ISSN 1671-3710
CN 11-4766/R
主办:中国科学院心理研究所
出版:科学出版社

心理科学进展, 2019, 27(2): 329-343 doi: 10.3724/SP.J.1042.2019.00329

研究前沿

药物成瘾者决策缺陷的特征、机制及干预

杨玲, 姚东伟,, 曹华, 王斌强, 何圆圆, 苏红婷

西北师范大学心理学院, 兰州 730070

The characteristics, mechanisms and interventions of drug addicts' decision-making defects

YANG Ling, YAO Dongwei,, CAO Hua, WANG Binqiang, HE Yuanyuan, SU Hongting

School of Psychology, Northwest Normal University, Lanzhou 730070, China

通讯作者: 姚东伟, E-mail:cccpsky@163.com

收稿日期: 2017-11-16   网络出版日期: 2019-02-15

基金资助: * 国家自然科学基金项目“奖赏对海洛因成瘾者的执行功能的影响机制” 资助(31660276)

Received: 2017-11-16   Online: 2019-02-15

摘要

药物成瘾者存在决策缺陷, 并表现出冲动性、风险寻求、奖赏失调、躯体内感信号缺失等特征。神经影像学研究表明药物滥用导致成瘾者背外侧前额皮层、前扣带回、眶额叶皮层、腹内侧前额皮层、杏仁核、脑岛等脑区受损, 这些损伤是引发其决策缺陷的主要原因。认知训练有利于提高个体的决策能力, 如目标管理训练和正念冥想等可以增强个体工作记忆、促进自我觉察和以目标为导向的行为; 而非侵入性脑刺激则可以直接改变与成瘾者决策相关脑区的激活状态, 从而提升与决策相关的认知功能。总体而言, 未来认知训练和非侵入性脑刺激在成瘾干预方面仍有广阔的拓展空间。

关键词: 药物成瘾; 决策缺陷; 成瘾干预; 冲动性; 风险寻求; 奖赏失调

Abstract

Drug addicts have decision-making defects, and show the characteristics of impulsivity, risk-taking, dysfunctional reward processing, and lack of signals in bodies. Neuroimaging studies have shown that abuse of addictive drugs may cause damage to some brain areas such as DLPFC, ACC, OFC, VMPFC, Amygdala, Insula, etc, that may be incur addicts' decision-making defects. Cognitive training is beneficial to improve individuals' decision-making ability, for instance, goal management training and mindfulness meditation can improve working memory, promote self-awareness and goal oriented behavior; while, noninvasive brain stimulation can directly change the active state of addicts' brain regions that related to decision-making, hence, the cognitive function related to decision-making is improved. All in all, in the future cognitive training and noninvasive brain stimulation still have a broad space to expand in the aspect of addiction intervention.

Keywords: drug addiction; decision-making defects; addiction intervention; impulsivity; risk-taking; dysfunctional reward processing

PDF (714KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

杨玲, 姚东伟, 曹华, 王斌强, 何圆圆, 苏红婷. 药物成瘾者决策缺陷的特征、机制及干预 . 心理科学进展, 2019, 27(2): 329-343 doi:10.3724/SP.J.1042.2019.00329

YANG Ling, YAO Dongwei, CAO Hua, WANG Binqiang, HE Yuanyuan, SU Hongting. The characteristics, mechanisms and interventions of drug addicts' decision-making defects. Advances in Psychological Science, 2019, 27(2): 329-343 doi:10.3724/SP.J.1042.2019.00329

1 引言

药物成瘾也称药物滥用(Drug abuse), 成瘾药物可使成瘾者脑内相关神经环路的结构和功能发生长时程改变, 这是成瘾行为长期存在的主要原因(张建军, 刘鹏, 朱宁, 隋南, 2013)。长期药物使用不仅与成瘾者的生活问题相联系, 包括身心健康水平降低、社会功能受损(Maeyer, Vanderplasschen, & Broekaert, 2010)等, 同时也会造成成瘾者注意、言语记忆、执行功能等认知过程出现严重损伤, 其中决策功能被认为是受损功能之一(Baldacchino, Balfour, Passetti, Humphris, & Matthews, 2012)。药物成瘾者决策功能受损的典型特征是即使面对不利结果仍然不受控制的使用药物, 无法依据长期结果做出有利决策。具体表现为:(1)药物成瘾者倾向于选择短期获利但长期损失的选项(Verdejo-Garcia & Pérezgarcía, 2008); (2)相对于大额延迟奖赏更倾向于选择小额及时奖赏(Petry, 2003); (3)选择大额不可能获得的奖赏而不是小额极有可能获得的奖赏(Tschernegg et al., 2015); (4)他们的决策更多受奖赏预期的影响更少受损失(惩罚)的影响(Fridberg et al., 2010); (5)缺乏躯体内感信号的引导, 他们在意识中知道什么选择是正确的, 却在行为上做着错误的选择(Verdejo-Garcia & Bechara, 2009)。药物寻求和吸食成瘾药物的过程就是做出非适应选择的决策过程(Stoops & Kearns, 2018)。

成瘾行为和决策缺陷虽然分属不同概念, 但成瘾者的决策缺陷和成瘾行为本身具有相同或类似的脑机制(Baler & Volkow, 2006; Guttmana, Moeller, & London, 2017), 成瘾者对待成瘾药物和药物相关线索方面的反应与选择表现出的是成瘾行为, 成瘾者对待金钱和其他自然奖赏方面的反应与选择表现出的是决策缺陷。从决策的角度我们可以把成瘾行为描述为:药物和药物相关线索的价值被凸显, 非药物自然奖赏对其动机激励作用减弱; 惩罚的效用钝化, 对损失的耐受性增加; 抑制控制能力减弱, 冲动性、风险寻求行为增强; 成瘾者进入了一个不顾消极后果, 强迫性药物选择与使用的恶性循环。

早期研究主要关注成瘾者的决策缺陷本身, 近年来研究逐渐开始重视成瘾者的决策缺陷对于治疗维持和治疗后复吸率即治疗效果的预测作用。研究发现较差的决策表现与成瘾者中途退出戒毒治疗和较高的复吸率紧密相关(Stevens et al., 2013)。同样有研究表明, 即便是已经戒断(戒断时长15天至60天)的药物成瘾者其决策缺陷依然存在并且会引发复吸和其他风险行为(Wilson & Vassileva, 2016)。因此, 对药物成瘾者决策缺陷的干预显得尤其重要。目前已经发展出认知训练法(cognitive training)如目标管理训练(goal management training, GMT)和正念冥想(mindfulness meditation, MM), 非侵入性脑刺激法如经颅电刺激(transcranial direct current stimulation, tDCS)和重复经颅磁刺激(repetitive transcranial magnetic stimulation, rTMS)等方法来干预成瘾者的决策缺陷问题。这些干预方法通过改善行为的抑制力、目标导向能力、躯体内感信号的觉察能力等帮助成瘾者提高自我控制能力。这些干预方法让成瘾者不再基于眼前的短期利益而是基于长期利益最大化做决策, 并且能凭借内感信号的引导, 依据外界奖惩概率的变化, 适应性地调整自己的行为反应, 从而帮助成瘾者改善决策功能。

2 药物成瘾者决策缺陷的典型特征

决策功能可以从不同的角度来考察如风险/感觉寻求特征、奖赏敏感性、自我管理、认知控制等(Shulman et al., 2016), 又如奖赏加工、跨期决策、不确定性决策、身体状态(Bodily states)、外界影响等(Guttman, Moeller, & London, 2017), 也有从风险与价值评估、执行控制、情感与躯体状态等(Gowin, Mackey, & Paulus, 2013), 还有直接从神经机制来研究决策功能的(Broche-Pérez, Jiménez, & Omar-Martínez, 2016)。本文从认知与情感两个大维度来研究决策功能, 良好的决策功能需要认知与情感的互相配合, 而目前有大量的证据表明药物成瘾者认知加工与情感加工的相关脑区会因吸食成瘾药物而有不同程度的损伤(Fattore & Diana, 2016)。认知加工脑区的受损会使成瘾者表现出冲动性、风险寻求的特征, 情感加工的脑区受损会使成瘾者表现出躯体内感信号缺失的特征, 而奖赏失调的特征受到认知与情感双重加工的影响(Knutson & Greer, 2008)。认识这些脑区受损状况与药物成瘾者决策缺陷的关系, 有助于我们理解药物成瘾者出现决策缺陷问题的原因, 也有助于我们加深对成瘾行为的认识从而为成瘾行为的干预提供科学依据。

