心理学报 ›› 2023, Vol. 55 ›› Issue (8): 1243-1254.doi: 10.3724/SP.J.1041.2023.01243
李琳1,2(), 张小友1,2, 徐亚奎1, 宗博艺1,2, 赵文睿6, 赵革1, 姚猛1, 占竺旋1, 尹大志3,4, 范明霞5
收稿日期:
2022-05-31
发布日期:
2023-05-12
出版日期:
2023-08-25
通讯作者:
李琳, E-mail: 基金资助:
LI Lin1,2(), ZHANG Xiaoyou1,2, XU Yakui1, ZONG Boyi1,2, ZHAO Wenrui6, ZHAO Ge1, YAO Meng1, ZHAN Zhuxuan1, YIN Dazhi3,4, FAN Mingxia5
Received:
2022-05-31
Online:
2023-05-12
Published:
2023-08-25
摘要:
为了解太极拳技能学习早期大脑功能的动态变化特点, 本研究共招募29名太极拳零基础被试(19名实验组被试, 10名对照组被试), 采用多时点纵向追踪设计, 借助于功能磁共振成像技术, 采集技能学习早期不同时点被试完成运动表象任务时的行为和脑功能数据。结果发现:(1)太极拳技能学习早期, 技能水平表现出先慢后快的变化特征, 运动表象质量也具有变好的趋势; (2)随着太极拳技能水平的提高, 运动表象任务诱发的左侧颞上回和左侧楔前叶的激活显著增强, 且同样表现出先慢后快的变化特征; (3)相关检验发现, 左侧颞上回和左侧楔前叶的激活与运动表象质量以及太极拳技能水平具有中等程度的相关。研究表明, 太极拳技能学习早期, 左侧颞上回和左侧楔前叶会伴随着太极拳技能水平的提高而发生改变, 太极拳技能学习有助于优化与序列动作学习有关的脑区功能。
中图分类号:
李琳, 张小友, 徐亚奎, 宗博艺, 赵文睿, 赵革, 姚猛, 占竺旋, 尹大志, 范明霞. (2023). 太极拳技能学习早期大脑功能的动态变化:基于运动表象的fMRI研究. 心理学报, 55(8), 1243-1254.
LI Lin, ZHANG Xiaoyou, XU Yakui, ZONG Boyi, ZHAO Wenrui, ZHAO Ge, YAO Meng, ZHAN Zhuxuan, YIN Dazhi, FAN Mingxia. (2023). Dynamic changes on brain function during early stage of Tai Chi training: A motor imagery-based fMRI study. Acta Psychologica Sinica, 55(8), 1243-1254.
变量 | 实验组 | 对照组 | t(χ2) | p |
---|---|---|---|---|
性别(男/女) | 9/10 | 4/6 | 0.14 | 0.705 |
年龄(年) | 23.37 ± 0.90 | 23.00 ± 0.82 | 1.08 | 0.288 |
身高(米) | 1.69 ± 0.08 | 1.66 ± 0.09 | 0.93 | 0.362 |
体重(公斤) | 62.69 ± 6.79 | 58.00 ± 8.40 | 1.63 | 0.114 |
受教育年限(年) | 16.32 ± 0.48 | 16.50 ± 0.71 | −0.84 | 0.411 |
动觉表象得分 | 6.20 ± 0.71 | 5.63 ± 0.76 | 2.03 | 0.053 |
表1 实验组和对照组人口统计学特征
变量 | 实验组 | 对照组 | t(χ2) | p |
---|---|---|---|---|
性别(男/女) | 9/10 | 4/6 | 0.14 | 0.705 |
年龄(年) | 23.37 ± 0.90 | 23.00 ± 0.82 | 1.08 | 0.288 |
身高(米) | 1.69 ± 0.08 | 1.66 ± 0.09 | 0.93 | 0.362 |
体重(公斤) | 62.69 ± 6.79 | 58.00 ± 8.40 | 1.63 | 0.114 |
受教育年限(年) | 16.32 ± 0.48 | 16.50 ± 0.71 | −0.84 | 0.411 |
动觉表象得分 | 6.20 ± 0.71 | 5.63 ± 0.76 | 2.03 | 0.053 |
变量 | 组别 | 2周 | 14周 |
---|---|---|---|
太极拳技能水平 | 实验组(n = 19) | 5.84 ± 0.50 | 7.55 ± 0.58 |
对照组(n = 10) | 3.25 ± 0.92 | 3.20 ± 0.79 | |
时间一致性(ms) | 实验组(n = 19) | 2045.81 ± 719.99 | 1641.70 ± 915.47 |
对照组(n = 10) | 2276.24 ± 1116.19 | 2799.13 ± 1601.13 |
表2 两组行为学的描述性统计(M ± SD)
变量 | 组别 | 2周 | 14周 |
---|---|---|---|
太极拳技能水平 | 实验组(n = 19) | 5.84 ± 0.50 | 7.55 ± 0.58 |
对照组(n = 10) | 3.25 ± 0.92 | 3.20 ± 0.79 | |
时间一致性(ms) | 实验组(n = 19) | 2045.81 ± 719.99 | 1641.70 ± 915.47 |
