心理学报 ›› 2024, Vol. 56 ›› Issue (8): 1076-1090.doi: 10.3724/SP.J.1041.2024.01076
陈伟1, 姚霖2, 倪晓冰1, 李俊娇3, 吴子悠1, 郑希付1()
收稿日期:
2023-10-10
发布日期:
2024-06-17
出版日期:
2024-08-25
通讯作者:
郑希付, E-mail: 作者简介:
第一联系人:陈伟和姚霖同为第一作者。
基金资助:
CHEN Wei1, YAO Lin2, NI Xiaobing1, LI Junjiao3, WU Ziyou1, ZHENG Xifu1()
Received:
2023-10-10
Online:
2024-06-17
Published:
2024-08-25
摘要:
基于记忆再巩固的提取消退范式与传统消退范式在操作层面上存在很大的相似性, 提取阶段一些细微的操作设置均有可能无法使记忆进入再巩固, 失去持久抑制恐惧复发的效果。研究发现提取暴露时长会调控记忆进入不同的阶段, 其作用机制与提取引发的预期错误量有关。本研究采用控制提取试次的数量改变提取暴露时长, 在传统消退范式的基础上进行提取消退范式转化, 探究提取暴露时长对记忆再巩固与消退的调控作用, 并尝试用量化预期错误的方式厘清其调控机制。结果发现, 单次提取消退触发记忆再巩固更新、双次提取消退无效(结果与传统消退一致)、四次提取消退增强消退记忆强度, 预期错误量化结果佐证了这几个过程的差异。研究结果有利于进一步揭示人类恐惧记忆再巩固与消退的调控因素。
中图分类号:
陈伟, 姚霖, 倪晓冰, 李俊娇, 吴子悠, 郑希付. (2024). 提取暴露时长对恐惧记忆再巩固与消退的调控. 心理学报, 56(8), 1076-1090.
CHEN Wei, YAO Lin, NI Xiaobing, LI Junjiao, WU Ziyou, ZHENG Xifu. (2024). The effect of retrieval exposure duration on the reconsolidation and extinction of fear memory. Acta Psychologica Sinica, 56(8), 1076-1090.
变量 | 组别 | F or χ2 | p | |||
---|---|---|---|---|---|---|
E (n = 23) | R1 (n = 23) | R2 (n = 21) | R4 (n = 20) | |||
男性被试人数(占比) | 6 (26.09%) | 9 (39.13%) | 5 (23.81%) | 4 (20.00%) | 2.29 | 0.515 |
年龄 | 20.35 ± 4.24 | 21.43 ± 3.98 | 19.95 ± 4.16 | 21.70 ± 4.85 | 0.04 | 0.990 |
STAI-T | 43.04 ± 8.98 | 42.87 ± 7.96 | 39.76 ± 8.29 | 43.00 ± 9.62 | 0.03 | 0.992 |
BDI | 4.30 ± 0.90 | 5.52 ± 1.03 | 6.81 ± 1.42 | 6.95 ± 1.55 | 1.03 | 0.382 |
电击强度 | 54.96 ± 11.46 | 50.30 ± 9.34 | 55.38 ± 11.55 | 44.25 ± 9.89 | 0.23 | 0.877 |
表1 被试分组信息及问卷数据
变量 | 组别 | F or χ2 | p | |||
---|---|---|---|---|---|---|
E (n = 23) | R1 (n = 23) | R2 (n = 21) | R4 (n = 20) | |||
男性被试人数(占比) | 6 (26.09%) | 9 (39.13%) | 5 (23.81%) | 4 (20.00%) | 2.29 | 0.515 |
年龄 | 20.35 ± 4.24 | 21.43 ± 3.98 | 19.95 ± 4.16 | 21.70 ± 4.85 | 0.04 | 0.990 |
STAI-T | 43.04 ± 8.98 | 42.87 ± 7.96 | 39.76 ± 8.29 | 43.00 ± 9.62 | 0.03 | 0.992 |
BDI | 4.30 ± 0.90 | 5.52 ± 1.03 | 6.81 ± 1.42 | 6.95 ± 1.55 | 1.03 | 0.382 |
电击强度 | 54.96 ± 11.46 | 50.30 ± 9.34 | 55.38 ± 11.55 | 44.25 ± 9.89 | 0.23 | 0.877 |
组别 | α | model error | average PE |
---|---|---|---|
E | 0.18 | 0.14 | 0.19 |
R1 | 0.27 | 0.12 | 0.12 |
R2 | 0.18 | 0.09 | 0.15 |
R4 | 0.24 | 0.14 | 0.14 |
表2 模型拟合主要参数
组别 | α | model error | average PE |
---|---|---|---|
E | 0.18 | 0.14 | 0.19 |
R1 | 0.27 | 0.12 | 0.12 |
R2 | 0.18 | 0.09 | 0.15 |
R4 | 0.24 | 0.14 | 0.14 |
[1] | Alfei, J. M., Ferrer Monti, R. I., Molina, V. A., Bueno, A. M., & Urcelay, G. P. (2015). Prediction error and trace dominance determine the fate of fear memories after post-training manipulations. Learning & Memory, 22(8), 385-400. https://doi.org/10.1101/lm.038513.115 |
[2] | Bouton, M. E. (2004). Context and behavioral processes in extinction. Learning & Memory, 11(5), 485-494. https://doi.org/10.1101/lm.78804 |
[3] |
Bustos, S. G., Maldonado, H., & Molina, V. A. (2009). Disruptive effect of midazolam on fear memory reconsolidation: Decisive influence of reactivation time span and memory age. Neuropsychopharmacology, 34(2), 446-457. https://doi.org/10.1038/npp.2008.75
doi: 10.1038/npp.2008.75 URL pmid: 18509330 |
[4] |
Cahill, E. N., & Milton, A. L. (2019). Neurochemical and molecular mechanisms underlying the retrieval-extinction effect. Psychopharmacology, 236(1), 111-132. https://doi.org/10.1007/s00213-018-5121-3
doi: 10.1007/s00213-018-5121-3 URL pmid: 30656364 |
