ISSN 1671-3710
CN 11-4766/R
主办:中国科学院心理研究所
出版:科学出版社

心理科学进展, 2021, 29(4): 723-736 doi: 10.3724/SP.J.1042.2021.00723

研究论文

好奇心的机制及作用

黄骐1, 陈春萍2, 罗跃嘉1,3,4, 伍海燕,5,6

1北京师范大学认知神经科学与学习国家重点实验室, 北京 100875

2中国科学院心理研究所行为科学重点实验室, 北京 100101

3齐鲁师范学院教师教育学院, 济南 250200

4深圳神经科学研究院, 深圳 518060

5澳门大学认知与脑科学研究中心

6澳门大学心理系, 澳门 999078

The mechanism and function of curiosity

HUANG Qi1, CHEN Chunping2, LUO Yuejia1,3,4, WU Haiyan,5,6

1State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China

2CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing 100101, China

3College of Teacher Education, Qilu Normal University, Jinan 250200, China

4Shenzhen Institute of Neuroscience, Shenzhen 518060, China

5Center for Cognition and Brain Sciences, University of Macau, Macau 999078, China

6Department of Psychology, University of Macau, Macau 999078, China

通讯作者: 伍海燕, E-mail:haiyanwu@um.edu.mo

收稿日期: 2020-05-6   网络出版日期: 2021-04-06

基金资助: 国家自然科学基金项目(U1736125)
国家自然科学基金项目(31920103009)
广东省科技项目(2019A050510048)
深港脑科学创新研究院项目(2019SHIBS0003)

Received: 2020-05-6   Online: 2021-04-06

摘要

作为一种常见的心理状态和人格特质, 好奇心是认知心理学研究领域中的重要主题。大脑多个脑区的分工和协同作用, 使个体形成了产生与评估预测误差、触发与缓解好奇心以及产生惊奇与新预测误差的认知过程。这些认知过程能够减少对事物和环境的预测误差与信息差距, 消除对事物的不确定性。好奇心在个体终生发展过程中, 对促进认知功能, 保持心理和身体健康有积极的作用。未来研究可以从跨物种、跨学科和多领域交叉的角度切入, 推动好奇心主题研究的深入、研究手段的发展以及研究成果的应用。

关键词: 好奇心; 探索行为; 信息寻求; 预测误差; 信息差距; 心理健康

Abstract

Curiosity has a long history of research and rich definitions and classifications as a common mental state and personality trait. The division and coordination of multiple brain regions enable individuals to form a cognitive process of generating and evaluating prediction error, triggering and mediating curiosity, and producing surprise and new prediction error, so as to reduce the prediction error and information gap between internal states and external environment, and eliminate uncertainty. Curiosity has a significant role in improving cognitive function and maintaining mental and physical health during development. Future research can be further considered from a cross-species, interdisciplinary, and multi-domain perspective to promote the deepening of research topics, the development of research methods, and the application of research results in curiosity.

Keywords: curiosity; exploratory behavior; information seeking; prediction error; information gap; mental health

PDF (1705KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

黄骐, 陈春萍, 罗跃嘉, 伍海燕. 好奇心的机制及作用 . 心理科学进展, 2021, 29(4): 723-736 doi:10.3724/SP.J.1042.2021.00723

HUANG Qi, CHEN Chunping, LUO Yuejia, WU Haiyan. The mechanism and function of curiosity. Advances in Psychological Science, 2021, 29(4): 723-736 doi:10.3724/SP.J.1042.2021.00723

1 引言

好奇心是一种人类普遍存在的心理状态, 也是科学研究的必需心理品质之一。人们在互联网上认识陌生人、猎奇逸闻趣事、探索未知世界等行为, 都可以视作信息时代中好奇心驱动的行为。物理学家爱因斯坦对“神圣的好奇心”推崇备至, 把它看作人类最宝贵的品质(吴绍兵, 赵丽宏,2001)。人类的好奇心是哲学家、教育科学家、心理学家、神经科学家甚至计算科学家一直探索和感兴趣的主题(Galli et al.2018)。

好奇心既是一种特质(好奇心体验的一种个体差异, Litman & Spielberger, 2003), 也是一种情绪或动机状态, 对学习和记忆有巨大影响, 在儿童早期尤为明显。好奇心在儿童发展(Engel, 2011; Smock & Holt, 1962)和教育(Grossnickle, 2016; Oudeyer et al.2016; Klahr et al.2011)的研究中被广为关注, 被认为在儿童的学习、预测学业成就以及成就动机方面起着核心作用(Renninger & Hidi, 2015; von Stumm et al.2011)。

好奇心潜在的心理和神经机制, 是当今好奇心研究的方向之一(Gruber & Ranganath, 2019; Kidd & Hayden, 2015; Kidd et al.2012; Loewenstein, 1994)。好奇心是生物特有的一种认知状态或特质, 越来越多的研究将人类好奇心的心理与神经机制研究成果通过计算科学应用到人工智能与机器人领域, 使得机器人能够获得更加全面与逼真的人类智能(Gottlieb & Oudeyer, 2018; Kaplan & Oudeyer, 2007; Twomey & Westermann, 2015, 2018)。

当前国内好奇心有关综述主要集中在两大方向:关注不同理论流派视角对好奇心本质的解释(胡克祖, 2005; 李天然, 俞国良, 2015), 以及从教育学与教育心理学角度关注幼儿好奇心的影响因素和在教育中的作用(董妍 等, 2017; 袁维新, 2013), 鲜有对好奇心认知过程的神经机制进行总结以及从终生发展角度评述好奇心对个体的作用。本文主要评述了好奇心的概念与分类, 好奇心的心理成分与神经机制, 以及好奇心在促进个体认知功能、维持心理健康和身体健康的作用, 并对当前好奇心研究的发展现状进行总结与展望, 希望为研究者提供好奇心研究的最新洞见。

2 好奇心的概念

2.1 好奇心的定义

好奇心既包括对于当前知识性问题答案的渴望, 也包含在长远视角中的战略部署(Gottlieb et al.2013)。作为一种重要的心理状态, 好奇心的概念发展历史悠久(见图1), 已有许多理论流派对好奇心提出了定义和解释 (胡克祖, 2005; 李天然, 俞国良, 2015)。James (1899)认为, 好奇心是一种为了更好认知的冲动, 即驱使人们去探索未知事物的一种欲望; Freud (1915)认为, 好奇心是一种个体对知识的渴望; 而Harlow (1950)认为好奇心是一种操作性的动机, 驱使个体进行没有任何实质回报的解决问题的行为; Cohen等(1955)认为好奇心是一种了解和理解外部世界的需求; Loewenstein (1994)认为好奇心是一种由内部驱动的信息寻求的特殊形式, 该定义与理论受到广泛认可。这些研究者对好奇心提出了来自本能论、驱力论及认知论的定义, 提供了不同角度的观点, 丰富了人类对好奇心概念的认知。Grossnickle (2016)整合前人对好奇心的定义, 发现四种好奇心的定义特征, 包括对知识或信息的需求、探索行为、对照变量(collative variables:包括不确定性、意外性、新颖性和复杂性)及情绪唤醒。基于此, Grossnickle重新评估并提出一个比较全面的定义:个体在经历或寻找某个对照性变量时, 对知识或信息的渴望, 并伴随着积极的情绪、强烈的唤醒或探索性的行为。该定义较全面涵盖了心理学对好奇心的定义。之后, Dubey和Griffiths (2020)从计算建模的角度提出, 好奇心是一种整合了基于新奇和复杂性理论的未来奖励最大化机制。因此, 好奇心的定义在经历了不同理论流派的碰撞后, 开始整合与交汇, 并且在多学科碰撞和交叉中继续发展。

图1

图1   近现代好奇心重要定义的发展时间线


2.2 好奇心的分类

2.2.1 基于好奇对象的分类

Daniel Berlyne 是20世纪最重要的好奇心研究者之一, 他从两个维度将好奇心区分为4种类型。其中一个维度是依据好奇对象进行分类, 从知觉性(perceptual)到认知性(epistemic)的好奇心(Berlyne, 1954)。知觉性好奇心和认知性好奇心的对象不同。知觉性好奇心是一种促使个体通过感官刺激寻找新异信息的驱动力, 这种驱动力会随着持续接触而减弱(Berlyne, 1954; Litman & Spielberger, 2003)。它不仅是动物和人类婴儿阶段探索行为的主要驱动力, 也是成年人探索行为的驱动力之一(Berlyne, 1954)。而认知性好奇心是一种获得知识与信息的需求和渴望(Kang et al.2009; Litman, 2005), 以消除当时的不确定性。它主要适用于人类, 因此这也是区分人类和动物的一个特征(Berlyne, 1966)。这种分类被广泛应用在好奇心研究中, 例如冷知识问题范式(travia question paradigm)是诱发认知性好奇心的主要研究方式(Kang et al.2009; Ligneul et al.2018; Marvin & Shohamy, 2016), 而模糊图片范式是诱发知觉性好奇心的研究范式之一(Jepma et al.2012; Wiggin et al.2019)。

Grossnickle (2016)按照好奇心的对象将其分成四类:物理性好奇心(physical curiosity)、知觉性好奇心(perceptual curiosity)、社会性好奇心(social curiosity)和认知性好奇心(epistemic curiosity, 或称为信息寻求好奇心)。除Berlyne (1954)提到的知觉性好奇心和认知性好奇心, 还包括物理性好奇心和社会性好奇心。前者是指对自己和周围环境的探索和操控(Dewey, 1910), 后者是指个体希望获得关于他人行为、想法、感受等新信息或与他人交往的愿望, 在这种愿望的驱动下个体产生探索性行为(Renner, 2006; Robinson et al.2017)。社会性好奇心也被称为人际性好奇心(interpersonal curiosity, 李天然, 俞国良, 2015), 它指个体对他人的新信息产生好奇, 包括他人的生活经历、生活习惯和细节, 以及内在的想法、感受、兴趣等的信息(Litman & Pezzo, 2007)。

2.2.2 基于产生好奇的原因的分类

Berlyne (1954)提到的另外一个维度则是根据好奇的原因进行分类, 从特异性(specific)到多样性(diversive)的好奇心。特异性好奇心是指对特定信息的一种渴望。而多样性好奇心是指对于知觉或认知刺激的一种普遍性渴望。例如, 当老鼠在没有任何明确任务的情况下, 倾向于探索迷宫中不熟悉的部分, 就是多样性好奇心的体现。

根据产生好奇的原因也可将好奇心分成兴趣型好奇心和剥夺型好奇心(Litman, 2010)。兴趣型好奇心是指渴望获得新信息以获得乐趣或兴趣, 它与寻求未知信息所对应的积极情感反应相关联, 个体预期未知信息会激发兴趣(Litman, 2008, 2010); 剥夺型好奇心是指渴望获得新信息以减少未知或无知的感觉, 它与焦虑、抑郁和愤怒的特征形式成正相关(Litman, 2010; Litman & Jimerson, 2004)。这种分类有助于理解为何好奇心会唤醒不同效价的情绪。

此外, 好奇心也可以分成工具性好奇心与非工具性好奇心。工具性好奇心是指一种探索和寻求信息的欲望, 以达到一个目标, 或在短(长)期内获得最大回报(Daw et al.2006)。非工具性好奇心是指个体探索某些本身有吸引力的信息, 这种探索并不能最大化奖励或提高表现(van Lieshout et al.2019)。人们对非工具性信息的好奇心表明, 信息获取可能具有内在价值, 帮助我们减少对世界的不确定性并适应环境(van Lieshout et al.2018)。