2.1 药物成瘾者决策缺陷的冲动性特征

冲动性指个体倾向于对内部和外部刺激做出快速、无计划性的反应而不管其对自身和他人可能带来的消极后果(Moeller et al., 2001), 冲动性是预测开始成瘾和持续药物成瘾状态的良好指标(Verdejo-Garcia, Perales, & Perez-Garcia, 2007), 并且与升高的复吸率和治疗失败风险有稳固联系。

冲动性本身并不是一个统一的结构, 它由几个相互独立的因素构成, 可以通过不同测量工具来评估(Evenden, 1999)。冲动性的定义暗含两个关键特征, 盲目的急促行为和缺乏计划性。由爱荷华赌博任务(Iowa Gambling Task, IGT)测量出的决策缺陷就包含了一部分无计划性特征(Kjome et al., 2010)。另一个是通过Go/No-Go反应抑制任务来测量的对优势反应无抑制能力的冲动。还有一种冲动性与缺乏延迟满足能力有关, 当面对不同时间节点的不同收益等级时, 冲动性表现为及时满足, 一般用经典的延迟折扣任务(delay discounting task, DDT)来测量。

执行控制功能(executive control function)缺陷的程度和性质(包括各种不同的冲动性)取决于最主要的药物吸食类型(Ersche, Clark, London, Robbins, & Sahakian, 2006)。Hanson, Luciana和Sullwold (2008)比较了亚甲基二氧甲基苯丙胺(MDMA, 俗称摇头丸)及其他药物成瘾者和控制组的BIS-11 (Barratt冲动性量表第11版)及IGT的成绩, 发现两组药物使用者表现出高冲动性和在IGT任务中有利决策减少的趋势, 且表现出剂量相关效应, 使用的药物剂量越大冲动性程度与决策缺陷程度越严重。还有研究发现在Go/No-Go和Stroop任务中可卡因混合使用者相比于海洛因混合使用者表现出显著的反应抑制缺陷, 并且两组在IGT任务中都更少做出有利选择(Verdejo- Garcia et al., 2007)。值得注意的是可卡因使用者在Go/No-Go任务中反转前阶段表现较好而在反转后出现了大量虚报错误(需要抑制没有抑制), 海洛因使用者同样在反转前表现较好而在反转后增加了漏报错误(需要反应没有反应)。可卡因使用者对任务概率变化的反应更具冲动性, 表明其无法抑制先前的优势反应。相反, 海洛因使用者的表现变得更保守, 或者说是更难以适应任务的转换(Verdejo-Garcia et al., 2007)。García-Rodríguez等(2013)发现可卡因成瘾者比尼古丁成瘾者以及健康被试有更高的延迟折扣率, 且延迟折扣率与药物成瘾风险正相关, 延迟折扣率越高, 成瘾风险越大(Fernie et al., 2013), 延迟折扣率越高, 药物戒断的成功率越低(Sheffer et al., 2014)。

一般认为背外侧前额皮层(dorsolateral prefrontal cortex, DLPFC)在认知控制和执行功能中扮演重要角色(Barbey, Colom, & Grafman, 2013), 在决策过程中同样起到核心作用(Camus et al., 2009)。DLPFC负责保持和操作工作记忆中的信息, 可以促进与决策相关的多源信息整合与加工, 同时也可以在决策时监控竞争选项的状态(Krawczyk, 2002)。与DLPFC有关的执行控制和工作记忆等有关认知功能在药物成瘾者群体中有所减弱。例如Bolla (2003)报告称在IGT任务中可卡因和大麻使用者右侧DLPFC激活程度降低。Yuan等(2010)发现海洛因成瘾者右侧DLPFC的灰质密度相对健康组显著降低, 且在静息状态下右侧DLPFC和左下顶叶(IPL)功能性联结减弱, 并认为这一结果和持续的海洛因使用有关, 同时会导致海洛因成瘾者决策与认知控制功能损伤。Moreno-Lo´pez等(2012)使用统计参数映射分布技术(Statistical Parametric Mapping voxel-based)和脱氧葡萄糖正电子断层扫描技术(FDG-PET)来研究可卡因、海洛因、MDMA、大麻、酒精的复合使用者, 发现药物使用的严重程度与DLPFC和颞叶区代谢(brain metabolism)水平负相关。

以上的研究证据表明药物成瘾者DLPFC的激活度降低、功能损伤造成他们对冲动性抑制失败并且经常短视、寻求及时满足, 缺乏对决策目标的整体性把控能力是造成他们决策缺陷的一大原因。药物成瘾者表现出的冲动性, 会影响药物成瘾者参加康复活动的能力, 还会增加寻求和再次使用药物的可能性。

2.2 药物成瘾者决策缺陷的风险寻求特征

在风险决策过程中, 由于决策的不确定性, 个体所知觉的风险情景也同, 从而表现出两种风险偏好:风险回避与风险寻求。风险回避(risk avoidance)指当有两个或多个可供选择项时, 相比而言, 个体更倾向于选择风险小的选项; 风险寻求(risk taking)正好与之相反, 是指当有两个或多个可供选择项时, 相比而言, 个体更倾向选择风险较大的选项。

药物成瘾者选择大额但不可能获得的奖赏而不是小额的但极有可能获得的奖赏(Tschernegg et al., 2015), 表明其在决策中风险寻求特征十分明显。风险寻求特征还可以用来预测药物成瘾, Ríos-Bedoya等(2008)用纵向追踪的研究方法基于图片的风险寻求任务(cartoon-based risk-taking task)来考察风险寻求与药物使用的关系, 发现青少年的风险寻求水平和以后的可卡因与大麻使用有稳固的联系。被试在气球模拟风险任务(balloon analogue risk task, BART)中表现出的风险寻求水平(爆破气球个数和未爆破气球的按键次数)与多重药物滥用、赌博、偷盗等风险行为高度相关, 并且可以把MDMA使用者从健康群体中成功的区分出来(Hopko et al., 2006)。Hanson, Thayer和Tapert (2014)研究证实在BART任务中戒断2周以上的大麻成瘾者相比健康组爆破的气球个数更多, 尤其是在实验开始的前20次, 表明在实验一开始大麻成瘾者就表现出较高的风险寻求水平, 虽然后续试次他们努力控制自己的风险行为, 爆破气球个数有所减少, 但在整体上仍然高于健康组。同样有研究表明吸食大麻与高风险寻求行为有关, 包括危险驾驶行为(Abay & Mannering, 2016)、高危性行为(Dvorak et al., 2010)等。这说明风险寻求特征是成瘾者的一个典型特征, 也是诱发他们初始尝试成瘾药物的原因之一。

前扣带回(anterior cingulate cortex, ACC)和脑岛(insula)的激活与规避损失及风险有关(Preuschoff, Quartz, & Bossaerts, 2008), 而药物成瘾者在风险决策任务中上述脑区激活异常。在BART任务中ACC激活意味着风险规避, 而ACC激活减弱意味着被试不断的给气球充气, 风险持续增加(Fukunaga, Brown, & Bogg, 2012)。一项需要被试在恒定收益与风险收益之间做出选择的研究中, 具有最小ACC激活的被试倾向于选择高风险低可能的结果(青睐于5%的概率得到1000元而不是确定性的得到75元), 而对高概率性结果表现出厌恶(青睐于确定性的得到800元而不是95%的概率得到1000元) (Paulus & Frank, 2006)。这表明对于风险寻求者而言, 他们的行为更多地受风险选项的驱动, 风险选项本身就对他们有较大的吸引力。在一个金钱游戏任务中, 既有金额稳定的收益选项又有奖赏金额不断增加但损失的概率也随之变大的风险选项, 被诊断为酒精和可卡因成瘾的被试在选择风险选项时ACC的激活水平要低于控制组(Bjork, Momenan, Smith, & Hommer, 2008)。可卡因成瘾者在需要进行监控和纠正的任务中, 他们在错误选择时表现出ACC激活减弱, 并且激活程度与他们每周的可卡因使用剂量负相关(Bolla et al., 2004)。ACC激活减弱意味着成瘾者在决策中风险意识的降低, 不能从风险决策引发的损失中学习, 进而造成决策只停留在当前试次和即时收益的门槛上(Fishbein et al., 2005)。长期大麻使用者在IGT任务的结果反馈阶段引发的ACC激活度比控制组低, 如果被试在IGT任务的早期阶段ACC激活较低那么在后期阶段决策表现就会较差(Hanlon, Wesley, Stapleton, Laurienti, & Porrino, 2011)。因此, 药物成瘾者不顾消极后果持续选择风险选项可能是由于他们更看重风险选项本身和对风险带来的损失缺乏意识引起的。