对照组(n = 10) | 2276.24 ± 1116.19 | 2799.13 ± 1601.13 |
激活脑区 | 半球 | 体素数量 | 峰值点MNI坐标 | t值 | ||
---|---|---|---|---|---|---|
X | Y | Z | ||||
第一次采集(2周) | ||||||
辅助运动区/中央前回/顶下小叶/中央后回/颞上回 | 左 | 2542 | −9 | −3 | 63 | 8.92 |
额下回 | 右 | 203 | 39 | 15 | 6 | 6.76 |
额中回 | 左 | 148 | −33 | 36 | 27 | 7.80 |
中央后回/顶下小叶 | 右 | 231 | 42 | −36 | 45 | 7.75 |
距状裂/楔前叶 | 左/右 | 4360 | 27 | −27 | −6 | −11.07 |
颞中回 | 右 | 376 | 24 | 15 | −21 | −7.43 |
颞中回 | 左 | 329 | −48 | 6 | −33 | −8.01 |
内侧额上回 | 左/右 | 1579 | 3 | 63 | 3 | −8.43 |
第二次采集(8周) | ||||||
脑岛/中央前回/颞上回 | 左 | 120 | −45 | 0 | 3 | 6.17 |
顶下小叶/中央后回 | 左 | 398 | −57 | −27 | 39 | 7.07 |
辅助运动区/中央前回 | 左 | 1010 | −6 | −3 | 60 | 9.99 |
顶下小叶/中央后回 | 右 | 157 | 39 | −39 | 42 | 7.27 |
小脑9区 | 右 | 296 | 3 | −54 | −45 | −8.93 |
距状裂/楔前叶 | 左/右 | 5804 | 9 | −45 | 39 | −11.79 |
颞中回 | 右 | 222 | 51 | 3 | −39 | −7.11 |
颞中回 | 左 | 640 | −54 | 3 | −30 | −6.60 |
内侧额上回 | 左/右 | 1918 | 30 | 63 | 9 | −9.75 |
第三次采集(14周) | ||||||
颞上回 | 右 | 414 | 63 | −21 | 9 | 8.81 |
中央后回/中央前回/颞上回/辅助运动区 | 左 | 3352 | −51 | −21 | 0 | 10.28 |
额下回 | 右 | 144 | 57 | 9 | 24 | 7.94 |
中央后回 | 右 | 511 | 42 | −36 | 57 | 8.30 |
小脑6区 | 右 | 56 | 30 | −48 | −33 | 6.02 |
距状裂/楔前叶 | 左/右 | 2240 | −6 | −75 | 6 | −7.64 |
小脑9区 | 右 | 81 | 15 | −45 | −48 | −7.22 |
旁海马回 | 左/右 | 100 | 27 | −27 | −6 | −8.11 |
内侧扣带回 | 左 | 359 | −9 | −39 | 39 | −8.28 |
额中回 | 右 | 233 | 24 | 42 | 45 | −6.02 |
表3 不同时点运动表象激活的脑区
激活脑区 | 半球 | 体素数量 | 峰值点MNI坐标 | t值 | ||
---|---|---|---|---|---|---|
X | Y | Z | ||||
第一次采集(2周) | ||||||
辅助运动区/中央前回/顶下小叶/中央后回/颞上回 | 左 | 2542 | −9 | −3 | 63 | 8.92 |
额下回 | 右 | 203 | 39 | 15 | 6 | 6.76 |
额中回 | 左 | 148 | −33 | 36 | 27 | 7.80 |
中央后回/顶下小叶 | 右 | 231 | 42 | −36 | 45 | 7.75 |
距状裂/楔前叶 | 左/右 | 4360 | 27 | −27 | −6 | −11.07 |
颞中回 | 右 | 376 | 24 | 15 | −21 | −7.43 |
颞中回 | 左 | 329 | −48 | 6 | −33 | −8.01 |
内侧额上回 | 左/右 | 1579 | 3 | 63 | 3 | −8.43 |
第二次采集(8周) | ||||||
脑岛/中央前回/颞上回 | 左 | 120 | −45 | 0 | 3 | 6.17 |
顶下小叶/中央后回 | 左 | 398 | −57 | −27 | 39 | 7.07 |
辅助运动区/中央前回 | 左 | 1010 | −6 | −3 | 60 | 9.99 |
顶下小叶/中央后回 | 右 | 157 | 39 | −39 | 42 | 7.27 |
小脑9区 | 右 | 296 | 3 | −54 | −45 | −8.93 |
距状裂/楔前叶 | 左/右 | 5804 | 9 | −45 | 39 | −11.79 |
颞中回 | 右 | 222 | 51 | 3 | −39 | −7.11 |
颞中回 | 左 | 640 | −54 | 3 | −30 | −6.60 |
内侧额上回 | 左/右 | 1918 | 30 | 63 | 9 | −9.75 |
第三次采集(14周) | ||||||
颞上回 | 右 | 414 | 63 | −21 | 9 | 8.81 |
中央后回/中央前回/颞上回/辅助运动区 | 左 | 3352 | −51 | −21 | 0 | 10.28 |
额下回 | 右 | 144 | 57 | 9 | 24 | 7.94 |