2.2.3 基于稳定性的分类

好奇心不仅是个体对环境的反应所表现出来的暂时的好奇状态(Loewenstein, 1994), 也可以是个体通过对环境特征的频繁反应或寻求好奇的机会来体验对新知识或经验渴望的一种持久的性格倾向(Kashdan & Fincham, 2004; Litman & Silvia, 2006)。大五人格中的开放性(openness)能够显著预测好奇心, 这表明好奇心可能是一种稳定的人格特质(Kashdan et al.2004)。Kashdan等人(2009)提出, 好奇心特质可以通过“延伸” (stretching)和“怀抱” (embracing)两个维度进行衡量, “延伸”代表寻求知识和新经验的动机, 而“怀抱”代表愿意接受日常生活的新奇、不确定性以及不可预知。

特质好奇心可能与状态好奇心之间有一定关系。例如Litman等(2005)的研究表明, 特质认知性好奇心与状态认知性好奇心成正相关, 并且状态认知性好奇心正向影响个体的探索行为。也有研究表明, 特质好奇心的个体差异也会影响好奇心驱动的探索行为(Kobayashi et al.2019; Lydon-Staley et al.2019)。

2.3 好奇心与其他认知驱动力的区别

2.3.1 好奇心与信息寻求

由于特异性好奇心和多样性好奇心都会驱动个体搜索获取信息, 因此当前普遍认为, 好奇心是信息寻求的一种特殊类型。好奇心与信息寻求的区别在于, 好奇心通常来源于内在驱动力, 而信息寻求则可能来自内在或外在两种驱动力(Loewenstein, 1994)。因此, 有研究者认为行为主体出于即时原因而寻求信息的行为并不是好奇心; 也有研究者将来自外在的驱动力纳入好奇心范畴, 并据此将好奇心分为工具性好奇心和非工具性好奇心以减少混淆。

2.3.2 好奇心与兴趣

虽然好奇心和兴趣是两个不同的概念, 但是两者存在一定关系(Ainley, 1987)。一方面, 好奇心和兴趣都被认为是内在的、自发的过程(Iran- Nejad & Cecil, 1992; Iran-Nejad & Chissom, 1992), 二者都与大脑奖赏系统有关(Berridge et al.2009; Kang et al.2009)。另一方面, 好奇心有可能会引起兴趣(Silvia, 2008)。Schmitt和Lahroodi (2008)认为, 认知性好奇心需要个体积累知识, 且往往是关于特定主题的知识。这些知识建立了后续的知识动机, 并帮助个体确定他们的兴趣。知识的增长与个人兴趣的结合建立了一个基础, 在此基础上, 个体能够提出好奇的问题, 这反过来有助于兴趣的持续发展(Hidi, 2006; Renninger, 2000)。

好奇心和兴趣混用的现象较为常见, 可从以下三个方面对二者进行区分:

1) 知识在其中的作用。兴趣需要知识的存在, 而好奇心表现为知识的缺失。在实证研究中, 知识在好奇心和兴趣的作用方面有明显的不同。好奇心的产生需要一些但不太多的知识来刺激后续的知识寻求(Kang et al.2009; Loewenstein, 1994); 若对知识太熟悉, 个体可能会无聊厌烦; 若太新奇, 个体缺乏理解图式。相反, 当个体在一个领域内获得能力和专业知识时, 知识和个人兴趣都会相应地增加(Alexander, 2003; Hidi, 2006), 即对兴趣而言, 无需最佳知识水平。

2) 目标和导致的结果。好奇心的目标是减少不确定性和填补知识差距(knowledge gap); 而兴趣是追求愉悦和获得知识的过程(Grossnickle, 2016)。

3) 稳定性和可塑性。兴趣是对特定主题的积极感受, 而好奇心是追求新奇, 关注问题本身而非内容。另外, 从人格发展的观点来看, 持久的好奇心(即好奇心的特质)会由于环境和生物因素, 在未来出现某些可预测的发展趋势(Blonigen et al.2008; McCrae & Costa, 1997); 然而Alexander提出的兴趣发展模型表明, 个体对特定领域、主题或对象兴趣的增长并不随着年龄变化(Alexander, 2003; Alexander et al.1997)。

好奇心的定义在多学科交叉中继续发展; 好奇心的分类也得到广泛研究并在当前研究中得到应用, 为好奇心的心理成分和神经机制研究提供了细分化的研究主题和可操控的研究范式。

3 好奇心的心理成分和神经机制

Gruber和Ranganath (2019)认为, 好奇心对依赖海马的记忆的增强作用产生于一个包含预测误差、评估、好奇和探索的循环过程, 因此被称为PACE (Prediction error, Appraisal, Curiosity, Exploratory)框架。以下, 我们将基于该框架, 整合当前最新研究成果, 提出好奇心的心理成分与神经机制理论框架(见图2)。

图2

图2   好奇心的心理成分与神经机制理论框架


3.1 好奇心的来源:海马与前扣带皮层的作用

先验知识使人们能够对环境做出预测, 因此在先验知识很少或事件违反个体预期时, 预测误差就会发生。一种是基于情境(context)的预测误差, 与海马(hippocampus)有关。海马是形成认知地图(cognitive map)的关键脑区, 可使个体根据过去类似情境下的经验产生预测(O'Keefe & Nadel, 1979)。当个体处于一个新异环境或环境发生变化时, 现实情境与海马产生的预测产生差距, 反过来刺激海马神经元亚群(错位系统), 引起探索行为来解决不确定性(O'Keefe & Nadel, 1979)。研究表明, 人类更倾向花更多时间看新异刺激(Kidd et al.2012)或与之前相比发生变化的区域(Hannula et al.2012), 这种对新异性的探索使海马活动增强(Liu et al.2017; Voss et al.2017)。因此, 海马被认为是与好奇心产生有关的脑区。

另一种是基于信息的预测误差, 与前扣带皮层(anterior cingulate cortex, ACC)的活动有关。当个体在某一特定领域中想要理解的知识高于当前知识水平或违背原本的先验知识时, 就会产生一种信息差距(information gap, 胡克祖, 2005; Gottlieb et al.2013; Litman et al.2005; Loewenstein, 1994), 此时ACC会发出认知冲突的信号, 从而引发特定的认知性和知觉性好奇心。通过个体的信息寻求行为, 特定的认知好奇心可以减少信息差距所带来的不确定性。研究表明, 个体对冷知识问题答案的好奇心是对于知道答案的信心的倒U型函数:当被试对答案一无所知或极度自信时, 他们对答案最不感到好奇; 当知道一些相关信息但缺乏信心时, 好奇心最强(Kang et al.2009), 该结果支持了信息差距的观点。当个体对魔术或对冷知识问题感到高度好奇时, ACC显著激活(Lau et al.2020); 当模糊图片成功诱发被试好奇心时, ACC和前岛叶(anterior insula)显著激活(Jepma et al.2012)。

3.2 对预测误差的评估:外侧前额叶皮层的作用

环境或信息引发的预测误差有时不足以引发好奇心, 在某些情况下, 还可能产生相反的效果而引起焦虑。预测误差和信息差距会触发由外侧前额叶皮层(lateral prefrontal cortex, lPFC)支持的评估过程, 从而决定一个人的行动是抑制还是探索, 产生的主观体验是焦虑还是好奇(Gruber & Ranganath, 2019)。个体在这个阶段会权衡当前的不确定状态是否反映了潜在威胁, 自己是否拥有解决不确定性所需的能力、知识和资源(Noordewier & van Dijk, 2016; Silvia, 2005)。如果个体认为自身有能力解决不确定性, 这种预测误差就会引发好奇心和探索行为; 反之, 就会引发焦虑和行为抑制。因此, 海马和前扣带皮层不仅参与探索行为, 也在焦虑状态下对探索行为的抑制中起作用(Bannerman et al.2003; Cullen et al.2015)。

3.3 好奇心的处理:中脑多巴胺系统与去甲肾上腺素系统的作用

中脑多巴胺系统是好奇心触发所涉及的一组脑区。好奇心会驱使个体寻找新信息减少当前的不确定性(Berlyne, 1960; Loewenstein, 1994), 多巴胺神经调节系统能够刺激探索和信息寻求行为, 增强信息编码和记忆巩固。研究表明, 新异刺激与奖赏相关的脑区激活有关, 包括伏隔核(NAc)、黑质(SN)和腹侧被盖区(VTA, Axmacher et al.2010; Krebs et al.2011); 而好奇心增强了NAc、尾状核(caudate nucleus)、SN/VTA的激活(Gruber et al.2014; Kang et al.2009; Lau et al.2020)。因此, 好奇心可能与中脑多巴胺系统有关。

此外, 处理新异和不确定性的刺激也与去甲肾上腺素系统相关(Sakaki et al.2018), 尤其是蓝斑(locus coeruleus, Devauges & Sara, 1990)。研究表明, 蓝斑与被试加工意外的不确定性有关, 这使个体更快的适应环境变化(Payzan-LeNestour et al.2013)。因此好奇心可能与去甲肾上腺素系统有关。

3.4 好奇心引发的探索行为:注意网络的作用

好奇心可以激发大脑额叶和顶叶等与注意有关的脑网络(Jepma et al.2012; van Lieshout et al.2018), 并且与好奇心密切相关的中脑多巴胺系统也会促使个体对与过去或未来奖赏相关的刺激产生即时的注意力偏向(Anderson, 2016; Gottlieb & Oudeyer, 2018)。因此可以认为, 个体通过增强注意力来维持好奇心触发之后的探索行为(Gruber & Ranganath, 2019)。研究表明, 婴儿会受环境中一些简单启发, 产生好奇心来引导自己注意世界中的某些中等复杂度的特征信息, 以便能够更有效地探索世界, 发展自身认知能力(Kidd & Hayden, 2015)。而眼动研究结果表明, 被试会在冷知识问题答案出现之前将注视点预先调整到预期的答案位置, 并且好奇心越强, 注视点转移至预期答案位置的速度就越快。这使得好奇心能够决定注意分配和任务优先级, 成为一种主动的学习和探索机制(Baranes et al.2015)。

3.5 惊奇和新的不确定性:腹内侧与嘴外侧前额叶皮层的作用

每次好奇心相关信息呈现都会引发个体不同程度的惊奇(surprise), 而人类的认知系统代表在情境中的平均惊奇(average surprise)的数量(Ligneul et al.2018)。在信息寻求中新获得的信息有可能带来惊奇和新的不确定性。根据预期编码理论, 减少不确定性和惊奇是我们认知系统的主要功能(Clark, 2013; Friston et al.2012)。因此, 平均惊奇越高, 短时间内可接受的不确定性就越多, 这会抑制个体的非特异性认知好奇心, 避免更多新的不确定性来源; 而平均惊奇越低, 个体可能会积极进行不定向的探索, 增强非特定性好奇心来实现他们对惊奇的期望。惊奇可能会引发新的预测误差, 产生新的好奇心, 促进进一步的探索(Vogl et al.2020)。研究表明, 腹内侧前额叶皮层(ventromedial prefrontal cortex, vmPFC)的活动计算了好奇心引发的惊奇, 而嘴外侧前额叶皮层(rostrolateral prefrontal cortex, rlPFC)的活动编码了呈现冷知识问题答案时惊奇的预测误差, 以实现平均惊奇与非特异性好奇心间的调节(Ligneul et al.2018)。

在神经科学研究的推动下, 个体好奇心发生发展的心理机制(理论)得到了更系统的整合。大脑多个脑区的分工与协同, 使得个体形成了产生与评估预测误差、触发与缓解好奇心以及产生惊奇与新预测误差的认知过程。虽然当前研究表明, 可能大脑认知过程的不同阶段并非都由单个脑区负责, 而是多个脑区的协同活动(例如, 构建大脑功能连接), 但本文提出的好奇心心理成分与神经机制的理论框架, 有助于理解好奇心的认知过程的不同阶段及其神经机制, 对好奇心脑机制研究有参考意义。