[5] |
Chalkia, A., Schroyens, N., Leng, L., Vanhasbroeck, N., Zenses, A. K., Van Oudenhove, L., & Beckers, T. (2020). No persistent attenuation of fear memories in humans: A registered replication of the reactivation-extinction effect. Cortex, 129, 496-509. https://doi.org/10.1016/j.cortex.2020.04.017
doi: S0010-9452(20)30170-2 URL pmid: 32580869 |
[6] |
Chen, W., Li, J., Caoyang, J., Yang, Y., Hu, Y., & Zheng, X. (2018). Effects of prediction error on post-retrieval extinction of fear to compound stimuli. Acta Psychologica Sinica, 50(7), 739-749. https://doi.org/10.3724/sp.J.1041.2018.00739
doi: 10.3724/SP.J.1041.2018.00739 URL |
[陈伟, 李俊娇, 曹杨婧文, 杨勇, 胡琰健, 郑希付. (2018). 预期错误在复合恐惧记忆提取消退中的作用. 心理学报, 50(7), 739-749.]
doi: 10.3724/SP.J.1041.2018.00739 |
|
[7] | Chen, W., Li, J., Xu, L., Zhao, S., Fan, M., & Zheng, X. (2020). Destabilizing different strengths of fear memories requires different degrees of prediction error during retrieval. Frontiers in Behavioral Neuroscience, 14, 598924. https://doi.org/10.3389/fnbeh.2020.598924 |
[8] | Chen, W., Li, J., Zhang, X., Dong, Y., Shi, P., Luo, P., & Zheng, X. (2021). Retrieval-extinction as a reconsolidation-based treatment for emotional disorders: Evidence from an extinction retention test shortly after intervention. Behaviour Research and Therapy, 139, 103831. https://doi.org/10.1016/j.brat.2021.103831 |
[9] |
Clem, R. L., & Huganir, R. L. (2010). Calcium-permeable AMPA receptor dynamics mediate fear memory erasure. Science, 330(6007), 1108-1112. https://doi.org/10.1126/science.1195298
doi: 10.1126/science.1195298 URL pmid: 21030604 |
[10] | Davis, M., Walker, D. L., & Myers, K. M. (2003). Role of the amygdala in fear extinction measured with potentiated startle. Annals of the New York Academy of Sciences, 985, 218-232. https://doi.org/10.1111/j.1749-6632.2003.tb07084.x |
[11] |
de Oliveira Alvares, L., & Do-Monte, F. H. (2021). Understanding the dynamic and destiny of memories. Neuroscience and Biobehavioral Reviews, 125, 592-607. https://doi.org/10.1016/j.neubiorev.2021.03.009
doi: 10.1016/j.neubiorev.2021.03.009 URL pmid: 33722616 |
[12] | Diaz-Mataix, L., Ruiz Martinez, R. C., Schafe, G. E., LeDoux, J. E., & Doyere, V. (2013). Detection of a temporal error triggers reconsolidation of amygdala-dependent memories. Current Biology, 23(6), 467-472. https://doi.org/10.1016/j.cub.2013.01.053 |
[13] |
Exton-McGuinness, M. T., Lee, J. L., & Reichelt, A. C. (2015). Updating memories—The role of prediction errors in memory reconsolidation. Behavioural Brain Research, 278, 375-384. https://doi.org/10.1016/j.bbr.2014.10.011
doi: 10.1016/j.bbr.2014.10.011 URL pmid: 25453746 |
[14] | Ferrara, N. C., Kwapis, J. L., & Trask, S. (2023). Memory retrieval, reconsolidation, and extinction: Exploring the boundary conditions of post-conditioning cue exposure. Frontiers in Synaptic Neuroscience, 15, 1146665. https:// doi.org/10.3389/fnsyn.2023.1146665 |
[15] | Ferrara, N. C., Trask, S., Pullins, S. E., & Helmstetter, F. J. (2021). Regulation of learned fear expression through the MgN- amygdala pathway. Neurobiology of Learning and Memory, 185, 107526. https://doi.org/10.1016/j.nlm.2021.107526 |
[16] | Fukushima, H., Zhang, Y., & Kida, S. (2021). Active transition of fear memory phase from reconsolidation to extinction through ERK-mediated prevention of reconsolidation. The Journal of Neuroscience, 41(6), 1288-1300. https://doi.org/10.1523/JNEUROSCI.1854-20.2020 |
