[1] |
Asaridou S. S., & McQueen J. M . (2013). Speech and music shape the listening brain: Evidence for shared domain- general mechanisms. Frontiers in Psychology, 4, 321.
|
[2] |
Başkent D., & Gaudrain E . (2016). Musician advantage for speech-on-speech perception. The Journal of the Acoustical Society of America, 139(3), EL51-EL56.
|
[3] |
Boersma P., & Weenink D . (2009. Praat: Doing phonetics by computer. Retrived April 22, 2009 from http://www.praat.org
|
[4] |
Chen F., Peng G., Yan N., & Wang L . (2017). The development of categorical perception of Mandarin tones in four- to seven-year-old children. Journal of Child Language, 44(6), 1413-1434.
|
[5] |
Chen F., Zhang H., Wang S. Y., & Peng G . (2019). Intrinsic cues and vowel categorical perception. Language Science, 18(4), 399-414.
|
|
[ 陈飞, 张昊, 王士元, 彭刚 . (2019). 内部因素与元音范畴化感知. 语言科学, 18(4), 339-414.]
|
[6] |
Chen Y. H., & Wang J. Y . (2019). The effect of music training on pre-attentive processing of the brain. Advances in Psychological Science, 27(6), 1036-1043.
|
|
[ 陈雅弘, 王锦琰 . (2019). 音乐训练对大脑前注意加工的影响. 心理科学进展, 27(6), 1036-1043]
|
[7] |
Chobert J., Francois C., Velay J. L., & Besson M . (2014). Twelve months of active musical training in 8- to 10-year-old children enhances the preattentive processing of syllabic duration and voice onset time. Cerebral Cortex, 24(4), 956-967.
|
[8] |
Christiner M., & Reiterer S. M . (2015). A Mozart is not a Pavarotti: Singers outperform instrumentalists on foreign accent imitation. Frontiers in Human Neuroscience, 9, 482.
|
[9] |
Degé F., & Schwarzer G . (2011). The effect of a music program on phonological awareness in preschoolers. Frontiers in Psychology, 2, 124.
|
[10] |
Du Y., & Zatorre R. J . (2017). Musical training sharpens and bonds ears and tongue to hear speech better. Proceedings of the National Academy of Sciences of the United States of America, 114(51), 13579-13584.
|
[11] |
Finney D. J. (Ed). (1971). Probit Analysis. Cambridge: Cambridge University Press.
|
[12] |
Francois C., Chobert J., Besson M., & Schön D . (2013). Music training for the development of speech segmentation. Cerebral Cortex, 23(9), 2038-2043.
|
[13] |
Hallé P. A., Chang Y. C., & Best C. T . (2004). Identification and discrimination of Mandarin Chinese tones by Mandarin Chinese vs. French listeners. Journal of Phonetics, 32(3), 395-421.
|
[14] |
Hutka S., Bidelman G. M., & Moreno S . (2015). Pitch expertise is not created equal: Cross-domain effects of musicianship and tone language experience on neural and behavioural discrimination of speech and music. Neuropsychologia, 71, 52-63.
|
[15] |
Hazan V., & Barrett S . (2000). The development of phonemic categorization in children aged 6-12. Journal of Phonetics, 28(4), 377-396.
|
[16] |
Herholz S. C., & Zatorre R. J . (2012). Musical training as a framework for brain plasticity: Behavior, function, and structure. Neuron, 76(3), 486-502.
|
[17] |
Kuehnis J., Elmer S., Meyer M., & Jaencke L . (2013). The encoding of vowels and temporal speech cues in the auditory cortex of professional musicians: An EEG study. Neuropsychologia, 51(8), 1608-1618.
|
[18] |
Kuhl P. K., Stevens E., Hayashi A., Deguchi T., Kiritani S., & Iverson P . (2006). Infants show a facilitation effect for native language phonetic perception between 6 and 12 months. Developmental Science, 9(2), F13-F21.