中央后回 | 右 | 511 | 42 | −36 | 57 | 8.30 |
小脑6区 | 右 | 56 | 30 | −48 | −33 | 6.02 |
距状裂/楔前叶 | 左/右 | 2240 | −6 | −75 | 6 | −7.64 |
小脑9区 | 右 | 81 | 15 | −45 | −48 | −7.22 |
旁海马回 | 左/右 | 100 | 27 | −27 | −6 | −8.11 |
内侧扣带回 | 左 | 359 | −9 | −39 | 39 | −8.28 |
额中回 | 右 | 233 | 24 | 42 | 45 | −6.02 |
激活脑区 | 半球 | 体素数量 | 峰值点MNI坐标 | F值 | ||
---|---|---|---|---|---|---|
X | Y | Z | ||||
左侧颞上回 | 左 | 106 | −57 | −21 | 9 | 15.04 |
左侧楔前叶 | 左 | 61 | −3 | −54 | 33 | 11.33 |
表4 不同时点运动表象激活差异的脑区
激活脑区 | 半球 | 体素数量 | 峰值点MNI坐标 | F值 | ||
---|---|---|---|---|---|---|
X | Y | Z | ||||
左侧颞上回 | 左 | 106 | −57 | −21 | 9 | 15.04 |
左侧楔前叶 | 左 | 61 | −3 | −54 | 33 | 11.33 |
图5 不同时点左侧颞上回(A)和左侧楔前叶(B)的平均信号值差异 注:左列为交互脑区的矢状面和冠状面, 右列分别为以峰值点坐标为球心、6 mm为半径所作球形ROI 的平均信号值的事后检验, *代表p < 0.05, **代表p < 0.01, ***代表p < 0.001, 误差线表示平均值的标准误差(standard error, SE), 事后多重比较采用Bonferroni校正。
变量 | M | SD | 1 | 2 | 3 |
---|---|---|---|---|---|
1 技能水平 | 6.51 | 0.91 | — | ||
2 时间一致性(ms) | 1831.66 | 905.61 | −0.27* | — | |
3 左侧颞上回 | 0.86 | 0.81 | 0.41** | −0.16 | — |
4 左侧楔前叶 | −0.49 | 0.72 | 0.50*** | −0.18 | 0.41** |
表5 各变量的相关分析
变量 | M | SD | 1 | 2 | 3 |
---|---|---|---|---|---|
1 技能水平 | 6.51 | 0.91 | — | ||
2 时间一致性(ms) | 1831.66 | 905.61 | −0.27* | — | |
3 左侧颞上回 | 0.86 | 0.81 | 0.41** | −0.16 | — |
4 左侧楔前叶 | −0.49 | 0.72 | 0.50*** | −0.18 | 0.41** |
评分分值 | 评分标准 |
---|---|
0~2 | 动作不熟悉, 不能完成单式练习 |
2~4 | 动作不标准, 演练不连贯 |
4~6 | 动作基本标准, 演练基本连贯 |
6~8 | 动作标准, 演练流畅, 劲力柔和 |
8~10 | 节奏、呼吸、神态整体符合太极拳韵味 |
附表1 太极拳技能评分标准
评分分值 | 评分标准 |
---|---|
0~2 | 动作不熟悉, 不能完成单式练习 |
2~4 | 动作不标准, 演练不连贯 |
4~6 | 动作基本标准, 演练基本连贯 |
6~8 | 动作标准, 演练流畅, 劲力柔和 |
8~10 | 节奏、呼吸、神态整体符合太极拳韵味 |
因变量 | F | p | ηp2 | |
---|---|---|---|---|
太极拳技能水平 | 组别 | 304.54*** | < 0.001 | 0.92 |
时间 | 25.17*** | < 0.001 | 0.48 | |
组别 × 时间 | 28.29*** | < 0.001 | 0.51 | |
表象时间(ms) | 组别 | 0.71 | 0.406 | 0.03 |
时间 | 0.14 | 0.709 | 0.01 | |
组别 × 时间 | 3.05 | 0.092 | 0.10 | |
实际执行时间(ms) | 组别 | 66.69*** | < 0.001 | 0.71 |
时间 | 10.50** | 0.003 | 0.28 | |
组别 × 时间 | 5.10* | 0.032 | 0.16 | |
时间一致性(ms) | 组别 | 4.60* | 0.041 | 0.15 |
时间 | 0.06 | 0.812 | < 0.01 | |
组别 × 时间 | 3.51 | 0.072 | 0.12 |
附表2 两因素重复测量方差分析(实验组19人, 对照组10人)
因变量 | F | p | ηp2 | |
---|---|---|---|---|
太极拳技能水平 | 组别 | 304.54*** | < 0.001 | 0.92 |
时间 | 25.17*** | < 0.001 | 0.48 | |
组别 × 时间 | 28.29*** | < 0.001 | 0.51 | |
表象时间(ms) | 组别 | 0.71 | 0.406 | 0.03 |
时间 | 0.14 | 0.709 | 0.01 | |
组别 × 时间 | 3.05 | 0.092 | 0.10 | |
实际执行时间(ms) | 组别 | 66.69*** | < 0.001 | 0.71 |