脑岛与在风险状态下整合当前的躯体状态以及过去的记忆信息来引导行为反应有关(Craig, 2009)。脑岛与前扣带回相结合在风险决策中具有评估结果的可能性与量级的作用(Preuschoff et al., 2008)。Preuschoff要求被试在抽取第一张牌以后猜测他们抽取的第二张牌是否会比第一张牌大, 发现被试双侧前脑岛呈现倒U型激活状态, 在风险程度最高时激活程度也最高(50%赢的概率), 在风险程度最低时激活程度也最低(概率接近于0或则100%)。他还指出在风险决策中脑岛激活与在惩罚过后风险规避倾向有对应关系, 认为脑岛激活意味着风险厌恶。脑岛激活也许可以预测风险量级和之后达到临界阈值时风险规避机制的启动。在BART任务中青少年药物成瘾者相比控制组表现出较低的脑岛激活(Crowley et al., 2010)。药物成瘾者的脑岛激活减弱表明他们需要更大的风险级别才能达到触发风险规避的阈限。

这些研究表明药物成瘾者风险管控的脑区尤其是前扣带回和脑岛存在功能异常, 造成他们风险寻求的动机远高于正常被试, 对风险本身更为偏好, 启动风险规避机制的阈限也高于正常被试。这造成药物成瘾者在决策中更多的选择风险选项, 在生活中更多的表现出风险寻求行为, 风险寻求特征可能是诱发他们使用成瘾药物, 并在戒断之后又重新复吸的重要原因。

2.3 药物成瘾者决策缺陷的奖赏失调特征

无论是动物还是人类都有寻求奖赏规避惩罚的行为倾向性, 预测奖赏与惩罚何时何地会发生并且依据这些预测来形成决策偏向, 对做出优势决策十分必要, 尤其是这种预测奖赏发生的神经活动过程刚好发生在决策选择之前, 是影响决策的最佳时间点(Knutson & Greer, 2008)。如果与奖赏预期有关的神经系统异常会破坏个体从不同行为过程中做出优势选择的能力, 对决策十分不利(Balodis & Potenza, 2015)。

药物成瘾者的决策选择更多受奖赏预期的影响更少受损失(惩罚)的影响, 奖赏对他们的行为引导能力增加, 惩罚对他们的行为引导能力减弱, 表现出奖赏加工失调的特征(Fridberg et al., 2010)。理解奖赏加工过程也有助于理解药物成瘾, 尤其是药物寻求行为被归因为一种奖赏/强化敏感性缺陷。药物成瘾与药物强化效应或者其他奖赏刺激的敏感性增加有关, 可以认为高奖赏敏感性增加了药物成瘾的易感性(Baler & Volkow, 2006)。长期成瘾物质使用会导致个体包括奖赏系统在内的大脑结构和功能的持久改变, 这被认为是成瘾的基础(Torregrossa, Corlett, & Taylor, 2011)。这一观点也受到一些神经生理学模型的支持(Noël, Brevers, & Bechara, 2013), 这些模型都突出了大脑奖赏系统的变化在成瘾中的核心作用。这种病理性变化反过来会对奖赏系统的调节功能产生不利的影响, 引起认知和日常功能方面的障碍。例如动物研究表明长期的可卡因药物使用会导致老鼠大脑的奖赏阈限提高(Kenny, Polis, Koob, & Markou, 2003), 人类研究表明药物和药物相关线索会显著增强药物成瘾者奖赏脑区的激活(Diekhof, Falkai, & Gruber, 2008), 表明药物对药物成瘾个体具有异常奖赏效应。对长期大麻吸食者IGT任务表现的模型分析表明, 相比控制组他们的决策更少受损失的影响更多受收益的影响(Fridberg et al., 2010), 这一研究结果也与程九清、陆燕红、韩晓东和隋南(2009)的发现相一致, 即药物成瘾者对损失不敏感。他们在决策过程中相比控制组对获得奖赏的预期更加强烈, 以至于忽略损失对决策结果的影响, 这说明药物成瘾者奖赏加工的失调是造成他们决策缺陷的重要原因。

当决策涉及积极刺激(奖赏)以及与结果有关的情感体验时, 眶额叶皮层(Orbitofrontal cortex, OFC)在其中扮演重要角色(Krawczyk, 2002)。同一种食物图片刺激被试处于饥饿状态时比处于饱足状态时有更高的OFC激活水平, 因为在饱足状态下食物对被试的奖赏价值降低, 虽然是同一种刺激因为个体的需求不同, 对其赋值也不同(Kringelbach, O’Doherty, Rolls, & Andrews, 2003)。灵长类动物在与奖赏有关的任务中OFC激活增强, 尤其在它们渴望大额奖赏的时候(Roesch & Olson, 2005), 与之相反, 当预计决策会导致惩罚时这一区域的激活会显著减弱。OFC损伤的病人通常表现出如下特征:与消极结果相联系的给定刺激无法改变患者的决策行为(对惩罚的耐受性高)。OFC损伤的病人在IGT和CGT (Cambridge risk task, CGT)任务中都被确证在决策过程中无法根据奖赏与惩罚的概率变化转变他们最初形成的决策模式, 表现出选择模式僵化的特征(Rosenbloom, Schmahmann, & Price, 2012)。药物成瘾者在面对药物相关线索时OFC有过度激活现象(Chase, Eickhoff, Laird, & Hogarth, 2011), 药物成瘾者OFC激活反映了在决策中药物奖赏线索更具凸显性。可卡因成瘾者相比控制组在IGT任务中OFC激活程度更高, 表明他们对奖赏的期待比控制组更高(Bolla et al., 2003)。这说明OFC对奖赏的评估与预期具有关键的作用, 而药物成瘾者的这一功能异常。

另一个涉及奖赏与惩罚加工的重要脑区是腹侧纹状体(ventral striatum), 纹状体在结构上可以分为腹侧的伏隔核(NAc)和背侧的壳核与尾状核两大部分, 动物研究发现猴子的尾状核和壳核中大量神经元在主观判断行为的价值和是否采取行动上出现激活(Lau & Glimcher, 2005)。Knutson, Bjork Fong, Hommer, Mattay和Weinberger (2004)发在金钱激励延迟任务(Monetary Incentive Delay Task, MIDT)中安非他命使用者纹状体有更强烈的激活, 并且安非他命对成瘾者的心理状态造成影响。长期大麻使用者右腹侧纹状体在MIDT任务中血氧依赖水平(blood-oxygenation level dependent)比控制组高(Nestor, Hester, & Garavan, 2010), Hyatt等(2012)同样采用血氧依赖水平测定技术发现可卡因戒断者相比控制组纹状体激活异常, 尤其是在对收益或则损失做出反应时右背侧尾状核极度激活。壳核的激活水平与对结果的主观价值评估有关(Samejima, Ueda, Doya, & Kimura, 2005), 可卡因成瘾者壳核激活越强烈表明他们主观上认为风险选项就越具有价值, 这与他们持续增加的风险选择相映证。Jia等(2011)采用fMRI技术发现可卡因成瘾者相比控制组在MIDT任务中被告知奖赏结果时左右两侧纹状体、右侧尾状核、右侧脑岛都表现出更高激活水平。依据经典血液动力反应功能模型(hemodynamic response function), 药物成瘾者在决策选择阶段额叶-纹状体-边缘系统相比控制组存在更强烈的激活, 而在决策结果反馈阶段激活较控制组减弱, 说明这一神经环路的异常是造成药物成瘾者决策缺陷的原因之一(Yamamoto et al., 2014)。

综上所述, 药物成瘾者眶额叶皮层、腹侧纹状体等脑区的受损造成他们奖赏加工失调, 表现出对奖赏的异常期待和对惩罚的异常钝化, 根据奖惩结果来调整自己行为选择的能力减弱从而无法持续的优化选择, 造成决策缺陷。

2.4 药物成瘾者决策缺陷的躯体内感信号缺失特征

对情绪信号的生理响应是适应性选择的重要条件, 情绪状态被认为与成瘾行为具有广泛的联系, 两者都给成瘾者带来风险并对持续的药物使用有贡献(Cheetham, Allen, Yücel, & Lubman, 2010)。情感导致的决策偏转在行为经济学中被称为“非理性”, 而这种“非理性”在成瘾者群体中被放大, 主要原因是能产生躯体信号(如, SCR)的脑区尤其是腹内侧前额皮层(ventromedial prefrontal cortex, VMPFC)受损, 导致成瘾者无法适时的产生SCR信号来引导决策, 即使他们知道选择的对与错, 还是无法做出正确决策。