|
[19] |
Lappe C., Herholz S. C., Trainor L. J., & Pantev C . (2008). Cortical plasticity induced by short-term unimodal and multimodal musical training. Journal of Neuroscience, 28(39), 9632-9639.
|
[20] |
Lee H., & Noppeney U . (2011). Long-term music training tunes how the brain temporally binds signals from multiple senses. Proceedings of the National Academy of Sciences of the United States of America, 108(51), E1441-E1450.
|
[21] |
Lenroot R. K., Schmitt J. E., Ordaz S. J., Wallace G. L., Neale M. C., Lerch J. P., … Giedd J. N . (2009). Differences in genetic and environmental influences on the human cerebral cortex associated with development during childhood and adolescence. Human Brain Mapping, 30(1), 163-174.
|
[22] |
Liberman A. M., Harris K. S., Hoffman H. S., & Griffith B. C . (1957). The discrimination of speech sounds within and across phoneme boundaries. Journal of Experimental Psychology, 54(5), 358-368.
|
[23] |
Marie C., Magne C., & Besson M . (2011). Musicians and the metric structure of words. Journal of Cognitive Neuroscience, 23(2), 294-305.
|
[24] |
Marie C., Kujala T., & Besson M . (2012). Musical and linguistic expertise influence pre-attentive and attentive processing of non-speech sounds. Cortex, 48(4), 447-457.
|
[25] |
Milovanov R., Huotilainen M., Esquef P. A. A., Alku P., Valimaki V., & Tervaniemi M . (2009). The role of musical aptitude and language skills in preattentive duration processing in school-aged children. Neuroscience Letters, 460(2), 161-165.
|
[26] |
Miyazaki K., & Ogawa Y . (2006). Learning absolute pitch by children: A cross-sectional study. Music Perception, 24(1), 63-78.
|
[27] |
Moreno S., Marques C., Santos A., Santos M., Castro S. L., & Besson M . (2009). Musical training influences linguistic abilities in 8-year-old children: More evidence for brain plasticity. Cerebral Cortex, 19(3), 712-723.
|
[28] |
Nan Y . (2017). The facilitation effect of music learning on speech processing. Advances in Psychological Science, 25(11), 1844-1853.
|
|
[ 南云 . (2017). 音乐学习对语言加工的促进作用. 心理科学进展, 25(11), 1844-1853.]
|
[29] |
Nan Y., Liu L., Geiser E., Shu H., Gong C. C., Dong Q., … Desimone R . (2018). Piano training enhances the neural processing of pitch and improves speech perception in Mandarin-speaking children. Proceedings of the National Academy of Sciences of the United States of America, 115(28), E6630-E6639.
|
[30] |
Pascual-Leone A., Amedi A., Fregni F., & Merabet L. B . (2005). The plastic human brain cortex. Annual Review of Neuroscience, 28, 377-401.
|
[31] |
Patel A. D. (2008). Music, Language, and the Brain. Oxford: Oxford University Press.
|
[32] |
Patel A. D . (2014). Can nonlinguistic musical training change the way the brain processes speech? The expanded OPERA hypothesis. Hearing Research, 308, 98-108.
|
[33] |
Peng G., Zheng H. Y., Gong T., Yang R. X., Kong J. P., & Wang W. S. Y. (2010). The influence of language experience on categorical perception of pitch contours. Journal of Phonetics, 38(4), 616-624.
|
[34] |
Peretz I . (2009). Music, language and modularity framed in action. Psychologica Belgica, 49(2-3), 157-175.
|
[35] |
Peretz I., & Coltheart M . (2003). Modularity of music processing. Nature Neuroscience, 6(7), 688-691.
|
[36] |
Sadakata M., & Sekiyama K . (2011). Enhanced perception of various linguistic features by musicians: A cross-linguistic study. Acta Psychologica, 138(1), 1-10.