[17] | Gershman, S. J., Monfils, M. H., Norman, K. A., & Niv, Y. (2017). The computational nature of memory modification. Elife, 6. https://doi.org/10.7554/eLife.23763 |
[18] |
Golkar, A., Selbing, I., Flygare, O., Ohman, A., & Olsson, A. (2013). Other people as means to a safe end: Vicarious extinction blocks the return of learned fear. Psychological Science, 24(11), 2182-2190. https://doi.org/10.1177/0956797613489890
doi: 10.1177/0956797613489890 URL pmid: 24022651 |
[19] | Haaker, J., Golkar, A., Hermans, D., & Lonsdorf, T. B. (2014). A review on human reinstatement studies: An overview and methodological challenges. Learning & Memory, 21(9), 424-440. https://doi.org/10.1101/lm.036053.114 |
[20] |
Hu, J., Wang, W., Homan, P., Wang, P., Zheng, X., & Schiller, D. (2018). Reminder duration determines threat memory modification in humans. Scientific Reports, 8(1), 8848. https://doi.org/10.1038/s41598-018-27252-0
doi: 10.1038/s41598-018-27252-0 URL pmid: 29891856 |
[21] |
Junjiao, L., Wei, C., Jingwen, C., Yanjian, H., Yong, Y., Liang, X., ... Xifu, Z. (2019). Role of prediction error in destabilizing fear memories in retrieval extinction and its neural mechanisms. Cortex, 121, 292-307. https://doi.org/10.1016/j.cortex.2019.09.003
doi: S0010-9452(19)30321-1 URL pmid: 31669978 |
[22] |
Khalaf, O., & Graff, J. (2019). Reactivation of recall-induced neurons in the infralimbic cortex and the basolateral amygdala after remote fear memory attenuation. Frontiers in Molecular Neuroscience, 12, 70. https://doi.org/10.3389/fnmol.2019.00070
doi: 10.3389/fnmol.2019.00070 URL pmid: 31057365 |
[23] |
Khalaf, O., Resch, S., Dixsaut, L., Gorden, V., Glauser, L., & Graff, J. (2018). Reactivation of recall-induced neurons contributes to remote fear memory attenuation. Science, 360(6394), 1239-1242. https://doi.org/10.1126/science.aas9875
doi: 10.1126/science.aas9875 URL pmid: 29903974 |
[24] |
Kida, S. (2023). Interaction between reconsolidation and extinction of fear memory. Brain Research Bulletin, 195, 141-144. https://doi.org/10.1016/j.brainresbull.2023.02.009
doi: 10.1016/j.brainresbull.2023.02.009 URL pmid: 36801360 |
[25] |
Kim, J. H., & Richardson, R. (2010). New findings on extinction of conditioned fear early in development: Theoretical and clinical implications. Biological Psychiatry, 67(4), 297-303. https://doi.org/10.1016/j.biopsych.2009.09.003
doi: 10.1016/j.biopsych.2009.09.003 URL pmid: 19846065 |
[26] |
Kredlow, M. A., Unger, L. D., & Otto, M. W. (2016). Harnessing reconsolidation to weaken fear and appetitive memories: A meta-analysis of post-retrieval extinction effects. Psychological Bulletin, 142(3), 314-336. https://doi.org/10.1037/bul0000034
doi: 10.1037/bul0000034 URL pmid: 26689086 |
[27] |
Lee, H. J., Haberman, R. P., Roquet, R. F., & Monfils, M. H. (2015). Extinction and retrieval + extinction of conditioned fear differentially activate medial prefrontal cortex and amygdala in rats. Frontiers in Behavioral Neuroscience, 9, 369. https://doi.org/10.3389/fnbeh.2015.00369
doi: 10.3389/fnbeh.2015.00369 URL pmid: 26834596 |
[28] |
Lee, J. L. C., Nader, K., & Schiller, D. (2017). An update on memory reconsolidation updating. Trends in Cognitive Sciences, 21(7), 531-545. https://doi.org/10.1016/j.tics.2017.04.006