时间 | 10.50** | 0.003 | 0.28 | |
组别 × 时间 | 5.10* | 0.032 | 0.16 | |
时间一致性(ms) | 组别 | 4.60* | 0.041 | 0.15 |
时间 | 0.06 | 0.812 | < 0.01 | |
组别 × 时间 | 3.51 | 0.072 | 0.12 |
变量 | 事后检验 | t | p | Cohen’s d | |
---|---|---|---|---|---|
太极拳技能水平 | 实验组 | 前测−后测 | −8.80*** | < 0.001 | −2.06 |
对照组 | 前测−后测 | 0.19 | 0.853 | −0.06 | |
前测 | 实验组−对照组 | 9.89*** | < 0.001 | 3.12 | |
后测 | 实验组−对照组 | 17.04*** | < 0.001 | 5.23 | |
表象时间(ms) | 实验组 | 前测−后测 | 1.81 | 0.082 | 0.42 |
对照组 | 前测−后测 | −0.85 | 0.405 | −0.27 | |
前测 | 实验组−对照组 | 1.54 | 0.135 | 0.62 | |
后测 | 实验组−对照组 | −0.20 | 0.845 | −0.07 | |
实际执行时间(ms) | 实验组 | 前测−后测 | 4.68*** | < 0.001 | 1.09 |
对照组 | 前测−后测 | 0.61 | 0.549 | 0.20 | |
前测 | 实验组−对照组 | 7.61*** | < 0.001 | 2.73 | |
后测 | 实验组−对照组 | 5.61*** | < 0.001 | 1.83 | |
时间一致性(ms) | 实验组 | 前测−后测 | 1.39 | 0.176 | 0.36 |
对照组 | 前测−后测 | −1.31 | 0.203 | −0.42 | |
前测 | 实验组−对照组 | −0.68 | 0.504 | −0.19 | |
后测 | 实验组−对照组 | −2.49* | 0.019 | −0.93 |
附表3 组别和时间的事后检验(实验组19人, 对照组10人)
变量 | 事后检验 | t | p | Cohen’s d | |
---|---|---|---|---|---|
太极拳技能水平 | 实验组 | 前测−后测 | −8.80*** | < 0.001 | −2.06 |
对照组 | 前测−后测 | 0.19 | 0.853 | −0.06 | |
前测 | 实验组−对照组 | 9.89*** | < 0.001 | 3.12 | |
后测 | 实验组−对照组 | 17.04*** | < 0.001 | 5.23 | |
表象时间(ms) | 实验组 | 前测−后测 | 1.81 | 0.082 | 0.42 |
对照组 | 前测−后测 | −0.85 | 0.405 | −0.27 | |
前测 | 实验组−对照组 | 1.54 | 0.135 | 0.62 | |
后测 | 实验组−对照组 | −0.20 | 0.845 | −0.07 | |
实际执行时间(ms) | 实验组 | 前测−后测 | 4.68*** | < 0.001 | 1.09 |
对照组 | 前测−后测 | 0.61 | 0.549 | 0.20 | |
前测 | 实验组−对照组 | 7.61*** | < 0.001 | 2.73 | |
后测 | 实验组−对照组 | 5.61*** | < 0.001 | 1.83 | |
时间一致性(ms) | 实验组 | 前测−后测 | 1.39 | 0.176 | 0.36 |
对照组 | 前测−后测 | −1.31 | 0.203 | −0.42 | |
前测 | 实验组−对照组 | −0.68 | 0.504 | −0.19 | |
后测 | 实验组−对照组 | −2.49* | 0.019 | −0.93 |
前测 | 后测 | t | p | Cohen’s d | |
---|---|---|---|---|---|
左侧颞上回 | 0.25 ± 0.48 | 0.37 ± 0.52 | −0.57 | 0.580 | −0.18 |
左侧楔前叶 | −0.59 ± 0.65 | −0.53 ± 0.63 | −0.28 | 0.786 | −0.09 |
附表4 对照组ROI的配对样本t检验(n = 10)
前测 | 后测 | t | p | Cohen’s d | |
---|---|---|---|---|---|
左侧颞上回 | 0.25 ± 0.48 | 0.37 ± 0.52 | −0.57 | 0.580 | −0.18 |
左侧楔前叶 | −0.59 ± 0.65 | −0.53 ± 0.63 | −0.28 | 0.786 | −0.09 |
[1] |
Abreu, A. M., Macaluso, E., Azevedo, R. T., Cesari, P., Urgesi, C., & Aglioti, S. M. (2012). Action anticipation beyond the action observation network: A functional magnetic resonance imaging study in expert basketball players. The European Journal of Neuroscience, 35(10), 1646-1654.