4 好奇心的作用

好奇心在个体终生发展过程中具有普遍的作用和意义, 我们将从促进学习、记忆与创造力、注意等认知功能、保持心理健康和身体健康等方面评述好奇心的作用。

4.1 好奇心对认知功能的作用

4.1.1 好奇心与学习和记忆

好奇心能够促进个体学习和记忆。人类自婴儿起就是好奇的学习者, 因为世界充满了潜在的学习资源, 他们会通过在学习环境中建立结构来驱动自己的认知发展(Kidd & Hayden, 2015; Pereira et al.2013)。对于在学前、小学阶段的儿童和中学阶段的青少年, 好奇心和学术成就之间都存在正相关(Froiland et al.2015; Shah et al.2018; Tucker-Drob et al.2016)。一项使用冷知识问题范式的研究表明, 呈现答案前对问题的好奇心促进了儿童和青少年对于问题的记忆, 并且呈现答案后的惊奇促进了青少年对于问题的记忆(Fandakova & Gruber, 2019)。另外一项研究结果表明, 年轻人和老年人对感到好奇的材料的记忆都强于对无聊材料的记忆(Fastrich et al.2018; McGillivray et al.2015), 对意外结果事件也都表现出更强的学习能力(Nassar et al.2016; Nassar et al.2012)。

研究结果表明, 在记忆编码后即时或短暂延迟后进行回忆测试, 与好奇心相关的记忆显著增强(Galli et al.2018; Wade & Kidd, 2019); 而Gruber等人(2014)在冷知识问题中交错插入被试不认识的中性面孔照片作为学习探针。回忆面孔的测试的结果表明, 对冷知识问题有高好奇心的被试比低好奇心的被试对面孔的记忆成绩更好。这表明, 无论人们对事物是否好奇或感兴趣, 好奇心状态都有助于更好的学习。

当个体遇到新异或意料之外的事情并体验到好奇心时, 多巴胺和去甲肾上腺素通过调节海马活动来促进学习(Oudeyer et al.2016)。纹状体、SN/VTA不仅共同调节海马内侧颞叶的活动, 而且在处理新异刺激时, 与海马活动的增强和记忆和学习能力的提高有关(Bunzeck et al.2012; Lisman & Grace, 2005)。多巴胺也能够增强依赖海马的记忆巩固(Lisman & Grace, 2005; Shohamy & Adcock, 2010)。此外, 与蓝斑活动相关的情绪引起的阶段性觉醒会调节学习和海马功能(Mather et al.2016; Sakaki et al.2014), 这表明好奇心对学习的增强作用也可能与蓝斑有关。

4.1.2 好奇心与创造力

好奇心能够促进个体的创造力。许多研究已证实, 好奇心越强, 创造力越强(Celik et al.2016; Hardy et al.2017; Peljko et al.2016; Puente-Díaz & Cavazos-Arroyo,2017), Schutte和Malouff (2019)的元分析也发现了创造力随着好奇心的增强而增强。首先, 好奇心有助于分析问题和收集信息。定义问题和收集信息是创造力过程的初始步骤(Mumford & McIntosh, 2017), 而好奇心可能引发个体信息寻求行为, 识别和定义需要解决的问题, 因此好奇心可能是创造力的一个推动力。其次, 好奇心可能是一种积极情绪(Fredrickson, 1998), 鼓励个体的新异性想法和行为, 这反过来又会促进能力和资源的发展, 进行自我扩展和构建(Fredrickson & Joiner, 2018)。此外, 思想联系(idea linking, Hagtvedt et al.2019)以及心流(flow, Schutte & Malouff, 2020)在好奇心和创造力之间起到了中介作用。

4.1.3 好奇心与注意

好奇心会影响个体的注意力。好奇心可以解释婴儿早期注意力有关行为的底层机制。好奇心会引导婴儿注意环境中的某些信息特征(Kidd & Hayden, 2015), 从而帮助他们更好地探索世界。例如, 婴儿的目光被高对比度的区域吸引, 有助于他们探测物体和知觉其形状(Salapatek & Kessen, 1966); 更多地关注移动物体, 有助于他们探测物体是否具有生命力(Aslin & Shea, 1990); 对于面孔的好奇心(Farroni et al.2005)也有利于婴儿认知发育, 帮助他们获取社会信息以及指导语言学习的线索(Baldwin, 1993)。

4.1.4 好奇心与其他认知功能

好奇心对其他认知功能也存在积极影响。老年人的认知需求(即寻求和享受智力活动的倾向)能够预测认知能力(Baer et al.2012), 而个体认知需求与好奇心相关(Olson et al.1984), 这说明了好奇心可以防止因衰老导致的认知衰退。对新奇刺激的偏好与老年人更好的认知功能相关(Daffner et al.2007; Daffner et al.2006a, 2006b), 甚至会降低罹患阿尔茨海默病的风险(Fritsch et al.2005)。相比熟悉的刺激, 被试对新异刺激的工作记忆表现更好 (Mayer et al.2011)。这是由于和好奇心相关的多巴胺系统和去甲肾上腺素能系统都参与前额叶皮层活动, 并影响其功能, 例如工作记忆、个体自上而下的加工以及目标导向的行为等(Arnsten, 2011; Arnsten et al.2015; Usher et al.1999)。

4.2 好奇心对心理健康的作用

好奇心对个体保持心理健康有积极作用。首先, 好奇心可能会降低个体焦虑水平。弗洛伊德认为, 探索行为是由本能的生物冲动和自我机制决定的, 有助于减少威胁和不安全感(Aronoff, 1962)。已有相关研究表明了好奇心与焦虑之间的关系。从产生好奇的原因的分类角度看, 兴趣型好奇心产生与焦虑呈负相关, 而剥夺型好奇心与焦虑呈正相关(Litman, 2010; Litman & Jimerson, 2004); 从好奇的稳定性的分类角度看, 一般特质和状态好奇心与社交焦虑都存在负相关关系(Kashdan & Roberts, 2004, 2006)。但整体而言, 好奇心对焦虑的影响及其机制还缺乏来自因果关系的实证研究。

其次, 适度的好奇心可以减少心理障碍的发生。情感淡漠(apathy)是一种以缺乏动机为特征的综合症状, 影响个体行为、认知和情感, 且不能归因于智力障碍、情绪困扰或意识水平下降(Marin, 1991)。情感淡漠与认知功能较快衰退有关, 在除注意以外的所有认知表现中, 好奇心与情感淡漠的相关性最为明显(Montoya-Murillo et al.2019)。换言之, 缺乏好奇心可能是情感淡漠最具代表性的症状。在轻度认知障碍(MCI)患者中, 有情感淡漠的患者比其他MCI患者更有可能发展为痴呆(Lanctôtet al.2017; Robert et al.2008)。此外, 过度的好奇心会导致注意力分散, 这是注意力缺陷多动障碍(ADHD)等疾病的一种症状(Kidd & Hayden, 2015)。

好奇心的神经生理机制也表明好奇心对个体心理健康产生积极影响。好奇心的主观感受与纹状体活动相关(Gruber et al.2014), 而纹状体中多巴胺与各种积极情感状态有关(Burgdorf & Panksepp, 2006), 这表明个体对新奇刺激可能会产生积极的情感(Berlyne, 1970)。好奇心所涉及的去甲肾上腺素和多巴胺机制对心理健康和幸福感有长期影响(Sakaki et al.2018)。此外, 积极心理学研究表明, 好奇心与幸福感(Park et al.2004)、生活满意度之间呈正相关(Peterson et al.2007)。

4.3 好奇心对身体健康的作用

好奇心对个体保持身体健康也有积极作用(Consedine & Moskowitz, 2007; Peterson et al.2006)。首先, 好奇心促使人们灵活解决问题, 帮助人们有效应对生理和心理问题(Sakaki et al.2018)。研究表明, Swan和Carmelli (1996)在研究中控制了年龄、教育水平和吸烟行为等其他风险因素后发现, 老年人好奇心越强, 5年后在世的可能性越高。其次, 好奇心能预测个体的身体机能。已有研究表明, 好奇心可以预测高血压和糖尿病(Richman et al.2005)。此外, 好奇心对心理健康的影响可能中介了好奇心与身体健康的关系(Sakaki et al.2018)。个体的焦虑和抑郁程度越高, 约10年后罹患冠心病的风险越大(Kubzansky et al.2006); 有创伤后应激障碍(PTSD)症状的人在随访14年中更有可能发展成冠心病(Kubzansky et al.2009), 而好奇心可以增强个体积极情绪, 减少消极情绪(例如上述的焦虑、抑郁情绪等), 从而帮助个体维持身体健康(DeSteno et al.2013)。

5 总结与展望

好奇心的概念正不断地被明确和完善, 好奇心的分类也越来越多样, 这对好奇心的研究提供了细分化的研究主题和可操控的研究范式。综合前人研究, 我们重点关注好奇心的心理成分和神经机制, 构建了好奇心认知过程阶段的理论框架。从进化角度看, 好奇心是适应的结果(Loewenstein, 1994), 因此它在个体终生发展过程中具有重要作用。作为跨学科、多领域交叉的研究主题, 好奇心近年来的研究结果和方法可能带来以下几个热门的研究方向。

5.1 不同类型好奇心在心理成分和神经机制上的共性与差异

虽然Berlyne (1954)对于好奇心的分类得到了广泛认可, 但是好奇心的分类大多取决于学者们直觉上的差异(Kidd & Hayden, 2015), 而不是基于好奇心的心理成分或神经机制。现在大量研究使用不同的实验范式诱导出不同种类的好奇心, 但都将它看作一种普遍的好奇心进行研究, 更多关注好奇心的共性成分, 较少研究不同类型的好奇心可能存在的心理和神经机制上的差异。因此, 未来研究应该更加关注不同种类好奇心的差异, 这不仅为好奇心的分类方式提供新的心理和神经基础的证据, 也能从侧面推动好奇心共性研究的发展。

5.2 好奇心与其他概念的相似性和差异性

好奇心与兴趣之间的异同点已经得到充分研究, 但仍有一些其他概念与好奇心之间的关系尚未得到充分论证。例如好奇心与饥饿、归属感等基本内在驱动力, 以及好奇心与信息寻求、探索行为等之间的关系还不完全明确。

5.3 特质好奇心和状态好奇心之间的关系

好奇心既是一种特质, 也是一种状态, 而研究者可能过分对立看待二者之间的关系。影响状态好奇心的重要因素之一是个体的特质好奇心, 此外还有个体对对象的了解程度、认知方式等。因此, 未来研究者可以通过认知计算模型探索不同因素对不同种类的状态好奇心的影响, 并进一步明确特质好奇心与状态好奇心之间的关系。

5.4 认知老化过程中, 好奇心是否存在代偿性的神经机制

之前的研究者提出老化和认知的脚手架理论(scaffolding theory of aging and cognition, STAC)、神经环路利用假说(compensation-related utilization of neural circuits hypothesis, CRUNCH)等执行功能老化的代偿说理论。好奇心作为一种毕生发展、贯穿人生始终的认知过程, 是否在认知老化的过程中也存在代偿性的神经机制仍有待研究。

5.5 好奇心的心理与神经机制对人工智能算法的推动具有借鉴意义

好奇心是一种生物特有的认识外部世界的经济有效的学习方式, 越来越多的研究者将人类好奇心的心理与神经机制通过计算科学迁移到人工智能与机器人领域, 使得人工智能获得更加全面与接近真实的人类智能。未来的研究应将好奇心的认知过程和神经机制应用到人工智能的算法中, 推动人工智能在学习等领域的进步。

5.6 好奇心与焦虑之间的关系

在Gruber和Ranganath (2019)提出的PACE框架中, LPFC对预测误差会进行评估, 判断个体产生好奇心和探索行为还是焦虑状态, 这两种状态是相互冲突的:如果预测误差诱发了好奇心与探索行为, 个体会通过获得知识、减少不确定性、闭合信息差距来缓解焦虑状态; 而如果诱发了焦虑, 则会产生一种心理防御机制, 抑制好奇心和探索行为, 使得个体好奇心和探索减少。好奇心与焦虑的相互影响及其机制还缺乏来自因果关系的实证研究。因此, 好奇心和焦虑的关系有待进一步研究明确。

5.7 跨物种的角度研究好奇心与探索行为的机制

与其他常见的认知功能类似, 之前已经有较多关于啮齿动物和非人灵长类动物的探索行为的研究, 而当前成熟的动物行为学范式和前沿的生物神经调控技术使得研究角度更加细微、操作范围更大, 并提供了跨物种比较的可能性。未来可以通过研究动物(包括猴子、老鼠、甚至蛔虫)的探索行为, 将其与人类好奇心的心理和神经机制进行比较, 从跨物种的角度来推动人类好奇心与探索行为的机制的理解和研究。

参考文献

董妍, 陈勉宏, 俞国良. (2017).