doi: S1364-6613(17)30078-5 URL pmid: 28495311 |
[29] | Leung, H. T., Reeks, L. M., & Westbrook, R. F. (2012). Two ways to deepen extinction and the difference between them. Journal of Experimental Psychology: Animal Behavior Processes, 38(4), 394-406. https://doi.org/10.1037/a0030201 |
[30] |
Lonsdorf, T. B., Menz, M. M., Andreatta, M., Fullana, M. A., Golkar, A., Haaker, J., ... Merz, C. J. (2017). Don't fear 'fear conditioning': Methodological considerations for the design and analysis of studies on human fear acquisition, extinction, and return of fear. Neuroscience and Biobehavioral Reviews, 77, 247-285. https://doi.org/10.1016/j.neubiorev.2017.02.026
doi: S0149-7634(16)30846-6 URL pmid: 28263758 |
[31] | Merlo, E., Milton, A. L., & Everitt, B. J. (2018). A novel retrieval-dependent memory process revealed by the arrest of ERK1/2 activation in the basolateral amygdala. The Journal of Neuroscience, 38(13), 3199-3207. https://doi.org/10.1523/JNEUROSCI.3273-17.2018 |
[32] | Monfils, M. H., Cowansage, K. K., Klann, E., & LeDoux, J. E. (2009). Extinction-reconsolidation boundaries: Key to persistent attenuation of fear memories. Science, 324(5929), 951-955. https://doi.org/10.1126/science.1167975 |
[33] | Monfils, M. H., & Holmes, E. A. (2018). Memory boundaries: Opening a window inspired by reconsolidation to treat anxiety, trauma-related, and addiction disorders. Lancet Psychiatry, 5(12), 1032-1042. https://doi.org/10.1016/S2215-0366(18)30270-0 |
[34] |
Myers, K. M., & Davis, M. (2007). Mechanisms of fear extinction. Molecular Psychiatry, 12(2), 120-150. https://doi.org/10.1038/sj.mp.4001939
doi: 10.1038/sj.mp.4001939 URL pmid: 17160066 |
[35] | Nader, K., Schafe, G. E., & Le Doux, J. E. (2000). Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval. Nature, 406(6797), 722-726. https://doi.org/10.1038/35021052 |
[36] | Pedreira, M. E., Perez-Cuesta, L. M., & Maldonado, H. (2004). Mismatch between what is expected and what actually occurs triggers memory reconsolidation or extinction. Learning & Memory, 11(5), 579-585. https://doi.org/10.1101/lm.76904 |
[37] | Phelps, E. A., & Hofmann, S. G. (2019). Memory editing from science fiction to clinical practice. Nature, 572(7767), 43-50. https://doi.org/10.1038/s41586-019-1433-7 |
[38] |
Ponnusamy, R., Zhuravka, I., Poulos, A. M., Shobe, J., Merjanian, M., Huang, J., ... Fanselow, M. S. (2016). Retrieval and reconsolidation accounts of fear extinction. Frontiers in Behavioral Neuroscience, 10, 89. https://doi.org/10.3389/fnbeh.2016.00089
doi: 10.3389/fnbeh.2016.00089 URL pmid: 27242459 |
[39] | Raskin, M., & Monfils, M. H. (2023). Reconsolidation and fear extinction: An update. Current Topics in Behavioral Neurosciences. https://doi.org/10.1007/7854_2023_438 |
[40] |
Sartor, G. C., & Aston-Jones, G. (2014). Post-retrieval extinction attenuates cocaine memories. Neuropsychopharmacology, 39(5), 1059-1065. https://doi.org/10.1038/npp.2013.323
doi: 10.1038/npp.2013.323 URL pmid: 24257156 |
[41] |
Schiller, D., Kanen, J. W., LeDoux, J. E., Monfils, M. H., & Phelps, E. A. (2013). Extinction during reconsolidation of threat memory diminishes prefrontal cortex involvement. Proceedings of the National Academy of Sciences of the United States of America, 110(50), 20040-20045. https://doi.org/10.1073/pnas.1320322110