VMPFC通过把认知信息与脑岛、前扣带回、杏仁核、躯体感觉皮层相整合, 可以帮助个体做出优势决策(Bechara, Damasio, Damasio, & Anderson, 1994)。Bechara和Damasio等(1997, 1999, 2000)利用IGT任务来测量VMPFC受损的病人和正常人, 同时记录相应的皮肤电反应(skin conductance response, SCR), 发现正常被试经历几轮选择之后, 在他们踌躇于到底选择哪一张牌之前就开始产生SCR, 而VMPFC病人在选择任何牌之前都不会产生SCR, 他们只在收到结果反馈时才有SCR, 这是VMPFC病人与正常组最根本的不同(Bechara, 2005)。Damasio从上述研究中得出结论:即时情绪在决策中发挥着关键作用, 作为躯体标志的情绪代表了对某一行为整体结果的编码, 并借助于一种可感知的方式影响人们的决策过程。Bechara发现尽管正常组被试有近30%人无法在IGT任务中达到概念化阶段(对每张牌是优势牌还是劣势牌有清晰的认知)但他们仍能做出优势决策, 而VMPFC损伤的病人尽管有50%的比例可以达到概念化阶段, 但他们仍然做出劣势决策。VMPFC病人尽管清晰的意识到什么是对的什么是错的, 但他们没办法依照此来行动, 他们“说”着正确的事, 却“做”着错误的事。Bechara和Damasio (2002)等发现药物成瘾者的决策缺陷与VMPFC损伤者相类似, 并推定药物成瘾可能与VMPFC功能失常存在联系, 认为药物成瘾者和VMPFC病人对于未来具有相似的“短视”。有研究表明长期大麻成瘾者在IGT任务的结果反馈阶段VMPFC激活水平比控制组低, 且发现控制组中在IGT任务初始阶段结果反馈引发的VMPFC激活度越高的个体在随后试次中赚取的金钱越多, 而大麻成瘾组VMPFC的激活与任务表现没有明显的联系(Wesley, Hanlon, & Porrino, 2011)。这一研究结果再一次证实了躯体标记假说, 表明VMPFC产生的躯体信号在复杂情景中面对不确定性事件时对决策具有引导作用, 而药物成瘾者VMPFC功能异常, 在决策时缺少躯体信号的引导, 妨碍了他们做出优势决策。

传统观点认为杏仁核(amygdala)是表情加工的核心结构, 是恐惧情绪知觉与表达的必要条件, 近年来研究认为杏仁核与欲望加工、决策都有关系(DeMartino, Camerer, & Adolphs, 2010)。元分析也表明无论是对消极还是积极刺激杏仁核都做出了反应, Zalla等(2000)研究发现在决策任务中赢(奖赏)的概率越来越高时左侧杏仁核被激活, 输(损失)的概率越来越高时右侧杏仁核被激活。杏仁核损伤的个体对基本诱导物如金钱的盈利和损失所引发的情绪反应减弱, 这些情感信息不能用来引导他们随后的决策行为, 在IGT任务中他们不能与优势牌和劣势牌建立有效的情感联结, 这是引发药物成瘾者决策缺陷的又一个重要原因(Verdejo-Garcia & Bechara, 2009)。有成瘾药物使用历史的青少年在BART任务中杏仁核激活减弱(Crowley et al., 2010), 长期酒精依赖者杏仁核体积减小, 并在IGT任务中表现出决策缺陷(Nacewicz et al., 2010)。杏仁核对线索-结果学习也十分关键(Davis & Whalen, 2001), 杏仁核完整性受损或则激活减弱阻碍了杏仁核对导致消极后果的线索发出报警信号并启动风险规避机制。药物成瘾者杏仁核功能异常阻碍了杏仁核在决策过程中情感与线索信号的产生, 不利于成瘾者做出优势决策。

脑岛是边缘系统的一部分, 在主观意识的觉知(包括愤怒、厌恶、判断可信度、性唤醒、共情等各种内感状态)中被激活, 是内感信号的接收器, 是情感体验和自我意识的必要基质(Craig, 2009, 2010)。近期研究认为脑岛在注意与决策中同样扮演重要角色(Sridharan, Levitin, & Menon, 2008; li, Lu, D'Argembeau, Ng, & Bechara, 2010)。Bechara等(2005)认为决策过程是一个无意识或则自动化的欲望系统与受前额皮质主导的执行控制/抑制系统动态性的相互作用的过程。脑岛在躯体标记假说中扮演内脏感觉加工的角色, 在感觉信息的模糊性引起的不确定性情景中, 凭直觉进行决策时脑岛有较高的激活水平(Shenhav, Botvinick, & Cohen, 2013)。药物成瘾总是伴随由生理状态引起的强烈内感信号, 并导致一系列的决策过程缺陷(为获得药物的及时奖赏不计任何消极后果), 因此脑岛与成瘾行为也有密切关系(Droutman, Read, & Bechara, 2015)。安非他命成瘾者身体信号回馈中继系统功能下降, 限制了他们采取适应性行为(Paulus & Stewart, 2014), 成瘾者在决策预期阶段前脑岛激活低于控制组, 在体验厌恶性内感刺激时后脑岛和前扣带回激活也低于控制组(Stewart et al., 2014)。前脑岛和额下回功能减弱, 意味着药物成瘾者对非药物相关刺激的执行控制功能缺陷(Preuschoff et al., 2008), 与之对应, 后脑岛和前扣带回功能减弱意味着在决策中校准和评估厌恶性内感经验的功能受损。此外还有研究发现可卡因成瘾者(Ersche. et al., 2012)、海洛因成瘾者(Gardini & Venneri, 2012)、大麻成瘾者(Lopez- Larson et al., 2011)脑岛灰质的体积小于控制组, 并认为这些脑岛灰质体积的下降会随着药物使用年限的增加而恶化, 脑岛激活减弱以及体积减小意味着脑岛功能损伤不能把内感成分用于决策, 尤其是在面对消极经验时。脑岛内感信号的缺失, 也是造成药物成瘾者决策缺陷的原因之一。

综上所述, 药物成瘾者腹内侧前额皮层激活降低功能失常, 造成成瘾者在决策中躯体感觉信号的缺失; 杏仁核功能损伤, 造成成瘾者无法与决策对象建立情感联接, 尤其在面对损失结果时负性情绪减少, 不利于他们在随后的选择中规避损失选项; 成瘾者脑岛激活降低不能把内感成分运用于引导决策, 这些都是造成药物成瘾者决策缺陷的原因。

3 药物成瘾者决策缺陷的干预

从行为层面来看, 药物成瘾者决策缺陷主要表现在冲动性(盲目、无计划、草率, 行为抑制困难等方面)、风险寻求(短视、冒险)、奖惩反应偏好异常、根据结果反馈调节行为的能力下降, 引导决策的躯体与情感信号失调。这些缺陷涉及到DLPFC、OFC、VMPFC等广大脑区。目前有研究证实, 一些认知训练方式, 如目标管理训练、正念冥想等, 通过提高自我觉察能力, 增强自我监控意识, 可以有效地改善这些行为症状。非侵入性脑刺激可以调节DLPFC、OFC等脑区的激活状态, 改善这些脑区的功能, 从而恢复这些脑区在决策中的调控作用。由于成瘾行为和决策缺陷是同一问题的不同表征, 因此, 对药物成瘾者决策缺陷的干预也就成为成瘾治疗的一种必然。

3.1 认知训练(Cognitive training)对决策缺陷的干预

目标管理训练(goal management training, GMT)以持续注意和警惕性为基础(Robertson & Garavan, 2000), 可以很好地改善执行功能缺陷(Robertson, Levine, & Manly, 2005), 是一种旨在提高个体的组织能力与目标实现能力的交互式训练程序。持续注意能力是各种认知加工的基础, 是DLPFC执行功能的一部分。如果持续注意系统缺损, 习惯的、外界环境的因素就会瓦解取代工作记忆中的目标, 导致对外部线索依赖而引发分心行为, 这也是注意与执行缺陷病人的典型特征。GMT的主要目的就是训练个体暂停正在进行的行为以核对行为与活动目标是否相符并监控行为表现。

正念冥想(mindfulness meditation, MD)的整体性朝向是发展个体不断把心智带入到当下情景的能力, 监控正在进行的行为与目标并促使它们保持一致, 促进情绪的自我觉察(Brantley & Kabat-Zinn, 2007), 促进非批判性地聚焦当下、聚焦此时此刻, 增强内感信号的识别, 而这种内感信号对引导个体做出基于长远目标的决策十分重要(Verdejo-Garcia et al., 2007)。正念冥想还可以降低决策的冲动性水平(Yao et al., 2017), 具有调节情绪的作用, 对减少压力与焦虑水平有贡献(Tang, Posner, Rothbart, & Volkow, 2015)。成瘾者较高的焦虑与压力水平是导致他们决策缺陷的原因之一, 正念冥想具有的减压和缓解不良情绪状态的功效, 对改善成瘾者的决策缺陷有贡献。