|
[37] |
Sares A. G., Foster N. E. V., Allen K., & Hyde K. L . (2018). Pitch and time processing in speech and tones: The effects of musical training and attention. Journal of Speech Language and Hearing Research, 61(3), 496-509.
|
[38] |
Shaw P., Greenstein D., Lerch J., Clasen L., Lenroot R., Gogtay N., … Giedd J . (2006). Intellectual ability and cortical development in children and adolescents. Nature, 440(7084), 676-679.
|
[39] |
Strait D. L., Parbery-Clark A., O'Connell S., & Kraus N . (2013). Biological impact of preschool music classes on processing speech in noise. Developmental Cognitive Neuroscience, 6, 51-60.
|
[40] |
Schön D., Magne C., & Besson M . (2004). The music of speech: Music training facilitates pitch processing in both music and language. Psychophysiology, 41(3), 341-349.
|
[41] |
Takeuchi A. H., & Hulse S. H . (1993). Absolute pitch. Psychological Bulletin, 113(2), 345-361.
|
[42] |
Tang W., Xiong W., Zhang Y. X., Dong Q., & Nan Y . (2016). Musical experience facilitates lexical tone processing among Mandarin speakers: Behavioral and neural evidence. Neuropsychologia, 91, 247-253.
|
[43] |
Tervaniemi M., Castaneda A., Knoll M., & Uther M . (2006). Sound processing in amateur musicians and nonmusicians: Event-related potential and behavioral indices. Neuroreport, 17(11), 1225-1228.
|
[44] |
Vuust P., Brattico E., Seppanen M., Naatanen R., & Tervaniemi M . (2012). The sound of music: Differentiating musicians using a fast, musical multi-feature mismatch negativity paradigm. Neuropsychologia, 50(7), 1432-1443.
|
[45] |
Weiß R., & Osterland J . (Eds). (1977). Grundintelligenztest CFT 1. Braunschweig: Westermann.
|
[46] |
Wong P. C. M., & Perrachione T. K . (2007). Learning pitch patterns in lexical identification by native English-speaking adults. Applied Psycholinguistics, 28(4), 565-585.
|
[47] |
Wong P., Schwartz R. G., & Jenkins J. J . (2005). Perception and production of lexical tones by 3-year-old, Mandarin- speaking children. Journal of Speech Language and Hearing Research, 48(5), 1065-1079.
|
[48] |
Wu H., Ma X., Zhang L., Liu Y., Zhang Y., & Shu H . (2015). Musical experience modulates categorical perception of lexical tones in native Chinese speakers. Frontiers in Psychology, 6, 436.
|
[49] |
Xi J., Jiang W., Zhang L. J., & Shu H . (2009). Categorical perception of VOT and lexical tones in Chinese and the developmental course. Acta Psychologia Sinica, 41(7), 572-579.
|
|
[ 席洁, 姜薇, 张林军, 舒华 . (2009). 汉语语言范畴性知觉及其发展. 心理学报, 41(7), 572-579.]
|
[50] |
Xu Y., Gandour J. T., & Francis A. L . (2006). Effects of language experience and stimulus complexity on the categorical perception of pitch direction. Journal of the Acoustical Society of America, 120(2), 1063-1074.
|
[51] |
Zhang Y., Kuhl P. K., Imada T., Kotani M., & Tohkura Y . (2005). Effects of language experience: Neural commitment to language-specific auditory patterns. Neuroimage, 26(3), 703-720.
|
[52] |
Zhao T. C., & Kuhl P. K . (2016). Musical intervention enhances infants' neural processing of temporal structure in music and speech. Proceedings of the National Academy of Sciences of the United States of America, 113(19), 5212-5217.
|
[53] |
Zheng H. Y., Peng G., Chen J. Y., Zhang C., Minett J. W., & Wang W. S. Y. (2014). Influence of tone inventory on ERP without focal attention: A cross-language study. Computational and Mathematical Methods in Medicine, 2014, 1-7.
|