doi: 10.1073/pnas.1320322110 URL pmid: 24277809 |
[42] | Schiller, D., Monfils, M. H., Raio, C. M., Johnson, D. C., Ledoux, J. E., & Phelps, E. A. (2010). Preventing the return of fear in humans using reconsolidation update mechanisms. Nature, 463(7277), 49-53. https://doi.org/10.1038/nature08637 |
[43] |
Sevenster, D., Beckers, T., & Kindt, M. (2013). Prediction error governs pharmacologically induced amnesia for learned fear. Science, 339(6121), 830-833. https://doi.org/10.1126/ science.1231357
doi: 10.1126/science.1231357 URL pmid: 23413355 |
[44] | Sevenster, D., Beckers, T., & Kindt, M. (2014). Prediction error demarcates the transition from retrieval, to reconsolidation, to new learning. Learning & Memory, 21(11), 580-584. https://doi.org/10.1101/lm.035493.114 |
[45] |
Shiban, Y., Wittmann, J., Weissinger, M., & Muhlberger, A. (2015). Gradual extinction reduces reinstatement. Frontiers in Behavioral Neuroscience, 9, 254. https://doi.org/10.3389/fnbeh.2015.00254
doi: 10.3389/fnbeh.2015.00254 URL pmid: 26441581 |
[46] |
Shumake, J., & Monfils, M. H. (2015). Assessing fear following retrieval + extinction through suppression of baseline reward seeking vs. freezing. Frontiers in Behavioral Neuroscience, 9, 355. https://doi.org/10.3389/fnbeh.2015.00355
doi: 10.3389/fnbeh.2015.00355 URL pmid: 26778985 |
[47] | Suzuki, A., Josselyn, S. A., Frankland, P. W., Masushige, S., Silva, A. J., & Kida, S. (2004). Memory reconsolidation and extinction have distinct temporal and biochemical signatures. The Journal of Neuroscience, 24(20), 4787-4795. https://doi.org/10.1523/JNEUROSCI.5491-03.2004 |
[48] |
Tedesco, V., Roquet, R. F., DeMis, J., Chiamulera, C., & Monfils, M. H. (2014). Extinction, applied after retrieval of auditory fear memory, selectively increases zinc-finger protein 268 and phosphorylated ribosomal protein S6 expression in prefrontal cortex and lateral amygdala. Neurobiology of Learning and Memory, 115, 78-85. https://doi.org/10.1016/j.nlm.2014.08.015
doi: 10.1016/j.nlm.2014.08.015 URL pmid: 25196703 |
[49] | Thiele, M., Yuen, K. S. L., Gerlicher, A. V. M., & Kalisch, R. (2021). A ventral striatal prediction error signal in human fear extinction learning. Neuroimage, 229, 117709. https://doi.org/10.1016/j.neuroimage.2020.117709 |
[50] | Vaverkova, Z., Milton, A. L., & Merlo, E. (2020). Retrieval- dependent mechanisms affecting emotional memory persistence: Reconsolidation, extinction, and the space in between. Frontiers in Behavioral Neuroscience, 14, 574358. https:// doi.org/10.3389/fnbeh.2020.574358 |
[51] | Zimmermann, J., & Bach, D. R. (2020). Impact of a reminder/ extinction procedure on threat-conditioned pupil size and skin conductance responses. Learning & Memory, 27(4), 164-172. https://doi.org/10.1101/lm.050211.119 |
[52] |
Zuccolo, P. F., & Hunziker, M. H. L. (2019). A review of boundary conditions and variables involved in the prevention of return of fear after post-retrieval extinction. Behavioural Processes, 162, 39-54. https://doi.org/10.1016/j.beproc.2019.01.011
doi: S0376-6357(18)30403-0 URL pmid: 30708059 |
[1] | 李俊娇, 陈伟, 胡琰健, 曹杨婧文, 郑希付. 预期错误与急性应激对不同强度恐惧记忆提取消退的影响[J]. 心理学报, 2021, 53(6): 587-602. |
[2] | 陈伟, 李俊娇, 曹杨婧文, 杨勇, 胡琰健, 郑希付. 预期错误在复合恐惧记忆提取消退中的作用[J]. 心理学报, 2018, 50(7): 739-749. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||