目标管理训练与正念冥想相结合(GMT + MM)还可以增加个体的计划时间, GMT的停止技术和当下-现在导向训练可以增加个体在决策前的沉思时间(Slagter et al., 2007), 沉思时间越多, 在计划任务中的表现就越好(CohenKdoshay & Meiran, 2009), 同时也意味着在决策之前汇聚的信息越多, 在决策中不确定性就减少。GMT + MM训练还为保持目标在头脑中的持续加工与核对提供了精准的策略, 让个体掌握了以实现目标为导向的认知执行加工模式, 使习惯性行为和目标导向性行为之间的转变更顺畅(McConnell & Froeliger, 2015), 从而避免个体行为选择的僵化和自动化特征, 使行为选择的灵活性与适应性增强, 时刻检查监控行为与目标的差距, 以目标为导向, 避免无关刺激的干扰, 从而做出优势决策。

Alfonso, Caracuel, Delgado-Pastor和Verdejo- García (2011)采用目标管理训练与正念冥想相结合(GMT + MM)的技术对正在接受临床标准治疗的酒精和复合药物成瘾者进行为期7周, 每周两次, 每次90分钟总计14个疗程的综合训练。接受GMT + MM的实验组在工作记忆((Letter Number Sequencing)、反应抑制(Stroop)和决策(IGT)等心理功能上要好于只接受标准治疗的对照组。Valls-Serrano, Caracuel和Verdejo-Garcia团队(2016)在接受设社区治疗的多重药物使用者身上再一次验证了他们的上述研究发现, 证实GMT + MM在模拟现实生活场景、具有较高生态效度的任务范式上同样可以促进药物成瘾者的工作记忆与决策表现, 相比控制组, GMT + MM还可以显著降低个体压力水平。这一研究拓展了之前的发现, 第一次证明GMT + MM训练使药物成瘾者的日常活动有了积极的转变, 表明这种认识训练的效果不仅仅局限于实验室之内。

GMT + MM训练之所能显著改善药物成瘾者的执行功能和决策表现, 可以归因于GMT + MM对下面的多重加工过程具有较好的协调和促进作用:(1)更好的目标保持与工作记忆管控; (2)抑制冲动性; (3)沉思促进了更好的行为组织和目标优劣的排序; (4)情绪调节能力提高, 修复成瘾者的内感信号, 与决策相关的警觉性增强。

3.2 非侵入性脑刺激(Noninvasive brain stimulation)对决策缺陷的干预

经颅电刺激(transcranial direct current stimulation, tDCS)和重复经颅磁刺激(repetitive transcranial magnetic stimulation, rTMS)都是非侵入性的调节大脑皮层活动水平的干预方式。tDCS可以安全调节大脑皮层的兴奋性, 并且这种兴奋性的改变在刺激结束后持续存在(Nitsche & Paulus, 2000)。实施tDCS调节脑区活动状态是通过神经元静息膜电位的阈限调整实现的, 这种调整的性质取决于刺激的持续时间、强度和刺激的极性(正极还是负极), 正电极tDCS通过神经元的去极化增强皮层的兴奋度, 而负电极tDCS通过超级化降低皮层兴奋性(Nitsche & Paulus, 2000)。近期脑成像研究也证实tDCS不仅增强了正电极之下的脑皮层兴奋性程度, 同样也影响了静息状态下的连通性, 以及电极点临近脑区和与之较远神经节点的激活程度(Weber, Messing, Rao, Detre, & Thompson-Schill, 2014)。近红外光谱学研究也证实15分钟1 mA的正电极tDCS可以引发刺激脑区持续的HbO2 (氧合血红蛋白)浓度增加, 意味着tDCS可以使局部大脑的血流量增多, 从而使电极部位脑区的神经功能得以增强(Merzagora et al., 2010)。

Fecteau等(2007)发现在BART任务中接受双侧DLPFC正电极tDCS刺激的被试, 比只接受单侧刺激和虚假刺激的被试表现出保守、风险规避的反应风格。Gilmore, Dickmann, Nelson, Lamberty和Lim (2017)对实验组实施2 mA强度的持续性tDCS刺激(右侧DLPFC阳极, 左侧DLPFC阴极), 发现实验组相比控制组在BART任务中风险选择频次显著下降46%, 且这种效应在刺激实施两个月以后还持续存在。药物成瘾群体中也有发现tDCS作用于可卡因吸食者的DLPFC可以调节其风险决策水平(Gorini, Lucchiari, Russell-Edu, & Pravettoni, 2014)。用正电极对OFC进行tDCS刺激可以增强个体对IGT任务固有的凸显性动机信息(奖赏、惩罚概率)的解码能力(Clark, Cools, & Robbins, 2004), 这种解码能力使个体更好地根据奖赏概率的变化做出更具适应性的行为选择, 从而提升决策水平。Ouellet等(2015)对实验组的右侧或则左侧OFC区域给予30分钟1.5 mA的tDCS, 结果表明无论tDCS实施在左侧还是右侧OFC, 实验组比控制组展现出更多的优势决策(IGT任务净分数增加)和更好的认知冲动控制水平(彩色单词Stroop任务干扰降低、反应时更短)。以上实验说明tDCS可以直接提高被试的决策能力和冲动性控制水平。

经颅磁刺激(rTMS)运用一个短暂的电流通过电磁线圈引发一个瞬间的、高强度的磁脉冲穿透头皮、头盖骨、脑膜直达大脑皮层。这个磁脉冲在靶皮层区域产生一个电场可以导致表皮层神经元的去极化(Rachid & Bertschy, 2006), 进而使在线圈下的或与之相互连接的其他脑区神经活动被激活或被干扰。rTMS依据不同的频率、强度、刺激类型可以激活或则抑制神经元的突触后电位 (Muellbacher, Ziemann, Boroojerdi, & Hallett, 2000)。例如, 低频(1 Hz)抑制性rTMS实施在右侧下额叶联接处(Zanto, Rubens, Arul, & Adam, 2011)或则左后侧DLPFC的额上沟(Marios et al., 2011)分别导致被试的注意管控减弱和知觉决策的效能降低。

Knoch等(2006)运用CGT任务测试发现1 Hz低频的rTMS持续15分钟作用于被试右侧DLPFC, 被试在任务中表现出风险寻求倾向。Figner等(2010)运用DDT任务测试发现1 Hz低频的rTMS持续15分钟作用于被试的左侧LPFC (lateral- prefrontal cortex)被试较多选择及时奖赏而非延迟奖赏, 表明rTMS作用于LPFC具有操纵被试的冲动性和自我控制的功能。Fecteau等(2014)发现运用的rTMS持续30分钟作用于右侧DLPFC可以显著降低吸烟被试的香烟使用量, 且在最后通牒任务(Ultimatum game task, UGT)中实验组比控制组对关于香烟的非公平分配提议的拒绝频次增加。Wittkuhn等(2017)用三阶段确定性马尔科夫决策任务测试发现1 Hz的rTMS施加在左侧DLPFC被试选择的精确性受损, 尤其在行动结果概率性连续变化的情景中。根据行为选择的扩散模型, 被试选择的漂移率扩散, 说明在rTMS刺激下被试的信息整合能力减弱。以上实验说明通过rTMS刺激左侧或右则DLPFC可能产生不同的效果, 低频1 Hz的rTMS施加在左侧DLPFC, 可能干扰DLPFC活动, 影响被试的反应抑制能力和选择的精确性, 进而影响被试的整体决策水平。rTMS施加在右侧DLPFC可以降低成瘾药物的使用量, 部分增加被试的决策公平感。证实了rTMS根据刺激的频率不同, 作用的脑区不同对被试的决策与认知功能有不同的影响。

以上研究表明通过认知训练、非侵入性脑刺激可以对药物成瘾者的决策功能进行干预, 这些方案具有一个共同的特征就是通过改善工作记忆、注意的持续性、认知的灵活性、行为的抑制力、目标导向能力等帮助成瘾者提高自我控制力, 不再基于眼前的短期利益而是基于长期利益最大化做决策。短视和冲动性、满足于及时的享乐而不顾长远危害是成瘾者的典型特征, 也是这些干预方法通过改善成瘾者的决策功能来有效帮助成瘾者实现脱瘾、戒断的依据。

4 研究不足与展望

4.1 药物成瘾者决策缺陷标准的统一以及缺陷形成的时间历程

目前关于决策缺陷问题还没有统一的标准。在Passetti, Clark, Mehta, Joyce和King (2008)的研究中, 以爱荷华赌博任务净收益为10作为决策是否损伤的分界线, 在剑桥赌博任务中以选择最有可能结果的89.7%作为决策是否损伤的分界线, 在延迟折扣任务中以k = 0.0523为决策是否损伤的分界线。不过这种划分方式并没有得到普遍的认同和推广, 在不同的任务范式中具体什么样的分数才是决策缺陷的分界线目前并没有统一标准。这可能是造成目前关于药物成瘾者决策缺陷研究结果不一致的原因之一, 如果缺乏统一的标准我们仅用药物成瘾者和正常被试做比较来判断是否有缺陷, 在样本量较小的情况下就可能产生误判的风险, 并且在成瘾者经过一系列的治疗过后决策能力恢复到什么样的程度才是合格的也无法给出明确的回答。在以后的研究中应根据不同的药物类型和不同的决策任务范式划分出明确的决策缺陷判定标准, 它同时可以成为判定成瘾严重程度的一个参考指标, 也可以成为成瘾者认知功能康复程度的一个指标, 对预测成瘾治疗的效果也具有非凡意义。

