 17719799 |
[49] |
Sala-Llonch, R., Junqué, C., Arenaza-Urquijo, E. M., Vidal-Piñeiro, D., Valls-Pedret, C., Palacios, E. M.,… Bartrés-Faz, D. (2014). Changes in whole-brain functional networks and memory performance in aging. Neurobiology of Aging, 35(10), 2193-2202.
URL pmid: 24814675 |
[50] |
Seidler, R. D., Bernard, J. A., Burutolu, T. B., Fling, B. W., Gordon, M. T., Gwin, J. T., … Lipps, D. B. (2010). Motor control and aging: Links to age-related brain structural, functional, and biochemical effects. Neuroscience & Biobehavioral Reviews, 34(5), 721-733.
doi: 10.1016/j.neubiorev.2009.10.005 URL pmid: 19850077 |
[51] |
Smith, C. D., Umberger, G. H., Manning, E. L., Slevin, J. T., Wekstein, D. R., Schmitt, F. A., … Gash, D. M. (1999). Critical decline in fine motor hand movements in human aging. Neurology, 53(7), 1458-1458.
URL pmid: 10534251 |
[52] |
Sporns, O., Tononi, G., & Kötter, R. (2005). The human connectome: A structural description of the human brain. PLoS Computational Biology, 1(4), e42.
URL pmid: 16201007 |
[53] |
Taylor, C. M., Olulade, O. A., Luetje, M. M., & Eden, G. F. (2018). An fmri study of coherent visual motion processing in children and adults. Neuroimage, 173, 223-239.
URL pmid: 29477442 |
[54] |
Vertes P.E., Alexander-Bloch, A. F., Gogtay, N., Giedd, J. N., Rapoport, J. L., & Bullmore, E. T. (2012). Simple models of human brain functional networks. Proceedings of the National Academy of Sciences of the United States of America, 109(15), 5868-5873.
URL pmid: 22467830 |
[55] |
Wang, J., Wang, X., Xia, M., Liao, X., Evans, A., & He, Y. (2015). GRETNA: a graph theoretical network analysis toolbox for imaging connectomics. Frontiers in Human Neuroscience, 9, 386.
URL pmid: 26175682 |
[56] |
Wang, Q., Wei, H., Liu, D., Han, B., Jiang, Q., Niu, J., & Ding, Y. (2020). Functional connectivity in Parkinson's disease patients with mild cognitive impairment. Research Square. Under review.
URL pmid: 33140041 |
[57] |
Ward, L. M., Morison, G., Simmers, A. J., & Shahani, U. (2018). Age-related changes in global motion coherence: conflicting haemodynamic and perceptual responses. Scientific Reports, 8(1), 10013.
doi: 10.1038/s41598-018-27803-5 URL pmid: 29968729 |
[58] |
Wen, W., Zhu, W., He, Y., Kochan, N. A., Reppermund, S., Slavin, M. J.,… Sachdev, P. (2011). Discrete neuroanatomical networks are associated with specific cognitive abilities in old age. Journal of Neuroscience, 31(4), 1204-1212.
URL pmid: 21273405 |
[59] |
Willis, A., & Anderson, S. J. (2000). Effects of glaucoma and aging on photopic and scotopic motion perception. Investigative Ophthalmology & Visual Science, 41(1), 325-335.