doi: 10.1111/ejn.2012.35.issue-10 URL |
[2] |
Bachrach, A., Jola, C., & Pallier, C. (2016). Neuronal bases of structural coherence in contemporary dance observation. NeuroImage, 124, 464-472.
doi: S1053-8119(15)00793-4 pmid: 26348557 |
[3] |
Bai, X., Zhang, Q., Zhang, P., Zhou, S., Liu, Y., Song, X., & Peng, G. (2016). Comparison of motor execution and motor imagery brain activation patterns: A fNIRS Study. Acta Psychologica Sinica, 48(5), 495-508.
doi: 10.3724/SP.J.1041.2016.00495 |
[ 白学军, 张琪涵, 章鹏, 周菘, 刘颖, 宋星, 彭国慧. (2016). 基于fNIRS的运动执行与运动想象脑激活模式比较. 心理学报, 48(5), 495-508.] | |
[4] | Bishop, D. T., Wright, M. J., Jackson, R. C., & Abernethy, B. (2013). Neural bases for anticipation skill in soccer: An fMRI study. Journal of Sport & Exercise Psychology, 35(1), 98-109. |
[5] | Chen, Q., & Liu, R. D. (Eds). (2019). Contemporary psychology of education (third edition). Beijing: Beijing Normal University Press. |
[ 陈琦, 刘儒德. (主编). (2019). 当代教育心理学(第三版). 北京: 北京师范大学出版社.] | |
[6] |
Chiacchiero, M., Cagliostro, P., Degenaro, J., Giannina, C., & Rabinovich, Y. (2015). Motor imagery improves balance in older adults. Topics in Geriatric Rehabilitation, 31(2), 159-163.
doi: 10.1097/TGR.0000000000000063 URL |
[7] |
Collet, C., Guillot, A., Lebon, F., MacIntyre, T., & Moran, A. (2011). Measuring motor imagery using psychometric, behavioral, and psychophysiological tools. Exercise and Sport Sciences Reviews, 39(2), 85-92.
doi: 10.1097/JES.0b013e31820ac5e0 pmid: 21206282 |
[8] |
Cui, L., Yin, H., Lyu, S., Shen, Q., Wang, Y., Li, X.,... Zhu, L. (2019). Tai Chi Chuan vs general aerobic exercise in brain plasticity: A multimodal MRI study. Scientific Reports, 9(1), 17264-17267.
doi: 10.1038/s41598-019-53731-z pmid: 31754170 |
[9] |
Di, X., Zhu, S., Jin, H., Wang, P., Ye, Z., Zhou, k.,... Rao, H. (2012). Altered resting brain function and structure in professional badminton players. Brain Connectivity, 2(4), 225-233.
doi: 10.1089/brain.2011.0050 pmid: 22840241 |
[10] |
Faul, F., Erdfelder, E., Buchner, A., & Lang, A.-G. (2009). Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods, 41(4), 1149-1160.
doi: 10.3758/BRM.41.4.1149 pmid: 19897823 |
[11] |
Feltz, D. L., & Landers, D. M. (1983). The effects of mental practice on motor skill learning and performance: A meta-analysis. Journal of Sport Psychology, 5(1), 25-57.
doi: 10.1123/jsp.5.1.25 URL |
[12] |
Fogassi, L., Ferrari, P. F., Gesierich, B., Rozzi, S., Chersi, F., & Rizzolatti, G. (2005). Parietal lobe: From action organization to intention understanding. Science, 308(5722), 662-667.
doi: 10.1126/science.1106138 pmid: 15860620 |
[13] |
Grèzes, J., Frith, C., & Passingham, R. E. (2004). Brain mechanisms for inferring deceit in the actions of others. The Journal of Neuroscience, 24(24), 5500-5505.
doi: 10.1523/JNEUROSCI.0219-04.2004 URL |
[14] |
Guillot, A., Collet, C., Nguyen, V. A., Malouin, F., Richards, C., & Doyon, J. (2008). Functional neuroanatomical networks associated with expertise in motor imagery. NeuroImage, 41(4), 1471-1483.
doi: 10.1016/j.neuroimage.2008.03.042 pmid: 18479943 |
[15] |
Guillot, A., Hoyek, N., Louis, M., & Collet, C. (2012). Understanding the timing of motor imagery: Recent findings and future directions. International Review of Sport and Exercise Psychology, 5(1), 3-22.
doi: 10.1080/1750984X.2011.623787 URL |
[16] |
Guo, Z., Li, A., & Yu, L. (2017). "Neural efficiency" of athletes’ brain during visuo-spatial task: An fMRI study on table tennis players. Frontiers in Behavioral Neuroscience, 11, 72.