目前还没有关于药物成瘾者决策缺陷发生、发展过程的纵向追加研究, 药物吸食时间与决策缺陷的关系是否类似于艾宾浩斯记忆曲线中时间与遗忘的关系, 具有先快后慢的特征目前并不清楚, 是否在吸食初期随着成瘾药物对吸食者神经系统损伤的加剧, 决策功能迅速恶化, 待吸食者的神经系统损伤到一定程度后, 随着吸食者神经系统对毒品耐受性的提高, 决策能力的损伤会逐渐减缓并稳定在一定水平上。药物成瘾者哪一个时间段决策功能损伤的速度较快, 随后又到什么时间段会进入一个稳定水平, 这个拐点会出现在什么时候, 并没有具体的研究给出明确的答案, 这也是今后关于药物成瘾者决策研究的一个重要方向。

4.2 其他认知训练模式在成瘾干预中的尝试

除了目标管理训练和正念冥想外其他认识训练方法在成瘾干预中的作用也不可忽视。成瘾者的冲动性特征从其开始接触成瘾药物到最后形成强迫性重复用药当中都扮演着重要角色, 反应抑制训练可以增强成瘾者对自己行为的抑制能力, 避免冲动性。如基于Go/No-Go实验范式, 把字母F作为反应提示符, P作为抑制提示符, 被试见到F就按空格键, 见到P就不要按。然后把中性图片作为F字母的背景图片, 把成瘾药物的图片作为P字母的背景图片, 通过反复的练习让成瘾者学会控制自己对药物相关线索的反应, 药物相关线索是引发复吸的一个重要原因, 通过这种练习, 成瘾者的抑制控制能力增加(Houben, Nederkoorn, Wiersb, & Jansena, 2011), 对药物相关线索的免疫能力也随之增强。

大量研究认为药物成瘾者对成瘾物质具有认知偏向, 通过认知偏向训练(Cognitive bias modification)可以改善药物成瘾者对成瘾药物的认知偏向, 增强成瘾者对自己注意力的管控。在成瘾群体中利用自动化的计算机训练模式, 当计算机屏幕出现成瘾物质时让被试做出逃避动作, 往后拉操纵杆; 当计算机屏幕出现非成瘾物质时让被试做出趋近动作, 往前推操纵杆(Wiers, Gladwin, Hofmann, Salemink, & Ridderinkhof, 2013)。根据具身认知理论, 生理体验与心理状态之间有着强烈的联系, 生理体验“激活”心理感觉, 反之亦然。通过反复训练成瘾者对成瘾药物的回避动作, 也能让他们对成瘾药物的态度由趋向转为回避, 作为辅助手段可以促进成瘾治疗。此外, 还有工作记忆训练、计划能力训练、问题解决训练、团体心理辅导等干预措施。抑制控制能力、工作记忆能等这些基础认知能力的恢复势必可以让成瘾者决策缺陷的状况得到一定程度的缓解。

4.3 非侵入性脑刺激在决策缺陷干预上的拓展

目前采用非侵入性脑刺激来干预成瘾行为的研究越来越多, 如有研究用非侵入性脑刺激干预成瘾者药物渴求感(Wang et al., 2016; Su et al., 2017)、陈述性记忆(Javadi & Walsh, 2012)、工作记忆(Trumbo et al., 2016)、自我控制(Figner et al., 2010)等, 但目前的非侵入性脑刺激多用来干预由可卡因、大麻等类成瘾药物引发的成瘾行为, 大麻、可卡因等是西方主流成瘾药物, 而我国目前的主流成瘾药物是海洛因、冰毒, 运用非侵入性脑刺激来干预海洛因、冰毒成瘾者决策能力、认知能力方面的研究不多, 这不利于指导我国的戒毒实践活动, 因为不同成瘾药物引发的决策缺陷有所不同。其次, 研究者运用非侵入性脑刺激来进行成瘾干预时大多选择DLPFC脑区, 虽然我们不否认DLPFC在决策中起到了不可替代的作用, 但如本文论证, OFC/VMPFC同样对决策功能十分重要, OFC是成瘾者奖赏加工、价值评判的核心区域, VMPFC是躯体内感信号产生的核心区域, 在整合情感与认知信息方面具有重要作用, 这些脑区对个体做出优势决策十分重要。目前对上述两个脑区实施干预以提升成瘾者决策能力的研究不多。这些不足从反面说明非侵入性脑刺激在成瘾治疗方面有广阔的施展空间, 结合认知训练等技术会让决策缺陷和成瘾干预工作展现出新的面貌。

参考文献

程九清, 陆燕红, 韩晓东, 隋南 . ( 2009).

海洛因成瘾者决策障碍及其行为机制的研究——短视行为及冲动、强迫和吸毒史在决策中的作用

Biennial Conference of the Chinese Society for Neuroscience.

URL     [本文引用: 1]

成瘾行为可以从决策的角度考察。成瘾患者在面对药物线索或具有对药物的渴求时,往往做出错误的决策,导致持续反复的用药。本研究采用了时间折扣(temporal discounting)的实验范式,来考察海洛因成瘾者的决策行为。在重复出前人已经发现的成瘾者折扣程度比正常人更大(成瘾者更偏好选择小而立即得到的奖赏,宁可舍弃将来的更大的奖赏,是一种短视的表现)的基础上,本研究提出三个问题,并设计实验解答。   首先,在相比于时间折扣更为复杂的任务中,成瘾者是否会表现出短视的决策行为?我们设计了一个牌类游戏,游戏中考察被试是否会为了抢占某一轮的先...

张建军, 刘鹏, 朱宁, 隋南 . ( 2013).

药物成瘾诱导相关大脑核团功能和行为改变的DNA甲基化机制

心理科学进展, 21( 6), 975-981.

DOI:10.3724/SP.J.1042.2013.00975      URL     [本文引用: 1]

Drug addiction induces long-term changes in the structure and function of the addiction-related circuitries. Recent studies suggested that drug abuse induced the changes of DNA methylation and gene expression in addiction-related nuclei by modulating the expression of three types of DNA methyltransferases (DNMTs) without changing DNA sequences, which in turn changed the functional neural plasticity. Therefore, DNA methylation is regarded as one of the possible mechanisms underlying persistent addictive behavior. In this review we discuss recent advances in our understanding of how DNA methylation contribute to the addictive behavior and how abusive drugs regulate the DNA methylation, and further proposed a few important directions for future research in the field.

Abay K.A., &Mannering F.L . ( 2016).

An empirical analysis of risk-taking in car driving and other aspects of life

Accident Analysis and Prevention, 97, 57-68.

DOI:10.1016/j.aap.2016.08.022      URL     PMID:27566958      [本文引用: 1]

The link between risk-taking behavior in various aspects of life has long been an area of debate among economists and psychologists. Using an extensive data set from Denmark, this study provides an empirical investigation of the link between risky driving and risk taking in other aspects of life, including risk-taking behavior in financial and labor-market decisions. Specifically, we establish significant positive correlations between individuals’ risk-taking behavior in car driving and their risk-taking behavior in financial and labor-market decisions. However, we find that the strength of these correlations vary significantly between genders, and across risk decisions. These correlations and their differences across genders get stronger when we construct more “homogenous” groups by restricting our sample to those individuals with at least some stock-market participation. Overall, the empirical results in this study suggest that risk-taking behavior in various aspects of life can be associated, and our results corroborate previous evidence on the link between individuals’ risk preferences across various aspects of life. This implies that individuals’ driving behavior, which is commonly unobservable, can be more fully understood using observable labor market and financial decisions of individuals.

Alfonso J. P., Caracuel A., Delgado-Pastor L. C., & Verdejo-García A . ( 2011).

Combined goal management training and mindfulness meditation improve executive functions and decision-making performance in abstinent polysubstance abusers

Drug and Alcohol Dependence,117(1), 78-81.