URL pmid: 10634638 |
[60] | Woodard, J. L., Seidenberg, M., Nielson, K. A., Smith, J. C., Antuono, P., Durgerian, S., … Rao, S. M. (2010). Prediction of cognitive decline in healthy older adults using fMRI. Journal of Alzheimer’s Disease, 21(3), 871-885. |
[61] | Yan, C.-G., Wang, X.-D., Zuo, X.-N., Zang, Y.-F. (2016). DPABI: Data processing & analysis for (resting-state) brain imaging. Neuroinformatics 14, 339-351. |
[62] | Yan, L., Zhuo, Y., Wang, B., & Wang, D. J. (2011). Loss of coherence of low frequency fluctuations of bold fmri in visual cortex of healthy aged subjects. The Open Neuroimaging Journal, 5( Suppl 1), 105-111. |
[63] | Yap, P.-T., Wu, G., & Shen, D. (2010). Human brain connectomics: networks, techniques, and applications [life sciences]. IEEE Signal Processing Magazine, 27(4), 131-134. |
[64] | Zang, Y., Jiang, T., Lu, Y., He, Y., & Tian, L. (2004). Regional homogeneity approach to fMRI data analysis. Neuroimage, 22(1), 394-400. |
[65] |
Zang, Y.-F., He, Y., Zhu, C.-Z., Cao, Q.-J., Sui, M.-Q., Liang, M., … Wang, Y. (2007). Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain and Development, 29(2), 83-91.
doi: 10.1016/j.braindev.2006.07.002 URL pmid: 16919409 |
[66] |
Zhang, J., Wang, J., Wu, Q., Kuang, W., Huang, X., He, Y., & Gong, Q. (2011). Disrupted brain connectivity networks in drug-naive, first-episode major depressive disorder. Biological Psychiatry, 70(4), 334-342.
URL pmid: 21791259 |
[1] | 李妍, 程竞暄, 喻婧. 老年人情景记忆更新的改变:竞争记忆的回溯性干扰[J]. 心理学报, 2023, 55(1): 106-116. |
[2] | 吴翰林, 于宙, 王雪娇, 张清芳. 语言能力的老化机制:语言特异性与非特异性因素的共同作用[J]. 心理学报, 2020, 52(5): 541-561. |
[3] | 赵瑞瑛, 娄昊, 欧阳明昆, 张清芳. 自然情境下舌尖效应的认知年老化——日记研究[J]. 心理学报, 2019, 51(5): 598-611. |
[4] | 杨群, 张清芳. 汉语图画命名过程的年老化机制:非选择性抑制能力的影响 *[J]. 心理学报, 2019, 51(10): 1079-1090. |
[5] | 周楚, 苏曼, 周冲, 杨艳, 席雅琪, 董群. 想象膨胀范式下错误记忆的老化效应[J]. 心理学报, 2018, 50(12): 1369-1380. |
[6] | 黄婷婷; 刘莉倩;王大华;张文海. 经济地位和计量地位:社会地位比较对主观幸福感的影响及其年龄差异[J]. 心理学报, 2016, 48(9): 1163-1174. |
[7] | 陈栩茜;张积家;朱云霞. 言语产生老化中的抑制损伤:来自不同任务的证据[J]. 心理学报, 2015, 47(3): 329-343. |
[8] | 毛晓飞;彭华茂. 视知觉压力在基本心理能力老化中的作用[J]. 心理学报, 2015, 47(1): 29-38. |
[9] | 刘盼,谢宁,吴艳红. 认知老化中有意控制对自动抑制的调节作用[J]. 心理学报, 2010, 42(10): 981-987. |
[10] | Lars Bä,ckman. 前临床期痴呆的认知特征:当前研究进展和未来研究展望[J]. 心理学报, 2009, 41(11): 1040-1048. |
[11] | Soledad Ballesteros and Julia Mayas. 保留的跨通道启动与老化:对于近期观点的总结[J]. 心理学报, 2009, 41(11): 1063-1074. |
[12] | 彭华茂,王大华,申继亮,林崇德. 老年期语义理解能力与空间定向能力的交叉滞后分析[J]. 心理学报, 2009, 41(07): 624-629. |
[13] | 王大华,申继亮,彭华茂,唐丹,张凌. 教育水平对老年人认知能力的影响模式[J]. 心理学报, 2005, 37(04): 511-516. |
[14] | 杨丽霞, 拉尔夫 Th. 克兰木普. SOC理论对于适应性资源管理的理论解释与实验研究[J]. 心理学报, 2003, 35(增刊): 29-38. |
[15] | 申继亮,王大华,彭华茂 ,,唐丹. 基本心理能力老化的中介变量[J]. 心理学报, 2003, 35(06): 802-809. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||