科学好奇心: 研究进展与培养途径

教育科学研究, 9,76-80.

[本文引用: 1]

胡克祖. (2005).

好奇心的理论述评

辽宁师范大学学报, 6,55-58.

[本文引用: 3]

李天然, 俞国良. (2015).

人类为什么会好奇?人际好奇的概念、功能及理论解释

心理科学进展, 23(1),132-141.

[本文引用: 3]

吴绍兵, 赵丽宏. (2001).

谈好奇心的教育功能和激发保护

数学通报, (11),8-9.

[本文引用: 1]

袁维新. (2013).

好奇心驱动的科学教学

中国教育学刊, (5),60-63.

[本文引用: 1]

Ainley, M. D. (1987).

The factor structure of curiosity measures: Breadth and depth of interest curiosity styles

Australian Journal of Psychology,39(1),53-59.

[本文引用: 1]

Alexander, P. A. (2003).

The development of expertise: The journey from acclimation to proficiency

Educational Researcher, 32(8),10-14.

[本文引用: 2]

Alexander, P. A., Murphy, P. K., Woods, B. S., Duhon, K. E., & Parker, D. (1997).

College instruction and concomitant changes in students' knowledge, interest, and strategy use: A study of domain learning

Contemporary Educational Psychology, 22(2),125-146.

[本文引用: 1]

Anderson, B. A. (2016).

The attention habit: How reward learning shapes attentional selection

Annals of the New York Academy of Sciences, 1369(1),24-39.

[本文引用: 1]

Arnsten, A.F. T. (2011).

Catecholamine influences on dorsolateral prefrontal cortical networks

Biological Psychiatry, 69(12),e89-e99.

[本文引用: 1]

Arnsten, A.F. T., Wang, M., & Paspalas, C. D. (2015).

Dopamine's actions in primate prefrontal cortex: Challenges for treating cognitive disorders

Pharmacological Reviews, 67(3),681-696.

URL     PMID:26106146      [本文引用: 1]

Aronoff, J. (1962).

Freud's conception of the origin of curiosity

Journal of Psychology: Interdisciplinary and Applied, 54(1),39-45.

[本文引用: 1]

Aslin, R. N., & Shea, S. L. (1990).

Velocity thresholds in human infants: Implications for the perception of motion

Developmental Psychology, 26,589-598.

[本文引用: 1]

Axmacher, N., Cohen, M. X., Fell, J., Haupt, S., Dümpelmann, M., Elger, C. E., ... Ranganath, C. (2010).

Intracranial EEG correlates of expectancy and memory formation in the human hippocampus and nucleus accumbens

Neuron, 65(4),541-549.

DOI:10.1016/j.neuron.2010.02.006      URL     PMID:20188658      [本文引用: 1]

The human brain is adept at anticipating upcoming events, but in a rapidly changing world, it is essential to detect and encode events that violate these expectancies. Unexpected events are more likely to be remembered than predictable events, but the underlying neural mechanisms for these effects remain unclear. We report intracranial EEG recordings from the hippocampus of epilepsy patients, and from the nucleus accumbens of depression patients. We found that unexpected stimuli enhance an early (187 ms) and a late (482 ms) hippocampal potential, and that the late potential is associated with successful memory encoding for these stimuli. Recordings from the nucleus accumbens revealed a late potential (peak at 475 ms), which increases in magnitude during unexpected items, but no subsequent memory effect and no early component. These results are consistent with the hypothesis that activity in a loop involving the hippocampus and the nucleus accumbens promotes encoding of unexpected events.

Baer, L. H., Tabri, N., Blair, M., Bye, D., Li, K.Z. H., & Pushkar, D. (2012).

Longitudinal associations of need for cognition, cognitive activity, and depressive symptomatology with cognitive function in recent retirees

The Journals of Gerontology: Series B, 68(5),655-664.

[本文引用: 1]

Baldwin, D. A. (1993).

Infants' ability to consult the speaker for clues to word reference

Journal of Child Language, 20(2),395-418.

DOI:10.1017/s0305000900008345      URL     PMID:8376476      [本文引用: 1]

This research examines whether infants actively seek information from a speaker regarding the referent of the speaker's utterance. Forty-eight infants (in three age groups: 1;2-1;3, 1;4-1;5, and 1;6-1;7) heard novel labels for novel objects in two situations: follow-in labelling (the experimenter looked at and labelled the toy of the infant's focus) vs. discrepant labelling (the experimenter looked at and labelled a different toy than that of the infant's focus). Subsequently, half of the infants were asked comprehension questions (e.g. 'Where's the peri?'). The other half were asked preference questions (e.g. 'Where's the one you like?'), to ensure that their comprehension performance was not merely the result of preferential responding. The comprehension results revealed developmental change in both (a) infants' ability to establish new word-object mappings (infants aged 1;2-1;3 failed to establish stable word-object links even in follow-in labelling), and (b) infants' ability to pinpoint the correct referent during discrepant labelling (only infants aged 1;6-1;7 succeeded). Thus the period between 1;2 and 1;7 represents a time of change in infants' ability to establish new word-object mappings: infants are becoming increasingly adept at acquiring new labels under minimal learning conditions.

Bannerman, D. M., Grubb, M., Deacon, R.M. J., Yee, B. K., Feldon, J., & Rawlins, J.N. P. (2003).

Ventral hippocampal lesions affect anxiety but not spatial learning

Behavioural Brain Research, 139(1-2),197-213.

DOI:10.1016/s0166-4328(02)00267-x      URL     PMID:12642172      [本文引用: 1]

Epidemiological studies provided a large body of evidence that personality dimensions are influenced by genetic factors and that the genetic component is highly complex, polygenic, and epistatic. However, consistent findings on the genetic basis of personality have yet remained sparse. In recent years, molecular genetics has begun to identify specific genes coding in particular for components of the serotonergic and dopaminergic neurotransmitter systems representing quantitative trait loci (QTLs) for behavioral traits. The QTL concept suggests that complex traits are not attributable to single genes. According to this polygenic model, the genetic basis of personality and behavior and its pathological variations thus results from additive or nonadditive interactions of various genes. As the number of suitable candidate genes constantly increases, the QTL model provides a reasonable explanation for the genetic basis of personality and its disorders. In this review, the current knowledge on the impact of a large number of candidate gene polymorphisms (e.g. variations in serotonin and dopamine receptor and serotonin transporter genes) on personality and temperament is summarized. Additionally, investigations of gene-gene and gene-environment interactions in humans and animals, which currently intensify the identification of genes that underlie behavioral variations, are examined. The findings converge on the notion that a probabilistic rather than deterministic impact of genes on the expression of behavior will contribute to the demystification of behavioral disorders.

Baranes, A., Oudeyer, P. -Y., & Gottlieb, J. (2015).

Eye movements reveal epistemic curiosity in human observers

Vision Research, 117,81-90.

URL     PMID:26518743      [本文引用: 1]

Berlyne, D. E. (1954).

A theory of human curiosity

British Journal of Psychology, 45(3),180-191.

[本文引用: 6]

Berlyne, D. E. (1960). Conflict, arousal, and curiosity. New York, NY, US: McGraw-Hill Book Company.

[本文引用: 1]

Berlyne, D. E. (1966).

Curiosity and exploration

Science, 153(3731),25-33.

[本文引用: 1]

Berlyne, D. E. (1970).

Novelty, complexity, and hedonic value

Perception & Psychophysics, 8(5),279-286.

[本文引用: 1]

Berridge, K. C., Robinson, T. E., & Aldridge, J. W. (2009).

Dissecting components of reward: ‘Liking', ‘wanting', and learning

Current Opinion in Pharmacology, 9(1),65-73.

DOI:10.1016/j.coph.2008.12.014      URL     PMID:19162544      [本文引用: 1]

In recent years significant progress has been made delineating the psychological components of reward and their underlying neural mechanisms. Here we briefly highlight findings on three dissociable psychological components of reward: 'liking' (hedonic impact), 'wanting' (incentive salience), and learning (predictive associations and cognitions). A better understanding of the components of reward, and their neurobiological substrates, may help in devising improved treatments for disorders of mood and motivation, ranging from depression to eating disorders, drug addiction, and related compulsive pursuits of rewards.

Blonigen, D. M., Carlson, M. D., Hicks, B. M., Krueger, R. F., & Iacono, W. G. (2008).

Stability and change in personality traits from late adolescence to early adulthood: A longitudinal twin study

Journal of Personality, 76(2),229-266.

URL     PMID:18331280      [本文引用: 1]

Bunzeck, N., Doeller, C. F., Dolan, R. J., & Duzel, E. (2012).

Contextual interaction between novelty and reward processing within the mesolimbic system

Human Brain Mapping, 33(6),1309-1324.

URL     PMID:21520353      [本文引用: 1]

Burgdorf, J., & Panksepp, J. (2006).

The neurobiology of positive emotions

Neuroscience & Biobehavioral Reviews, 30(2),173-187.

[本文引用: 1]

Celik, P., Storme, M., Davila, A., & Myszkowski, N. (2016).

Work-related curiosity positively predicts worker innovation

Journal of Management Development, 35(9),1184-1194.

[本文引用: 1]

Cicero, M, T. (1914). De finibus bonorum et malorum (H. Rackham, Trans.). Cambridge, MA: Harvard Press.

Clark, A. (2013).

Whatever next? Predictive brains, situated agents, and the future of cognitive science

Behavioral and Brain Sciences, 36(3),181-204.

[本文引用: 1]

Cohen, A. R., Stotland, E., & Wolfe, D. M. (1955).

An experimental investigation of need for cognition

The Journal of Abnormal and Social Psychology, 51(2),291-294.

[本文引用: 1]

Consedine, N. S., & Moskowitz, J. T. (2007).

The role of discrete emotions in health outcomes: A critical review

Applied and Preventive Psychology, 12(2),59-75.

[本文引用: 1]

Cullen, P. K., Gilman, T. L., Winiecki, P., Riccio, D. C., & Jasnow, A. M. (2015).

Activity of the anterior cingulate cortex and ventral hippocampus underlie increases in contextual fear generalization

Neurobiology of Learning and Memory, 124,19-27.