DOI:10.1016/j.drugalcdep.2010.12.025      URL     PMID:21277705      [本文引用: 1]

The clinical relevance of neuropsychological deficits in addicted individuals has fostered interest in treatment strategies aimed to effectively target executive and decision-making dysfunction. One of the best-validated interventions for executive dysfunction is Goal Management Training (GMT) ( Robertson et al., 2005), an interactive program aimed at improving participants鈥 organization and ability to achieve goals. Mindfulness-based meditation can complement GMT training in order to improve attentional scanning and 鈥渞eading鈥 of emotional signals involved in adaptive decision-making. In this pilot study we investigated the efficacy of a 7-week program including GMT + Mindfulness (GMT + MF), as compared to standard treatment alone (STx), for reducing executive and decision-making deficits in an outpatient sample of alcohol and polysubstance abusers. Eighteen participants were enrolled in the GMT + MF group, whereas 16 participants formed the STx group; both groups were matched for relevant demographic and clinical variables, and pre-treatment degree of executive dysfunction. Results showed that the individuals enrolled in GMT + MF significantly improved their performance on neuropsychological measures of working memory (Letter Number Sequencing), response inhibition (Stroop) and decision-making (Iowa Gambling Task) after the treatment; whereas individuals enrolled in STx alone failed to show significant changes. These preliminary results indicate that the GMT + MF intervention may be effective in reducing executive and decision-making deficits in polysubstance abusers, and they support future randomized controlled studies aimed at examining the extent to which these improvements may generalize to every day functioning and may affect the capacity of addicted individuals to achieve and maintain abstinence.

Baldacchino A., Balfour D. J. K., Passetti F., Humphris G., & Matthews K . ( 2012).

Neuropsychological consequences of chronic opioid use: A quantitative review and meta-analysis

Neuroscience & Biobehavioral Reviews, 36(9), 2056-2068.

DOI:10.1016/j.neubiorev.2012.06.006      URL     PMID:22771335      [本文引用: 1]

It is widely assumed within the accumulated literature that neuropsychological function is commonly impaired as a consequence of chronic opioid use. Quantitative and systematic review of the literature on the neuropsychology of chronic opioid use using the meta-analysis of observational studies in epidemiology (MOOSE) and the preferred reporting items for systematic reviews and meta-analysis (PRISMA) guidelines. This meta-analysis suggests that chronic opioid exposure is associated with deficits across a range of different neuropsychological domains. However, the only domains where meta-analysis suggests robust impairment were those of verbal working memory, cognitive impulsivity (risk taking) and cognitive flexibility (verbal fluency). The magnitude of effect across these cognitive domains was medium according to Cohen's benchmark criteria. This analysis highlighted methodological problems present in the literature used and the value of utilising meta-analytic techniques to help further elucidate the neuropsychological consequences of chronic opioid use from ‘core’ addiction phenotypes.

Balodis I.M., & Potenza M.N . ( 2015).

Anticipatory reward processing in addicted populations: A focus on the monetary incentive delay task

Biological Psychiatry, 77(5), 434-444.

DOI:10.1016/j.biopsych.2014.08.020      URL     PMID:25481621      [本文引用: 1]

Advances in brain imaging techniques have allowed neurobiological research to temporally analyze signals coding for the anticipation of reward. In addicted populations, both hyporesponsiveness and hyperresponsiveness of brain regions (e.g., ventral striatum) implicated in drug effects and reward system processing have been reported during anticipation of generalized reward. We discuss the current state of knowledge of reward processing in addictive disorders from a widely used and validated task: the monetary incentive delay task. Only studies applying the monetary incentive delay task in addicted and at-risk adult populations are reviewed, with a focus on anticipatory processing and striatal regions activated during task performance as well as the relationship of these regions with individual difference (e.g., impulsivity) and treatment outcome variables. We further review drug influences in challenge studies as a means to examine acute influences on reward processing in abstinent, recreationally using, and addicted populations. Generalized reward processing in addicted and at-risk populations is often characterized by divergent anticipatory signaling in the ventral striatum. Although methodologic and task variations may underlie some discrepant findings, anticipatory signaling in the ventral striatum may also be influenced by smoking status, drug metabolites, and treatment status in addicted populations. Divergent results across abstinent, recreationally using, and addicted populations demonstrate complexities in interpreting findings. Future studies would benefit from focusing on characterizing how impulsivity and other addiction-related features relate to anticipatory striatal signaling over time. Additionally, identifying how anticipatory signals recover or adjust after protracted abstinence will be important in understanding recovery processes.

Baler R.D., &Volkow N.D . ( 2006).

Drug addiction: The neurobiology of disrupted self-control

Trends in Molecular Medicine,12(12), 559-566.

DOI:10.1016/j.molmed.2006.10.005      URL     PMID:17070107      [本文引用: 2]

The nature of addiction is often debated along moral versus biological lines. However, recent advances in neuroscience offer insights that might help bridge the gap between these opposing views. Current evidence shows that most drugs of abuse exert their initial reinforcing effects by inducing dopamine surges in limbic regions, affecting other neurotransmitter systems and leading to characteristic plastic adaptations. Importantly, there seem to be intimate relationships between the circuits disrupted by abused drugs and those that underlie self-control. Significant changes can be detected in circuits implicated in reward, motivation and/or drive, salience attribution, inhibitory control and memory consolidation. Therefore, addiction treatments should attempt to reduce the rewarding properties of drugs while enhancing those of alternative reinforcers, inhibit conditioned memories and strengthen cognitive control. We posit that the time has come to recognize that the process of addiction erodes the same neural scaffolds that enable self-control and appropriate decision making.

Barbey A. K., Colom R., & Grafman J . ( 2013).

Dorsolateral prefrontal contributions to human intelligence

Neuropsychologia, 51(7), 1361-1369.

[本文引用: 1]

Bechara A. ( 2005).

Decision making, impulse control and loss of willpower to resist drugs: A neurocognitive perspective

Nature Neuroscience,8(11), 1458-1463.

DOI:10.1038/nn1584      URL     PMID:16251988      [本文引用: 1]

Here I argue that addicted people become unable to make drug-use choices on the basis of long-term outcome, and I propose a neural framework that explains this myopia for future consequences. I suggest that addiction is the product of an imbalance between two separate, but interacting, neural systems that control decision making: an impulsive, amygdala system for signaling pain or pleasure of immediate prospects, and a reflective, prefrontal cortex system for signaling pain or pleasure of future prospects. After an individual learns social rules, the reflective system controls the impulsive system via several mechanisms. However, this control is not absolute; hyperactivity within the impulsive system can override the reflective system. I propose that drugs can trigger bottom-up, involuntary signals originating from the amygdala that modulate, bias or even hijack the goal-driven cognitive resources that are needed for the normal operation of the reflective system and for exercising the willpower to resist drugs.

Bechara A., &Damasio A. ( 2005).

The somatic marker hypothesis: a neural theory of economic decision

Games and Economic Behavior, 52(2), 336-372.

DOI:10.1016/j.geb.2004.06.010      URL     [本文引用: 1]

Modern economic theory ignores the influence of emotions on decision-making. Emerging neuroscience evidence suggests that sound and rational decision making, in fact, depends on prior accurate emotional processing. The somatic marker hypothesis provides a systems-level neuroanatomical and cognitive framework for decision-making and its influence by emotion. The key idea of this hypothesis is that decision-making is a process that is influenced by marker signals that arise in bioregulatory processes, including those that express themselves in emotions and feelings. This influence can occur at multiple levels of operation, some of which occur consciously, and some of which occur non-consciously. Here we review studies that confirm various predictions from the hypothesis, and propose a neural model for economic decision, in which emotions are a major factor in the interaction between environmental conditions and human decision processes, with these emotional systems providing valuable implicit or explicit knowledge for making fast and advantageous decisions.

Bechara A., Damasio A. R., Damasio H., & Anderson S. W . ( 1994).

Insensitivity to future consequences following damage to human prefrontal cortex

Cognition,50(1-3), 7-15.

DOI:10.1016/0010-0277(94)90018-3      URL     [本文引用: 1]

Bechara A., &Damasio H. ( 2002).

Decision-making and addiction (part i): Impaired activation of somatic states in substance dependent individuals when pondering decisions with negative future consequences

Neuropsychologia,40(10), 1675-1689.

DOI:10.1016/s0028-3932(02)00015-5      URL     PMID:11992656      [本文引用: 1]

Some substance dependent individuals (SDI) suffer from a decision-making impairment akin to that seen in neurological patients with lesions of the ventromedial (VM) prefrontal cortex. The somatic-marker hypothesis posits that decision-making is a process that depends on emotion and that deficits in emotional signaling will lead to poor decision-making. In this study, we tested the hypothesis that SDI who perform disadvantageously on a decision-making instrument, the gambling task (GT), have a deficit in the somatic signals that help guide their decision in the advantageous direction. Since deficits in decision-making/somatic markers can also result from dysfunctional amygdala, we asked indirectly (i.e. via tests sensitive to VM or amygdala dysfunction) whether such a deficit in SDI is restricted to VM dysfunction or includes the amygdala. Using the GT, and skin conductance response (SCR) as an index of somatic state activation, we studied groups of SDI (n=46), normal controls (n=49), and VM patients (n=10). A subgroup of SDI showed defective performance on the GT coupled with impaired anticipatory SCR, but normal SCR to punishment, and normal acquisition of conditioned SCR to an aversive loud sound. This supports the hypothesis that the poor decision-making in some SDI is associated with defective somatic state activation that is linked to a dysfunctional VM cortex. Thus, the dysfunctional VM cortex underlying the "myopia" for the future in some SDI may be one of the principle mechanisms underlying the transition from casual substance taking to compulsive and uncontrollable behavior.