doi: 10.3389/fnbeh.2017.00072 URL |
[17] |
Hanakawa, T., Immisch, I., Toma, K., Dimyan, M. A., van Gelderen, P., & Hallett, M. (2003). Functional properties of brain areas associated with motor execution and imagery. Journal of Neurophysiology, 89(2), 989-1002.
doi: 10.1152/jn.00132.2002 pmid: 12574475 |
[18] |
Holmes, P. S., & Collins, D. J. (2001). The PETTLEP approach to motor imagery: A functional equivalence model for sport psychologists. Journal of Applied Sport Psychology, 13(1), 60-83.
doi: 10.1080/10413200109339004 URL |
[19] |
Ives-Deliperi, V. L., Solms, M., & Meintjes, E. M. (2011). The neural substrates of mindfulness: An fMRI investigation. Social Neuroscience, 6(3), 231-242.
doi: 10.1080/17470919.2010.513495 pmid: 20835972 |
[20] | Jerde, T. A., & Curtis, C. E. (2013). Maps of space in human frontoparietal cortex. Journal of Physiology, 107(6), 510-516. |
[21] |
Kolb, B., & Gibb, R. (2014). Searching for the principles of brain plasticity and behavior. Cortex, 58, 251-260.
doi: 10.1016/j.cortex.2013.11.012 pmid: 24457097 |
[22] |
Lafleur, M. F., Jackson, P. L., Malouin, F., Richards, C. L., Evans, A. C., & Doyon, J. (2002). Motor learning produces parallel dynamic functional changes during the execution and imagination of sequential foot movements. NeuroImage, 16(1), 142-157.
doi: 10.1006/nimg.2001.1048 pmid: 11969325 |
[23] | Lou, H., & Liu, P. (2020). The influence of sports training on the brain plasticity of athletes: An ALE analysis of fMRI studies. China Sport Science, 40(7), 65-71. |
[ 娄虎, 刘萍. (2020). 运动训练对运动员大脑功能可塑性变化的影响——基于fMRI研究的ALE分析. 体育科学, 40(7), 65-71.] | |
[24] |
Malouin, F. P., Richards, C. L. P., Durand, A. P., & Doyon, J. P. (2008). Reliability of mental chronometry for assessing motor imagery ability after stroke. Archives of Physical Medicine and Rehabilitation, 89(2), 311-319.
doi: 10.1016/j.apmr.2007.11.006 pmid: 18226656 |
[25] |
Marchand, W. R., Lee, J. N., Suchy, Y., Garn, C., Chelune, G., Johnson, S., & Wood, N. (2013). Functional architecture of the cortico-basal ganglia circuitry during motor task execution: Correlations of strength of functional connectivity with neuropsychological task performance among female subjects. Human Brain Mapping, 34(5), 1194-1207.
doi: 10.1002/hbm.21505 pmid: 22287185 |
[26] |
Nakano, H., Murata, S., Shiraiwa, K., & Nonaka, K. (2020). Increased time difference between imagined and physical walking in older adults at a high risk of falling. Brain Sciences, 10(6), 332.
doi: 10.3390/brainsci10060332 URL |
[27] |
Oshio, R., Tanaka, S., Sadato, N., Sokabe, M., Hanakawa, T., & Honda, M. (2010). Differential effect of double-pulse TMS applied to dorsal premotor cortex and precuneus during internal operation of visuospatial information. NeuroImage, 49(1), 1108-1115.
doi: 10.1016/j.neuroimage.2009.07.034 pmid: 19632337 |
[28] |
Park, J.-W., Kim, Y.-H., Jang, S. H., Chang, W. H., Park, C.-H., & Kim, S. T. (2010). Dynamic changes in the cortico-subcortical network during early motor learning. NeuroRehabilitation, 26(2), 95-103.
doi: 10.3233/NRE-2010-0540 URL |
[29] |
Port, A. P., Santaella, D. F., Lacerda, S. S., Speciali, D. S., Balardin, J. B., Lopes, P. B.,... Kozasa, E. H. (2018). Cognition and brain function in elderly Tai Chi practitioners: A case-control study. Explore, 14(5), 352-356.
doi: 10.1016/j.explore.2018.04.007 URL |
[30] | Ren, Z., Hu, L., Zhang, Y., Xu, M., Li, L., Xia, F., & Huang, R. (2019). A review of brain plasticity of motor skill experts: Evidence from magnetic resonance imaging. China Sport Science and Technology, 55(2), 3-18. |
[ 任占兵, 胡琳琳, 张远超, 徐敏, 李论雄, 夏丰光, 黄瑞旺. (2019). 运动技能专家脑可塑性研究进展: 来自磁共振成像的证据. 中国体育科技, 55(2), 3-18.] | |
[31] |
Ross, J. S., Tkach, J., Ruggieri, P. M., Lieber, M., & Lapresto, E. (2003). The mind's eye: Functional MR imaging evaluation of golf motor imagery. American Journal of Neuroradiology. 24(6), 1036-1044.