URL     PMID:26165137      [本文引用: 1]

Daffner, K. R., Chong, H., Riis, J., Rentz, D. M., Wolk, D. A., Budson, A. E., & Holcomb, P. J. (2007).

Cognitive status impacts age-related changes in attention to novel and target events in normal adults

Neuropsychology, 21(3),291-300.

DOI:10.1037/0894-4105.21.3.291      URL     PMID:17484592      [本文引用: 1]

In this study, the authors investigated the relationship between the cognitive status of normal adults and age-related changes in attention to novel and target events. Old, middle-age, and young subjects, divided into cognitively high and cognitively average performing groups, viewed repetitive standard stimuli, infrequent target stimuli, and unique novel visual stimuli. Subjects controlled viewing duration by a button press that led to the onset of the next stimulus. They also responded to targets by pressing a foot pedal. The amount of time spent looking at different kinds of stimuli served as a measure of visual attention and exploratory activity. Cognitively high performers spent more time viewing novel stimuli than cognitively average performers. The magnitude of the difference between cognitively high and cognitively average performing groups was largest among old subjects. Cognitively average performers had slower and less accurate responses to targets than cognitively high performers. The results provide strong evidence that the link between engagement by novelty and higher cognitive performance increases with age. Moreover, the results support the notion of there being different patterns of normal cognitive aging and the need to identify the factors that influence them.

Daffner, K. R., Ryan, K. K., Williams, D. M., Budson, A. E., Rentz, D. M., Wolk, D. A., & Holcomb, P. J. (2006a).

Age-related differences in attention to novelty among cognitively high performing adults

Biological Psychology, 72(1),67-77.

DOI:10.1016/j.biopsycho.2005.07.006      URL     PMID:16198046      [本文引用: 1]

Age-related differences in attention to novel events were studied in well-matched, cognitively high performing old, middle-aged and young subjects. Event-related potentials were recorded during a visual novelty oddball task in which subjects controlled viewing durations that served as a behavioral measure of attentional allocation. All age groups had a larger P3 amplitude and longer viewing duration to novel than to standard stimuli, with no age-related differences in the magnitude of these effects, indicating old individuals were as engaged by the processing of novelty as younger adults. Old subjects had a larger, more anteriorly distributed P3 component to novels and standards. The increased P3 amplitude differs from prior reports of a diminished P3 response with processes, including aging, that have a potentially deleterious impact on the brain. We hypothesise that cognitively high performing old individuals successfully manage the task by relying on additional neural resources and perhaps more effortful frontal activity than their younger counterparts.

Daffner, K. R., Ryan, K. K., Williams, D. M., Budson, A. E., Rentz, D. M., Wolk, D. A., & Holcomb, P. J. (2006b).

Increased responsiveness to novelty is associated with successful cognitive aging

Journal of Cognitive Neuroscience, 18(10),1759-1773.

[本文引用: 1]

Daw, N. D., O'Doherty, J. P., Dayan, P., Seymour, B., & Dolan, R. J. (2006).

Cortical substrates for exploratory decisions in humans

Nature, 441(7095),876-879.

URL     PMID:16778890      [本文引用: 1]

DeSteno, D., Gross, J. J., & Kubzansky, L. (2013).

Affective science and health: The importance of emotion and emotion regulation

Health Psychology, 32(5),474-486.

DOI:10.1037/a0030259      URL     PMID:23646831      [本文引用: 1]

OBJECTIVE: The goal of this article is to provide insight into how recent findings from affective science may be translated into the health arena. METHODS: We first review definitional issues related to the key concepts of emotion and stress. We then review relevant research that informs our understanding of the affect-health relationship. Subsequently, we highlight findings that are the most informative and also ripe for translation into the domains of health and health-related behaviors. RESULTS: We identify several domains of affect-relevant processes (e.g., emotion-regulation, stress response) that would benefit from increased elaboration. Three themes may guide how best to broaden our understanding across multiple domains: the need to use a differentiated emotion-based approach, the need to consider potential synergistic and oppositional effects of emotion that can occur in parallel, and the need to examine the impact of emotions with respect to regulation and coping at both the intra- and interindividual levels. Building on insights derived from these themes, we suggest a broad integrative framework for use with future investigations. This framework categorizes potential emotion-related effects on health according to whether they influence health directly (e.g., shaping physiological responses) or indirectly (e.g., guiding decision making and behavior). Using this approach will allow researchers to examine systematically the often simultaneous and sometimes opposing influences of emotion on distinct health-relevant cognitive and physiological mechanisms, and to integrate across potentially disparate findings. CONCLUSIONS: We conclude by suggesting opportunities for future work that we see as most fruitful based on the presented framework.

Devauges, V., & Sara, S. J. (1990).

Activation of the noradrenergic system facilitates an attentional shift in the rat.

Behavioural Brain Research, 39(1),19-28.

[本文引用: 1]

Dewey, J. (1910). How we think. New York: Heath.

[本文引用: 1]

Dubey, R., & Griffiths, T. L. (2020).

Reconciling novelty and complexity through a rational analysis of curiosity

Psychological Review, 127(3),455-476.

URL     PMID:31868394      [本文引用: 1]

Engel, S. (2011).

Children's need to know: Curiosity in schools

Harvard Educational Review, 81(4),625-645.

[本文引用: 1]

Fandakova, Y., & Gruber, M. (2019).

Curiosity and surprise enhance memory differently in adolescents than in children

PsyARXiv.

[本文引用: 1]

Farroni, T., Johnson, M. H., Menon, E., Zulian, L., Faraguna, D., & Csibra, G. (2005).

Newborns' preference for face-relevant stimuli: Effects of contrast polarity

Proceedings of the National Academy of Sciences of the United States of America, 102(47),17245-17250.

[本文引用: 1]

Fastrich, G. M., Kerr, T., Castel, A. D., & Murayama, K. (2018).

The role of interest in memory for trivia questions: An investigation with a large-scale database

Motivation Science, 4(3),227-250.

[本文引用: 1]

Fredrickson, B. L. (1998).

What good are positive emotions

Review of General Psychology, 2(3),300-319.

URL     PMID:21850154      [本文引用: 1]

Fredrickson, B. L., & Joiner, T. (2018).

Reflections on positive emotions and upward spirals

Perspectives on Psychological Science, 13(2),194-199.

URL     PMID:29592643      [本文引用: 1]

Freud, S. (1915).

Analysis of a phobia in a five-year-old boy

In Collected pers (Vol. 3, pp.149-289). New York: Basic Books.

[本文引用: 1]

Friston, K., Thornton, C., & Clark, A. (2012).

Free-energy minimization and the dark-room problem

Frontiers in Psychology, 3,130.

URL     PMID:22586414      [本文引用: 1]

Fritsch, T., Smyth, K. A., Debanne, S. M., Petot, G. J., & Friedland, R. P. (2005).

Participation in novelty-seeking leisure activities and Alzheimer's disease

Journal of Geriatric Psychiatry and Neurology, 18(3),134-141.

DOI:10.1177/0891988705277537      URL     PMID:16100102      [本文引用: 1]

The objective was to study the associations between participation in different types of mentally stimulating leisure activities and status as Alzheimer's disease (AD) case or normal control. Research suggests that participation in leisure activities, especially mentally stimulating activities, is associated with a lower risk for AD. However, no study has yet evaluated associations between AD and different types of mental leisure activities, especially those involving

Froiland, J. M., Mayor, P., & Herlevi, M. (2015).

Motives emanating from personality associated with achievement in a Finnish senior high school: Physical activity, curiosity, and family motives

School Psychology International, 36(2),207-221.

[本文引用: 1]

Galli, G., Sirota, M., Gruber, M. J., Ivanof, B. E., Ganesh, J., Materassi, M., ... Craik, F.I. M. (2018).

Learning facts during aging: The benefits of curiosity

Experimental Aging Research, 44(4),311-328.

URL     PMID:29787342      [本文引用: 2]

Gottlieb, J., & Oudeyer, P.-Y. (2018).

Towards a neuroscience of active sampling and curiosity

Nature Reviews Neuroscience, 19(12),758-770.

URL     PMID:30397322      [本文引用: 2]

Gottlieb, J., Oudeyer, P. Y., Lopes, M., & Baranes, A. (2013).

Information-seeking, curiosity, and attention: Computational and neural mechanisms

Trends in Cognitive Sciences, 17(11),585-593.

URL     PMID:24126129      [本文引用: 2]

Grossnickle, E. M. (2016).

Disentangling curiosity: Dimensionality, definitions, and distinctions from interest in educational contexts

Educational Psychology Review, 28(1),23-60.

[本文引用: 4]

Gruber, M. J., Gelman, B. D., & Ranganath, C. (2014).

States of curiosity modulate hippocampus-dependent learning via the dopaminergic circuit

Neuron, 84(2),486-496.

URL     PMID:25284006      [本文引用: 3]

Gruber, M. J., & Ranganath, C. (2019).

How curiosity enhances hippocampus-dependent memory: The prediction, appraisal, curiosity, and exploration (PACE) framework

Trends in Cognitive Sciences, 23(12),1014-1025.

URL     PMID:31706791      [本文引用: 5]

Hagtvedt, L. P., Dossinger, K., Harrison, S. H., & Huang, L. (2019).

Curiosity made the cat more creative: Specific curiosity as a driver of creativity

Organizational Behavior and Human Decision Processes, 150,1-13.

[本文引用: 1]

Hannula, D. E., Baym, C. L., Warren, D. E., & Cohen, N. J. (2012).

The eyes know: Eye movements as a veridical index of memory

Psychological Science, 23(3),278-287.

URL     PMID:22327015      [本文引用: 1]

Hardy, J. H., Ness, A. M., & Mecca, J. (2017).

Outside the box: Epistemic curiosity as a predictor of creative problem solving and creative performance

Personality and Individual Differences, 104,230-237.

[本文引用: 1]

Harlow, H. F. (1950).

Learning and satiation of response in intrinsically motivated complex puzzle performance by monkeys

Journal of Comparative and Physiological Psychology, 43(4),289-294.

DOI:10.1037/h0058114      URL     PMID:15436888      [本文引用: 1]

Hidi, S. (2006).

Interest: A unique motivational variable

Educational Research Review, 1(2),69-82.

[本文引用: 2]

Iran-Nejad, A., & Cecil, C. (1992).

Interest and learning: A biofunctional perspective. In K. A. Renninger, S. Hidi, & A. Krapp (Eds.),

The role of interest in learning and development, (p.297-332). Lawrence Erlbaum Associates, Inc.

[本文引用: 1]

Iran-Nejad, A., & Chissom, B. (1992).

Contributions of active and dynamic self-regulation to learning

Innovative Higher Education, 17,125-136.

[本文引用: 1]

James, W. (1899).

Talks to teachers on psychology: And to students on some of life's ideals by William James

The School Review, 7(7),434-435.

[本文引用: 1]

Jepma, M., Verdonschot, R. G., van Steenbergen, H., Rombouts, S.A. R. B., & Nieuwenhuis, S. (2012).

Neural mechanisms underlying the induction and relief of perceptual curiosity

Frontiers in behavioral neuroscience, 6,5.