pmid: 12812924 |
[32] |
Sale, A., Berardi, N., & Maffei, L. (2014). Environment and brain plasticity: Towards an endogenous pharmacotherapy. Physiological Reviews, 94(1), 189-234.
doi: 10.1152/physrev.00036.2012 pmid: 24382886 |
[33] | Shen, C., Wu, Y., Zhang, L., Zhu, H., Dai, W., Li, X.,... Tan, X. (2016). The effect of different proprioception input on motor imagery of complex movement: A fMRI study. Journal of Tianjin University of Sport, 31(3), 227-232. |
[ 沈诚, 吴殷, 张兰兰, 朱桦, 戴雯, 李雪佩,... 谭晓缨. (2016). 不同本体感觉输入对复杂运动动作表象的影响: fMRI研究. 天津体育学院学报, 31(3), 227-232.] | |
[34] |
Shmuelof, L., Krakauer, J. W., & Mazzoni, P. (2012). How is a motor skill learned? Change and invariance at the levels of task success and trajectory control. Journal of Neurophysiology, 108(2), 578-594.
doi: 10.1152/jn.00856.2011 pmid: 22514286 |
[35] |
Tamè, L., Braun, C., Holmes, N. P., Farnè, A., & Pavani, F. (2016). Bilateral representations of touch in the primary somatosensory cortex. Cognitive Neuropsychology, 33(1-2), 48-66.
doi: 10.1080/02643294.2016.1159547 pmid: 27314449 |
[36] |
Tao, J., Liu, J., Egorova, N., Chen, X., Sun, S., Xue, X.,... Kong, J. (2016). Increased hippocampus-medial prefrontal cortex resting-state functional connectivity and memory function after Tai Chi Chuan practice in elder adults. Frontiers in Aging Neuroscience, 8, 25.
doi: 10.3389/fnagi.2016.00025 pmid: 26909038 |
[37] |
Tkach, D., Reimer, J., & Hatsopoulos, N. G. (2007). Congruent activity during action and action observation in motor cortex. The Journal of Neuroscience, 27(48), 13241-13250.
doi: 10.1523/JNEUROSCI.2895-07.2007 URL |
[38] |
Tomasino, B., Maieron, M., Guatto, E., Fabbro, F., & Rumiati, R. I. (2013). How are the motor system activity and functional connectivity between the cognitive and sensorimotor systems modulated by athletic expertise? Brain Research, 1540, 21-41.
doi: 10.1016/j.brainres.2013.09.048 pmid: 24099840 |
[39] |
Utevsky, A. V., Smith, D. V., & Huettel, S. A. (2014). Precuneus is a functional core of the default-mode network. The Journal of Neuroscience, 34(3), 932-940.
doi: 10.1523/JNEUROSCI.4227-13.2014 URL |
[40] |
Wang, H., Xu, G., Wang, X., Sun, C., Zhu, B., Fan, M.,... Sun, L. (2019). The reorganization of resting-state brain networks associated with motor imagery training in chronic stroke patients. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 27(10), 2237-2245.
doi: 10.1109/TNSRE.2019.2940980 pmid: 31536007 |
[41] |
Wei, G., & Luo, J. (2009). Sport expert's motor imagery: Functional imaging of professional motor skills and simple motor skills. Brain Research, 1341, 52-62.
doi: 10.1016/j.brainres.2009.08.014 URL |
[42] | Wei, G.-X., Dong, H.-M., Yang, Z., Luo, J., & Zuo, X.-N. (2014). Tai Chi Chuan optimizes the functional organization of the intrinsic human brain architecture in older adults. Frontiers in Aging Neuroscience, 6, 74. |
[43] | Williams, S., Cumming, J., Ntoumanis, N., Nordin-Bates, S. M., Ramsey, R., & Hall, C. (2012). Further validation and development of the movement imagery questionnaire. Journal of Sport & Exercise Psychology, 34(5), 621-646. |
[44] |
Wu, M.-T., Tang, P.-F., Goh, J. O. S., Chou, T.-L., Chang, Y.-K., Hsu, Y.-C.,... Lan, C. (2018). Task-switching performance improvements after Tai Chi Chuan training are associated with greater prefrontal activation in older adults. Frontiers in Aging Neuroscience, 10, 280.
doi: 10.3389/fnagi.2018.00280 URL |
[45] |
Yamashita, M., Suzuki, M., Kawagoe, T., Asano, K., Futada, M., Nakai, R.,... Sekiyama, K. (2021). Impact of early- commenced and continued sports training on the precuneus in older athletes. Frontiers in Human Neuroscience, 15, 766935-766935.