DOI:10.3389/fnbeh.2012.00005      URL     PMID:22347853      [本文引用: 3]

Curiosity is one of the most basic biological drives in both animals and humans, and has been identified as a key motive for learning and discovery. Despite the importance of curiosity and related behaviors, the topic has been largely neglected in human neuroscience; hence little is known about the neurobiological mechanisms underlying curiosity. We used functional magnetic resonance imaging (fMRI) to investigate what happens in our brain during the induction and subsequent relief of perceptual curiosity. Our core findings were that (1) the induction of perceptual curiosity, through the presentation of ambiguous visual input, activated the anterior insula and anterior cingulate cortex (ACC), brain regions sensitive to conflict and arousal; (2) the relief of perceptual curiosity, through visual disambiguation, activated regions of the striatum that have been related to reward processing; and (3) the relief of perceptual curiosity was associated with hippocampal activation and enhanced incidental memory. These findings provide the first demonstration of the neural basis of human perceptual curiosity. Our results provide neurobiological support for a classic psychological theory of curiosity, which holds that curiosity is an aversive condition of increased arousal whose termination is rewarding and facilitates memory.

Kang, M. J., Hsu, M., Krajbich, I. M., Loewenstein, G., McClure, S. M., Wang, J. T., & Camerer, C. F. (2009).

The wick in the candle of learning: Epistemic curiosity activates reward circuitry and enhances memory

Psychological Science, 20(8),963-973.

URL     PMID:19619181      [本文引用: 6]

Kaplan, F., & Oudeyer, P.-Y. (2007).

In search of the neural circuits of intrinsic motivation

Frontiers in Neuroscience, 1,17.

[本文引用: 1]

Kashdan, T. B., Fincham, F. D., In, P. A., Linley , & S., Joseph (2004).

Facilitating Curiosity: A Social and self-regulatory perspective for scientifically based interventions. In P. A. Linley & S. Joseph (Eds.)

Positive psychology in practice ,(p.482-503). John Wiley & Sons Inc.

[本文引用: 1]

Kashdan, T. B., Gallagher, M. W., Silvia, P. J., Winterstein, B. P., Breen, W. E., Terhar, D., & Steger, M. F. (2009).

The curiosity and exploration inventory-II: Development, factor structure, and psychometrics

Journal of Research in Personality, 43(6),987-998.

URL     PMID:20160913     

Kashdan, T. B., & Roberts, J. E. (2004).

Social anxiety's impact on affect, curiosity, and social self-efficacy during a high self-focus social threat situation

Cognitive Therapy and Research, 28(1),119-141.

[本文引用: 1]

Kashdan, T. B., & Roberts, J. E. (2006).

Affective outcomes in superficial and intimate interactions: Roles of social anxiety and curiosity

Journal of Research in Personality, 40(2),140-167.

[本文引用: 1]

Kashdan, T. B., Rose, P., & Fincham, F. D. (2004).

Curiosity and exploration: Facilitating positive subjective experiences and personal growth opportunities

Journal of Personality Assessment, 82(3),291-305.

DOI:10.1207/s15327752jpa8203_05      URL     PMID:15151805      [本文引用: 1]

In an effort to expand research on curiosity, we elaborate on a theoretical model that informs research on the design of a new measure and the nomological network of curiosity. Curiosity was conceptualized as a positive emotional-motivational system associated with the recognition, pursuit, and self-regulation of novelty and challenge. Using 5 independent samples, we developed the Curiosity and Exploration Inventory (CEI) comprising 2 dimensions: exploration (appetitive strivings for novelty and challenge) and absorption (full engagement in specific activities). The CEI has good psychometric properties, is relatively unaffected by socially desirable responding, is relatively independent from positive affect, and has a nomological network consistent with our theoretical framework. Predicated on our personal growth facilitation model, we discuss the potential role of curiosity in advancing understanding of various psychological phenomena.

Kidd, C., & Hayden, B. Y. (2015).

The psychology and neuroscience of curiosity

Neuron, 88(3),449-460.

[本文引用: 5]

Kidd, C., Piantadosi, S. T., & Aslin, R. N. (2012).

The Goldilocks effect: Human infants allocate attention to visual sequences that are neither too simple nor too complex

PLoS One, 7(5),e36399.

DOI:10.1371/journal.pone.0036399      URL     PMID:22649492      [本文引用: 2]

Human infants, like immature members of any species, must be highly selective in sampling information from their environment to learn efficiently. Failure to be selective would waste precious computational resources on material that is already known (too simple) or unknowable (too complex). In two experiments with 7- and 8-month-olds, we measure infants' visual attention to sequences of events varying in complexity, as determined by an ideal learner model. Infants' probability of looking away was greatest on stimulus items whose complexity (negative log probability) according to the model was either very low or very high. These results suggest a principle of infant attention that may have broad applicability: infants implicitly seek to maintain intermediate rates of information absorption and avoid wasting cognitive resources on overly simple or overly complex events.

Klahr, D., Zimmerman, C., & Jirout, J. (2011).

Educational interventions to advance children's scientific thinking

Science, 333(6045),971-975.

URL     PMID:21852489      [本文引用: 1]

Kobayashi, K., Ravaioli, S., Baranès, A., Woodford, M., & Gottlieb, J. (2019).

Diverse motives for human curiosity

Nature Human Behaviour, 3(6),587-595.

URL     PMID:30988479      [本文引用: 1]

Krebs, R. M., Heipertz, D., Schuetze, H., & Duzel, E. (2011).

Novelty increases the mesolimbic functional connectivity of the substantia nigra/ventral tegmental area (SN/VTA) during reward anticipation: Evidence from high-resolution fMRI

NeuroImage, 58(2),647-655.

DOI:10.1016/j.neuroimage.2011.06.038      URL     PMID:21723396      [本文引用: 1]

Reward and novelty are potent learning signals that critically rely on dopaminergic midbrain responses. Recent findings suggest that although reward and novelty are likely to interact, both functions may be subserved by distinct neuronal clusters. We used high-resolution functional magnetic resonance imaging (fMRI) to isolate neural responses to reward and novelty within the human substantia nigra/ventral tegmental area (SN/VTA) complex to investigate the spatial delineation and integration of reward- and novelty-related activity clusters. We demonstrate that distinct clusters within the caudal portion of the medial SN/VTA and the lateral portion of the right SN are predominantly modulated by the anticipation of reward, while a more rostral part of the medial SN/VTA was exclusively modulated by novelty. In addition, the caudal medial SN/VTA cluster embodied an interaction between novelty and reward where novelty selectively increased reward-anticipation responses. This interaction, in turn, was paralleled by differences in the functional-connectivity patterns of these SN/VTA regions. Specifically, novel as compared to familiar reward-predictive stimuli increased the functional connectivity of the medial SN/VTA with mesolimbic regions, including the nucleus accumbens and the hippocampus, as well as with the primary visual cortex. This functional correlation may highlight how afferents of the medial SN/VTA provide integrative information about novelty and reward, or, alternatively, how medial SN/VTA activity may modulate memory processes for novel events associated with rewards.

Kubzansky, L. D., Cole, S. R., Kawachi, I., Vokonas, P., & Sparrow, D. (2006).

Shared and unique contributions of anger, anxiety, and depression to coronary heart disease: A prospective study in the normative aging study

Annals of Behavioral Medicine, 31(1),21-29.

DOI:10.1207/s15324796abm3101_5      URL     PMID:16472035      [本文引用: 1]

BACKGROUND: Anger, anxiety, and depression have each been identified as risk factors for coronary heart disease (CHD). Whether the apparent risk is a function of unique aspects of each emotion or due to a shared underlying dimension of negative affectivity is unclear. PURPOSE: The goal of this study was to assess shared and unique contributions of anger, anxiety, and depression to incident CHD. METHODS: Data are from the Veterans Administration Normative Aging Study, an ongoing cohort of older men. Measures of anger, anxiety, and depression were obtained from 1,306 men completing the revised Minnesota Multiphasic Personality Inventory in 1986. From these measures we derived three near-orthogonal scales termed iso(lated)-anger, iso-anxiety, and iso-depression and a fourth scale measuring general distress. RESULTS: During an average of 10.9 years of follow-up, 161 cases of incident CHD occurred. When considered individually, iso-anxiety, iso-anger, and shared general distress were each associated with CHD risk. When all emotions were considered simultaneously, only iso-anxiety and shared general distress were associated with incident CHD. CONCLUSIONS: Considering shared versus unique aspects of negative emotions may clarify the nature of their apparent toxicity in relation to CHD risk. General distress shared across negative emotions is an important component in the emotion-CHD relation. Aspects of anxiety may also independently increase CHD risk.

Kubzansky, L. D., Koenen, K. C., Jones, C., & Eaton, W. W. (2009).

A prospective study of posttraumatic stress disorder symptoms and coronary heart disease in women

Health Psychology, 28(1),125-130.

URL     PMID:19210026      [本文引用: 1]

Lanctôt, K. L., Agüera-Ortiz, L., Brodaty, H., Francis, P. T., Geda, Y. E., Ismail, Z., ... Abraham, E. H. (2017).

Apathy associated with neurocognitive disorders: Recent progress and future directions

Alzheimer's & Dementia, 13(1),84-100.

DOI:10.1016/j.jalz.2016.05.008      URL     PMID:27362291      [本文引用: 1]

INTRODUCTION: Apathy is common in neurocognitive disorders (NCDs) such as Alzheimer's disease and mild cognitive impairment. Although the definition of apathy is inconsistent in the literature, apathy is primarily defined as a loss of motivation and decreased interest in daily activities. METHODS: The Alzheimer's Association International Society to Advance Alzheimer's Research and Treatment (ISTAART) Neuropsychiatric Syndromes Professional Interest Area (NPS-PIA) Apathy workgroup reviewed the latest research regarding apathy in NCDs. RESULTS: Progress has recently been made in three areas relevant to apathy: (1) phenomenology, including the use of diagnostic criteria and novel instruments for measurement, (2) neurobiology, including neuroimaging, neuropathological and biomarker correlates, and (3) interventions, including pharmacologic, nonpharmacologic, and noninvasive neuromodulatory approaches. DISCUSSION: Recent progress confirms that apathy has a significant impact on those with major NCD and those with mild NCDs. As such, it is an important target for research and intervention.

Lau, J.K. L., Ozono, H., Kuratomi, K., Komiya, A., & Murayama, K. (2020).

Shared striatal activity in decisions to satisfy curiosity and hunger at the risk of electric shocks

Nature Human Behaviour, 4,531-543.

DOI:10.1038/s41562-020-0848-3      URL     PMID:32231281      [本文引用: 2]

Curiosity is often portrayed as a desirable feature of human faculty. However, curiosity may come at a cost that sometimes puts people in harmful situations. Here, using a set of behavioural and neuroimaging experiments with stimuli that strongly trigger curiosity (for example, magic tricks), we examine the psychological and neural mechanisms underlying the motivational effect of curiosity. We consistently demonstrate that across different samples, people are indeed willing to gamble, subjecting themselves to electric shocks to satisfy their curiosity for trivial knowledge that carries no apparent instrumental value. Also, this influence of curiosity shares common neural mechanisms with that of hunger for food. In particular, we show that acceptance (compared to rejection) of curiosity-driven or incentive-driven gambles is accompanied by enhanced activity in the ventral striatum when curiosity or hunger was elicited, which extends into the dorsal striatum when participants made a decision.

Ligneul, R., Mermillod, M., & Morisseau, T. (2018).

From relief to surprise: Dual control of epistemic curiosity in the human brain

NeuroImage, 181,490-500.

URL     PMID:30025853      [本文引用: 3]

Lisman, J. E., & Grace, A. A. (2005).

The Hippocampal-VTA loop: Controlling the entry of information into long-term memory

Neuron, 46(5),703-713.

URL     PMID:15924857      [本文引用: 2]

Litman, J. A. (2005).

Curiosity and the pleasures of learning: Wanting and liking new information

Cognition & Emotion, 19(6),793-814.

[本文引用: 3]

Litman, J. A. (2008).