doi: 10.3389/fnhum.2021.766935 URL |
[46] | Yang, J. (2015). The influence of motor expertise on the brain activity of motor task performance: A meta-analysis of functional magnetic resonance imaging studies. Cognitive, Affective, & Behavioral Neuroscience, 15(2), 381-394. |
[47] | You, M., Liu, L., Fan, R., & Tong, J. (2020). Design and effect evaluation of the performance of specific imagery training program: A case study of free throw. Journal of Shanghai University of Sport, 44(11), 28-37. |
[ 游茂林, 刘良辉, 樊荣, 童靖然. (2020). 专项表象训练方案设计与效果测评——以篮球罚球训练为例. 上海体育学院学报, 44(11), 28-37.] | |
[48] |
Yue, C., Yu, Q., Zhang, Y., Herold, F., Mei, J., Kong, Z.,... Zou, L. (2020). Regular Tai Chi practice is associated with improved memory as well as structural and functional alterations of the hippocampus in the elderly. Frontiers in Aging Neuroscience, 12, 586770.
doi: 10.3389/fnagi.2020.586770 URL |
[49] |
Zhang, L., Shen, C., Zhu, H., Li, X., Dai, W., Wu, Y., & Zhang, J. (2017). The effects of motor skill level and somatosensory input on motor imagery: An fMRI study on basketball free shot. Acta Psychologica Sinica, 49(3), 307-316.
doi: 10.3724/SP.J.1041.2017.00307 |
[ 张兰兰, 沈诚, 朱桦, 李雪佩, 戴雯, 吴殷, 张剑. (2017). 运动技能水平与躯体感觉输入对运动表象的影响. 心理学报, 49(3), 307-316.] | |
[50] |
Zhang, L.-L., Pi, Y.-L., Shen, C., Zhu, H., Li, X.-P., Ni, Z.,... Wu, Y. (2018). Expertise-level-dependent functionally plastic changes during motor imagery in basketball players. Neuroscience, 380, 78-89.
doi: 10.1016/j.neuroscience.2018.03.050 URL |
[51] | Zhang, L. W., & Mao., Z. X. (Eds). (2018). Sports psychology (2nd ed.). Shanghai: East China Normal University Press. |
[ 张力为, 毛志雄. (主编). (2018). 运动心理学 (第2版). 上海: 华东师范大学出版社.] | |
[52] | Zhang, M., Huang, Y., Gao, Q., & Chen, H. (2020). Brain plasticity of table tennis athletes based on dynamic amplitude of low-frequency fluctuation method. Journal of Shanghai University of Sport, 44(6), 62-69. |
[ 张牧, 黄月, 高晴, 陈华富. (2020). 基于动态低频振荡振幅方法的乒乓球运动员脑可塑性变化. 上海体育学院学报, 44(6), 62-69.] | |
[53] | Zhao, Q., Lu, Y., Wang, Y., & Zhou, C. (2017). The optimization in sensorimotor system in dancers: Evidences from resting state fMRI. Chinese Journal of Sports Medicine, 36(12), 1081-1086. |
[ 赵琦, 陆颖之, 王莹莹, 周成林. (2017). 舞蹈运动员大脑感知运动系统的功能特征——一项静息态功能磁共振研究. 中国运动医学杂志, 36(12), 1081-1086.] | |
[54] | Zhong, X., & Ke, M. (2011). Experimental study of internal and external imagery training on table tennis skill learning. Journal of Capital University of Physical Education and Sports, 23(2), 165-168. |
[ 钟霞, 柯敏. (2011). 内-外表象训练影响乒乓球技能学习的教学实验. 首都体育学院学报, 23(2), 165-168.] |
[1] | 金花, 贾丽娜, 阴晓娟, 严世振, 魏士琳, 陈俊涛. 错误信息持续影响效应的神经基础[J]. 心理学报, 2022, 54(4): 343-354. |
[2] | 金花, 梁紫平, 朱子良, 严世振, 林琳, 艾克旦·艾斯卡尔, 尹建忠, 姜云鹏, 田鑫. 整体运动知觉老化伴随颞中回静息态功能改变[J]. 心理学报, 2021, 53(1): 38-54. |
[3] | 张兰兰;沈诚;朱桦;李雪佩;戴雯;吴殷;张剑. 运动技能水平与躯体感觉输入对运动表象的影响[J]. 心理学报, 2017, 49(3): 307-316. |
[4] | 薛贵, 陈传升,吕忠林,董奇. 脑成像技术及其在决策研究中的应用[J]. 心理学报, 2010, 42(01): 120-137. |
[5] | Sara Pudas, Jonas Persson, L-G Nilsson &, Lars Nyberg. 工作记忆的保持与操控:腹侧和背侧额叶皮层的特异性功能磁共振成像活动[J]. 心理学报, 2009, 41(11): 1054-1062. |
[6] | 董奇, 薛贵,金真,曾亚伟. 语言经验对大脑激活的影响:来自第二语言初学者的证据[J]. 心理学报, 2004, 36(04): 448-454. |
[7] | 刘昌. 人类工作记忆的某些神经影像研究[J]. 心理学报, 2002, 34(06): 82-90. |
[8] | 裴剑涛,沈家鲜,龚剑飞. 儿童运动行距预测能力的发展及影响因素[J]. 心理学报, 1995, 27(4): 371-378. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||