Interest and deprivation factors of epistemic curiosity

Personality and Individual Differences, 44(7),1585-1595.

[本文引用: 1]

Litman, J. A. (2010).

Relationships between measures of I- and D-type curiosity, ambiguity tolerance, and need for closure: An initial test of the wanting-liking model of information-seeking

Personality and Individual Differences, 48(4),397-402.

[本文引用: 4]

Litman, J. A., Hutchins, T., & Russon, R. (2005).

Epistemic curiosity, feeling-of-knowing, and exploratory behaviour

Cognition and Emotion, 19(4),559-582.

Litman, J. A., & Jimerson, T. L. (2004).

The measurement of curiosity as a feeling of deprivation

Journal of Personality Assessment, 82(2),147-157.

URL     PMID:15041521      [本文引用: 2]

Litman, J. A., & Pezzo, M. V. (2007).

Dimensionality of interpersonal curiosity

Personality and Individual Differences, 43(6),1448-1459.

[本文引用: 1]

Litman, J. A., & Silvia, P. J. (2006).

The Latent structure of trait curiosity: Evidence for interest and deprivation curiosity dimensions

Journal of Personality Assessment, 86(3),318-328.

DOI:10.1207/s15327752jpa8603_07      URL     PMID:16740115      [本文引用: 1]

To evaluate Litman and Jimerson's (2004) Interest/Deprivation (I/D) model of curiosity, 355 students (269 women, 86 men) responded to 6 trait curiosity measures including the Curiosity/Interest in the World scale (C/IW; Peterson & Seligman, 2004), the Curiosity and Exploration Inventory (CEI; Kashdan, Rose, & Fincham, 2004), the Perceptual Curiosity scale (PC; Collins, Litman, & Spielberger, 2004), the Epistemic Curiosity scale (EC; Litman & Spielberger, 2003), and the Curiosity as a Feeling-of-Deprivation scales (CFD; Litman & Jimerson, 2004). Consistent with expectations, the results of confirmatory factor analyses demonstrated that the C/IW, CEI, PC, EC scales defined an Interest (I) curiosity factor, whereas the CFD scales formed a Deprivation (D) curiosity factor. However, as compared to the other interest-based curiosity measures, one of the EC subscales was found to be less differentiated from the CFD scales, presumably because these instruments assess overlapping aspects of Berlyne's (1954) concept of epistemic curiosity. The results of this study indicated that I and D curiosity are related but differentiated curiosity dimensions, providing evidence for the validity of the I/D model.

Litman, J. A., & Spielberger, C. D. (2003).

Measuring epistemic curiosity and its diversive and specific components

Journal of Personality Assessment, 80(1),75-86.

URL     PMID:12584070      [本文引用: 2]

Liu, Z. X., Shen, K., Olsen, R. K., & Ryan, J. D. (2017).

Visual sampling predicts hippocampal activity

Journal of Neuroscience, 37(3),599-609.

URL     PMID:28100742      [本文引用: 1]

Loewenstein, G. (1994).

The psychology of curiosity: A review and reinterpretation

Psychological Bulletin, 116(1),75-98.

[本文引用: 8]

Lydon-Staley, D. M., Zhou, D., Blevins, A. S., Zurn, P., & Bassett, D. S. (2019).

Hunters, busybodies, and the knowledge network building associated with curiosity

PsyARXiv..

[本文引用: 1]

Marin, R. S. (1991).

Apathy: A neuropsychiatric syndrome

The Journal of Neuropsychiatry and Clinical Neurosciences, 3(3),243-254.

URL     PMID:1821241      [本文引用: 1]

Marvin, C. B., & Shohamy, D. (2016).

Curiosity and reward: Valence predicts choice and information prediction errors enhance learning

Journal of Experimental Psychology- General, 145(3),266-272.

URL     PMID:26783880      [本文引用: 2]

Mather, M., Clewett, D., Sakaki, M., & Harley, C. W. (2016).

Norepinephrine ignites local hotspots of neuronal excitation: How arousal amplifies selectivity in perception and memory

Behavioral and Brain Sciences, 39,e200.

[本文引用: 1]

Mayer, J. S., Kim, J., & Park, S. (2011).

Enhancing visual working memory encoding: The role of target novelty

Visual Cognition, 19(7),863-885.

[本文引用: 1]

McCrae, R. R., & Costa, P. T. (2011).

Chapter 31 - Conceptions and Correlates of Openness to Experience. In R. Hogan, J. Johnson, & S. Briggs (Eds.)

Handbook of personality psychology (pp.825-847). San Diego: Academic Press.

[本文引用: 1]

McGillivray, S., Murayama, K., & Castel, A. D. (2015).

Thirst for knowledge: The effects of curiosity and interest on memory in younger and older adults

Psychology and Aging, 30(4),835-841.

DOI:10.1037/a0039801      URL     PMID:26479013      [本文引用: 1]

Given age-related memory impairments, one's level of curiosity or interest could enhance memory for certain information. In the current study, younger and older adults read trivia questions, rated how curious they were to learn each answer, provided confidence and interest ratings, and judgments of learning after learning the answer. No age-related differences in memory were found. Analyses indicated that curiosity and interest contributed to the formation of judgments of learning. Additionally, interest had a unique increasing relationship with older, but not younger, adults' memory performance after a one-week delay. The results suggest that subjective interest may serve to enhance older adults' memory.

Montoya-Murillo, G., Ibarretxe-Bilbao, N., Pena, J., & Ojeda, N. (2019).

The impact of apathy on cognitive performance in the elderly

International Journal of Geriatric Psychiatry, 34(5),657-665.

URL     PMID:30672026      [本文引用: 1]

Mumford, M. D., & McIntosh, T. (2017).

Creative thinking processes: The past and the future

Journal of Creative Behavior, 51(4),317-322.

[本文引用: 1]

Nassar, M. R., Bruckner, R., Gold, J. I., Li, S.-C., Heekeren, H. R., & Eppinger, B., (2016).

Age differences in learning emerge from an insufficient representation of uncertainty in older adults

Nature Communications, 7(1),11609.

[本文引用: 1]

Nassar, M. R., Rumsey, K. M., Wilson, R. C., Parikh, K., Heasly, B., & Gold, J. I. (2012).

Rational regulation of learning dynamics by pupil-linked arousal systems

Nature Neuroscience, 15(7),1040-1046.

DOI:10.1038/nn.3130      URL     PMID:22660479      [本文引用: 1]

The ability to make inferences about the current state of a dynamic process requires ongoing assessments of the stability and reliability of data generated by that process. We found that these assessments, as defined by a normative model, were reflected in nonluminance-mediated changes in pupil diameter of human subjects performing a predictive-inference task. Brief changes in pupil diameter reflected assessed instabilities in a process that generated noisy data. Baseline pupil diameter reflected the reliability with which recent data indicate the current state of the data-generating process and individual differences in expectations about the rate of instabilities. Together these pupil metrics predicted the influence of new data on subsequent inferences. Moreover, a task- and luminance-independent manipulation of pupil diameter predictably altered the influence of new data. Thus, pupil-linked arousal systems can help to regulate the influence of incoming data on existing beliefs in a dynamic environment.

Noordewier, M. K., & van Dijk, E., (2016).

Interest in complex novelty

Basic and Applied Social Psychology, 38(2),98-110.

[本文引用: 1]

O'Keefe, J., & Nadel, L. (1979).

The cognitive map as a hippocampus

Behavioral and Brain Sciences, 2(4),520-533.

[本文引用: 2]

Olson, K., Camp, C., & Fuller, D. (1984).

Curiosity and need for cognition

Psychological Reports, 54(1),71-74.

[本文引用: 1]

Oudeyer, P. Y., Gottlieb, J., & Lopes, M. (2016).

Intrinsic motivation, curiosity, and learning: Theory and applications in educational technologies

Progress in Brain Research, 229,257-284.

DOI:10.1016/bs.pbr.2016.05.005      URL     PMID:27926442      [本文引用: 2]

This chapter studies the bidirectional causal interactions between curiosity and learning and discusses how understanding these interactions can be leveraged in educational technology applications. First, we review recent results showing how state curiosity, and more generally the experience of novelty and surprise, can enhance learning and memory retention. Then, we discuss how psychology and neuroscience have conceptualized curiosity and intrinsic motivation, studying how the brain can be intrinsically rewarded by novelty, complexity, or other measures of information. We explain how the framework of computational reinforcement learning can be used to model such mechanisms of curiosity. Then, we discuss the learning progress (LP) hypothesis, which posits a positive feedback loop between curiosity and learning. We outline experiments with robots that show how LP-driven attention and exploration can self-organize a developmental learning curriculum scaffolding efficient acquisition of multiple skills/tasks. Finally, we discuss recent work exploiting these conceptual and computational models in educational technologies, showing in particular how intelligent tutoring systems can be designed to foster curiosity and learning.

Park, N., Peterson, C., & Seligman, M. E. P. (2004).

Strengths of character and well-being

Journal of Social and Clinical Psychology, 23(5),603-619.

[本文引用: 1]

Pavlov, I. P. (1927).

Conditioned reflexes: An investigation of the physiological activity of the cerebral cortex

Oxford University Press,

Payzan-LeNestour, E., Dunne, S., Bossaerts, P., & O'Doherty, J. P. (2013).

The neural representation of unexpected uncertainty during value-based decision making

Neuron, 79(1),191-201.

URL     PMID:23849203      [本文引用: 1]

Peljko, Ž., Jeraj, M., Săvoiu, G., & Marič, M. (2016).

An empirical study of the relationship between entrepreneurial curiosity and innovativeness

Organizacija, 49(3),172.

[本文引用: 1]

Pereira, A., Smith, L., & Yu, C. (2013).

A Bottom-up view of toddler word learning

Psychonomic Bulletin & Review, 21,178-185.

DOI:10.3758/s13423-013-0466-4      URL     PMID:23813190      [本文引用: 1]

A head camera was used to examine the visual correlates of object name learning by toddlers as they played with novel objects and as the parent spontaneously named those objects. The toddlers' learning of the object names was tested after play, and the visual properties of the head camera images during naming events associated with learned and unlearned object names were analyzed. Naming events associated with learning had a clear visual signature, one in which the visual information itself was clean and visual competition among objects was minimized. Moreover, for learned object names, the visual advantage of the named target over competitors was sustained, both before and after the heard name. The findings are discussed in terms of the visual and cognitive processes that may depend on clean sensory input for learning and also on the sensory-motor, cognitive, and social processes that may create these optimal visual moments for learning.

Peterson, C., Park, N., & Seligman, M. E. P. (2006).

Greater strengths of character and recovery from illness

The Journal of Positive Psychology, 1(1),17-26.

[本文引用: 1]

Peterson, C., Ruch, W., Beermann, U., Park, N., & Seligman, M.E. P. (2007).

Strengths of character, orientations to happiness, and life satisfaction

The Journal of Positive Psychology, 2(3),149-156.

[本文引用: 1]

Puente-Díaz, R., & Cavazos-Arroyo, J. (2017).

Creative self-efficacy: The influence of affective states and social persuasion as antecedents and imagination and divergent thinking as consequences

Creativity Research Journal, 29(3),304-312.

[本文引用: 1]

Renner, B. (2006).

Curiosity about people: The development of a social curiosity measure in adults

Journal of Personality Assessment, 87(3),305-316.

URL     PMID:17134338      [本文引用: 1]

Renninger, K. A. (2000).

Chapter 13 - Individual interest and its implications for understanding intrinsic motivation. In C. Sansone & J. M. Harackiewicz (Eds.)

Intrinsic and Extrinsic Motivation (pp.373-404). San Diego: Academic Press.

[本文引用: 1]

Renninger, K. A., & Hidi, S. (2015).

The power of interest for motivation and engagement

Routledge/Taylor & Francis Group,

[本文引用: 1]

Richman, L. S., Kubzansky, L., Maselko, J., Kawachi, I., Choo, P., & Bauer, M. (2005).

Positive emotion and health: Going beyond the negative

Health Psychology, 24(4),422-429.

URL     PMID:16045378      [本文引用: 1]

Robert, P. H., Berr, C., Volteau, M., Bertogliati-Fileau, C., Benoit, M., Guerin, O., ... Dubois, B. (2008).

Importance of lack of interest in patients with mild cognitive impairment

The American Journal of Geriatric Psychiatry, 16(9),770-776.

DOI:10.1097/JGP.0b013e31817e73db      URL     PMID:18757769      [本文引用: 1]

OBJECTIVE: Apathy is one of the most common behavioral symptoms in mild cognitive impairment (MCI). The aim of the authors' study was to examine the influence of the apathy dimensions, i.e., emotional blunting, lack of initiative, and lack of interest, on the risk of developing of Alzheimer disease (AD) in patients with MCI. DESIGN: Longitudinal study. SETTING: Fourteen French memory clinics. PARTICIPANTS: Apathy was assessed in 214 MCI patients. The main endpoint considered was the development of AD during the 3-year follow-up. MEASUREMENTS: The neuropsychiatric evaluation included the Goldberg anxiety scale and the Montgomery and Asberg Depression Rating Scale; apathy was assessed with the Apathy Inventory. RESULTS: After 3 years, 59 patients (27.2%) had developed AD. The risk of conversion to AD was significantly higher for patients with lack of interest. Using Cox analyses, controlling for age, gender and education, the difference between survival curves was significant for lack of interest. CONCLUSIONS: Lack of interest, a mild behavioral sign, could be an indicator of potential decline in MCI patients and underlines the importance of checking the cognitive status of these patients.

Robinson, O. C., Demetre, J. D., & Litman, J. A. (2017).

Adult life stage and crisis as predictors of curiosity and authenticity: Testing inferences from Erikson's lifespan theory

International Journal of Behavioral Development, 41(3),426-431.

[本文引用: 1]

Sakaki, M., Fryer, K., & Mather, M. (2014).

Emotion strengthens high-priority memory traces but weakens low-priority memory traces

Psychological Science. 25(2),387-395.

DOI:10.1177/0956797613504784      URL     PMID:24311478      [本文引用: 1]

When people encounter emotional events, their memory for those events is typically enhanced. But it has been unclear how emotionally arousing events influence memory for preceding information. Does emotional arousal induce retrograde amnesia or retrograde enhancement? The current study revealed that this depends on the top-down goal relevance of the preceding information. Across three studies, we found that emotional arousal induced by one image facilitated memory for the preceding neutral item when people prioritized that neutral item. In contrast, an emotionally arousing image impaired memory for the preceding neutral item when people did not prioritize that neutral item. Emotional arousal elicited by both negative and positive pictures showed this pattern of enhancing or impairing memory for the preceding stimulus depending on its priority. These results indicate that emotional arousal amplifies the effects of top-down priority in memory formation.

Sakaki, M., Yagi, A., & Murayama, K. (2018).

Curiosity in old age: A possible key to achieving adaptive aging

Neuroscience and Biobehavioral Reviews, 88,106-116.

DOI:10.1016/j.neubiorev.2018.03.007      URL     PMID:29545165      [本文引用: 4]

Curiosity is a fundamental part of human motivation that supports a variety of human intellectual behaviors ranging from early learning in children to scientific discovery. However, there has been little attention paid to the role of curiosity in aging populations. By bringing together broad but sparse neuroscientific and psychological literature on curiosity and related concepts (e.g., novelty seeking in older adults), we propose that curiosity, although it declines with age, plays an important role in maintaining cognitive function, mental health, and physical health in older adults. We identify the dopaminergic reward system and the noradrenergic system as the key brain systems implicated in curiosity processing and discuss how these brain systems contribute to the relationship between curiosity and adaptive aging.

Salapatek, P., & Kessen, W. (1966).

Visual scanning of triangles by the human newborn

Journal of Experimental Child Psychology, 3(2),155-167.

URL     PMID:5939107      [本文引用: 2]

Schmitt, F. F., & Lahroodi, R. (2008).

The epistemic value of curiosity

Educational Theory, 58(2),125-148.

[本文引用: 1]

Schutte, N. S., & Malouff, J. M. (2019).

A meta-analysis of the relationship between curiosity and creativity

Journal of Creative Behavior, 54(4),940-947.

[本文引用: 1]

Schutte, N. S., & Malouff, J. M. (2020).

Connections between curiosity, flow and creativity

Personality and Individual Differences, 152,109555.

[本文引用: 1]

Shah, P. E., Weeks, H. M., Richards, B., & Kaciroti, N. (2018).

Early childhood curiosity and kindergarten reading and math academic achievement

Pediatric Research, 84(3),380-386.

DOI:10.1038/s41390-018-0039-3      URL     PMID:29884846      [本文引用: 1]

Shohamy, D., & Adcock, R. A. (2010).

Dopamine and adaptive memory

Trends in Cognitive Sciences, 14(10),464-472.

URL     PMID:20829095      [本文引用: 1]

Silvia, P. J. (2005).

What is interesting? Exploring the appraisal structure of interest

Emotion, 5(1),89-102.

URL     PMID:15755222      [本文引用: 1]

Silvia, P. J. (2008).

Appraisal components and emotion traits: Examining the appraisal basis of trait curiosity

Cognition and Emotion, 22(1),94-113.

[本文引用: 1]

Smock, C. D., & Holt, B. G. (1962).

Children's reactions to novelty: An experimental study of "curiosity motivation"

Child Development, 33(3),631-642.

[本文引用: 1]

Swan, G. E., & Carmelli, D. (1996).

Curiosity and mortality in aging adults: A 5-year follow-up of the Western Collaborative Group Study

Psychology and Aging, 11(3),449-453.

DOI:10.1037//0882-7974.11.3.449      URL     PMID:8893314      [本文引用: 1]

Research suggests that curiosity in older people is associated with maintaining the health of the aging central nervous system. We examined prospectively the relationship of curiosity in 1,118 community-dwelling older men to subsequent survival over a 5-year period. Curiosity was measured when the participants were a mean age of 70.6 years. Initial levels of trait and state curiosity were higher in survivors than in those who subsequently died. After adjustment for other risk factors, the state curiosity-mortality association remained significant in the Cox regression model. Ancillary analyses in 1,035 older women (M age at initial examination = 68.6 years) confirmed the pattern found in the men. State curiosity in these women was significantly associated with survival after adjustment for other risk factors. This is the first study to identify a predictive role for curiosity in the longevity of older adults.

Tucker-Drob, E. M., Briley, D. A., Engelhardt, L. E., Mann, F. D., & Harden, K. P. (2016).

Genetically-mediated associations between measures of childhood character and academic achievement

Journal of Personality and Social Psychology, 111(5),790-815.

URL     PMID:27337136      [本文引用: 1]

Twomey, K. E., & Westermann, G. (2015).

A neural network model of curiosity-driven infant categorization

5th International Conference on Development and Learning and on Epigenetic Robotics (Icdl-Epirob),1-6.

[本文引用: 1]

Twomey, K. E., & Westermann, G. (2018).

Curiosity-based learning in infants: A neurocomputational approach

Developmental Science, 21(4),e12629.

DOI:10.1111/desc.12629      URL     PMID:29071759      [本文引用: 1]

Infants are curious learners who drive their own cognitive development by imposing structure on their learning environment as they explore. Understanding the mechanisms by which infants structure their own learning is therefore critical to our understanding of development. Here we propose an explicit mechanism for intrinsically motivated information selection that maximizes learning. We first present a neurocomputational model of infant visual category learning, capturing existing empirical data on the role of environmental complexity on learning. Next we

Usher, M., Cohen, J., Servan-Schreiber, D., Rajkowski, J., & Aston-Jones, G. (1999).

The role of locus coeruleus in the regulation of cognitive performance

Science, 283(5401),549-554.

URL     PMID:9915705      [本文引用: 1]

van Lieshout, L.L. F., de Lange, F. P., & Cools, R. (2019).

Motives underlying human curiosity

Nature Human Behaviour, 3(6),550-551.

DOI:10.1038/s41562-019-0565-y      URL     PMID:30988480      [本文引用: 1]

van Lieshout, L.L. F., Vandenbroucke, A.R. E., Muller, N.C. J., Cools, R., & de Lange, F. P. (2018).

Induction and relief of curiosity elicit parietal and frontal activity

Journal of Neuroscience, 38(10),2579-2588.

URL     PMID:29439166      [本文引用: 2]

Vogl, E., Pekrun, R., Murayama, K., & Loderer, K. (2020).

Surprised-curious-confused: Epistemic emotions and knowledge exploration

Emotion, 20(4),625-641.

URL     PMID:30883147      [本文引用: 1]

von, Stumm, S., Hell, B., & Chamorro-Premuzic, T. (2011).

The Hungry mind: Intellectual curiosity is the third pillar of academic performance

Perspectives on Psychological Science,6(6),574-588.

URL     PMID:26168378      [本文引用: 1]

Voss, J. L., Bridge, D. J., Cohen, N. J., & Walker, J. A. (2017).

A closer look at the hippocampus and memory

Trends in Cognitive Sciences, 21(8),577-588.

DOI:10.1016/j.tics.2017.05.008      URL     PMID:28625353      [本文引用: 1]

Current interpretations of hippocampal memory function are blind to the fact that viewing behaviors are pervasive and complicate the relationships among perception, behavior, memory, and brain activity. For example, hippocampal activity and associative memory demands increase with stimulus complexity. Stimulus complexity also strongly modulates viewing. Associative processing and viewing thus are often confounded, rendering interpretation of hippocampal activity ambiguous. Similar considerations challenge many accounts of hippocampal function. To explain relationships between memory and viewing, we propose that the hippocampus supports the online memory demands necessary to guide visual exploration. The hippocampus thus orchestrates memory-guided exploration that unfolds over time to build coherent memories. This new perspective on hippocampal function harmonizes with the fact that memory formation and exploratory viewing are tightly intertwined.

Wade, S., & Kidd, C. (2019).

The role of prior knowledge and curiosity in learning

Psychonomic Bulletin & Review, 26(4),1377-1387.

DOI:10.3758/s13423-019-01598-6      URL     PMID:31079309      [本文引用: 1]

Recent work has argued that curiosity can improve learning. However, these studies also leave open the possibility that being on the verge of knowing can itself induce curiosity. We investigate how prior knowledge relates to curiosity and subsequent learning using a trivia question task. Curiosity in our task is best predicted by a learner's estimate of their current knowledge, more so than an objective measure of what they actually know. Learning is best predicted by both curiosity and an objective measure of knowledge. These results suggest that while curiosity is correlated with knowledge, there is only a small boost in learning from being curious. The implication is that the mechanisms that drive curiosity are not identical to those that drive learning outcomes.

Wiggin, K. L., Reimann, M., & Jain, S. P. (2019).

Curiosity tempts indulgence

Journal of Consumer Research, 45(6),1194-1212.

[本文引用: 1]

/


版权所有 © 《心理科学进展》编辑部
地址:北京市朝阳区林萃路16号院 
邮编:100101 
电话:010-64850861 
E-mail:jinzhan@psych.ac.cn
备案编号:京ICP备10049795号-1 京公网安备110402500018号

本系统由北京玛格泰克科技发展有限公司设计开发