Bechara A., Damasio H., & Damasio A. R . ( 2000).

Emotion, decision making and the orbitofrontal cortex

Cerebral Cortex,10(3), 295-307.

DOI:10.1093/cercor/10.3.295      URL     [本文引用: 1]

Bechara A., Damasio H., Damasio A. R., & Lee G. P . ( 1999).

Different contributions of the human amygdala and ventromedial prefrontal cortex to decision-making

The Journal of Neuroscience,19(13), 5473-5481.

DOI:10.1523/JNEUROSCI.19-13-05473.1999      URL     [本文引用: 1]

Bechara A., Damasio H., Tranel D., & Damasio A. R . ( 1997).

Deciding advantageously before knowing the advantageous strategy

Science,275(5304), 1293-1295.

DOI:10.1126/science.275.5304.1293      URL     [本文引用: 1]

Bjork J. M., Momenan R., Smith A. R., & Hommer D. W . ( 2008).

Reduced posterior mesofrontal cortex activation by risky rewards in substance-dependent patients

Drug and Alcohol Dependence,95(1-2), 115-128.

DOI:10.1016/j.drugalcdep.2007.12.014      URL     PMID:18295984      [本文引用: 1]

Substance-dependent individuals show disadvantageous decision-making, as well as alterated frontocortical recruitment when performing experimental tasks. We investigated whether substance-dependent patients (SDP) would show blunted recruitment of posterior mesofrontal cortex (PMC) by a conflict between concurrently increasing reward and risk of penalty in a monetary game of “chicken.” SDP and controls performed: motor control (no reward) trials, guaranteed reward trials in which reward was not at risk, and risky trials where subjects were required to terminate their reward accrual before a secret varying time limit or else “bust” and forfeit that trial's winnings (low penalty) or the current trial's winnings plus an equal amount of previous winnings (high penalty). Reward accrual duration at risk of “busting” correlated negatively with trait neuroticism. The contrast between winning guaranteed reward versus non-reward activated the caudate head bilaterally in SDP but not controls. Accumulation of money at risk of low- or high-penalty (contrasted with accumulating guaranteed money) activated the PMC in both groups, but with a greater magnitude and more anterior extent in controls. Pre-decision signal increase in a PMC volume of interest negatively correlated with risk-taking in low-penalty trials, and was blunted in SDP relative to controls under both penalty conditions after controlling for individual differences in actual risk-taking and the higher neuroticism of SDP. These data suggest that SDP are characterized by a combination of: (a) striatal hypersensitivity to reward, and (b) under-recruitment of the specialized conflict-monitoring circuitry of the PMC when reward entails potential penalties.

Bolla K., Ernst M., Kiehl K., Mouratidis M., Eldreth D., Contoreggi C., … London E . ( 2004).

Prefrontal cortical dysfunction in abstinent cocaine abusers

Journal of Neuropsychiatry and Clinical Neurosciences,16(4), 456-464.

DOI:10.1176/jnp.16.4.456      URL     PMID:2771441      [本文引用: 1]

The anterior cingulate cortex (ACC) and lateral prefrontal (LPFC) cortex are brain regions important to executive cognitive functions (ECF). We determined ACC and LPFC function in 23-day abstinent cocaine abusers using positron emission tomography (PET H(2)(15)O) during performance of a modified version of the Stroop Task. Cocaine abusers showed less activation than non-drug-using comparison subjects in the left ACC and the right LPFC and greater activation in the right ACC. Average amount of cocaine used per week was negatively correlated with activity in the rostral ACC and right LPFC. Disruption of ECF in substance abusers could interfere with attempts to stop drug use and undermine treatment. Since impairment in ECF may be a common feature of various neuropsychiatric disorders, these findings have applicability beyond the neurobiology of addiction.

Bolla K. I., Eldreth D. A., London E. D., Kiehl K. A., Mouratidis M., Contoreggi C., … Ernst M . ( 2003).

Orbitofrontal cortex dysfunction in abstinent cocaine abusers performing a decision-making task

Neuroimage 19(3), 1085-1094.

DOI:10.1016/S1053-8119(03)00113-7      URL     PMID:2767245      [本文引用: 2]

Cocaine abusers demonstrate faulty decision-making as manifested by their inability to discontinue self-destructive drug-seeking behaviors. The orbitofrontal cortex (OFC) plays an important role in decision-making. In this preliminary study we tested whether 25-day-abstinent cocaine abusers show alterations in normalized cerebral blood flow (rCBF) in the OFC using PET with 15O during the Iowa Gambling Task (a decision-making task). This task measures the ability to weigh short-term rewards against long-term losses. A control task matched the sensorimotor aspects of the task but did not require decision-making. Cocaine abusers ( N = 13) showed greater activation during performance of the Iowa Gambling Task in the right OFC and less activation in the right dorsolateral prefrontal cortex (DLPFC) and left medial prefrontal cortex (MPFC) compared to a control group ( N = 13). Better Iowa Gambling Task performance was associated with greater activation in the right OFC in both groups. Also, the amount of cocaine used (grams/week) prior to the 25 days of enforced abstinence was negatively correlated with activation in the left OFC. Greater activation in the OFC in cocaine abusers compared to a control group may reflect differences in the anticipation of reward while less activation in the DLPFC and MPFC may reflect differences in planning and working memory. These findings suggest that cocaine abusers show persistent functional abnormalities in prefrontal neural networks involved in decision-making and these effects are related to cocaine abuse. Compromised decision-making could contribute to the development of addiction and undermine attempts at abstinence.

Brantley J., &Kabat-Zinn J. ( 2007).

Calming your anxious mind : How mindfulness and compassion can free you from anxiety, fear and panic

New Harbinger Publications.

[本文引用: 1]

Broche-Pérez Y., Herrera Jiménez L. F., & Omar-Martínez E . ( 2016).

Neural substrates of decision-making Bases neurales de la toma de decisiones

Neurología, 31(5), 319-325.

[本文引用: 1]

Camus M., Halelamien N., Plassmann H., Shimojo S., O'Doherty J., Camerer C., & Rangel A . ( 2009).

Repetitive transcranial magnetic stimulation over the right dorsolateral prefrontal cortex decreases valuations during food choices

European Journal of Neuroscience,30(10), 1980-1988.

DOI:10.1111/j.1460-9568.2009.06991.x      URL     PMID:19912330      [本文引用: 1]

Several studies have found decision-making-related value signals in the dorsolateral prefrontal cortex (DLPFC). However, it is unknown whether the DLPFC plays a causal role in decision-making, or whether it implements computations that are correlated with valuations, but that do not participate in the valuation process itself. We addressed this question by using repetitive transcranial magnetic stimulation (rTMS) while subjects were involved in an economic valuation task involving the consumption of real foods. We found that, as compared with a control condition, application of rTMS to the right DLPFC caused a decrease in the values assigned to the stimuli. The results are consistent with the possibility that the DLPFC plays a causal role in the computation of values at the time of choice.

Chase H. W., Eickhoff S. B., Laird A. R., & Hogarth L . ( 2011).

The neural basis of drug stimulus processing and craving: an activation likelihood estimation meta-analysis

Biological Psychiatry,70(8), 785-793.

DOI:10.1016/j.biopsych.2011.05.025      URL     PMID:21757184      [本文引用: 1]

The capacity of drug cues to elicit drug-seeking behavior is believed to play a fundamental role in drug dependence; yet the neurofunctional basis of human drug cue-reactivity is not fully understood. We performed a meta-analysis to identify brain regions that are consistently activated by presentation of drug cues. Studies involving treatment-seeking and nontreatment-seeking substance users were contrasted to determine whether there were consistent differences in the neural response to drug cues between these populations. Finally, to assess the neural basis of craving, consistency across studies in brain regions that show correlated activation with craving was assessed.MethodsAppropriate studies, assessing the effect of drug-related cues or manipulations of drug craving in drug-user populations across the whole brain, were obtained via the PubMed database and literature search. Activation likelihood estimation, a method of quantitative meta-analysis that estimates convergence across experiments by modeling the spatial uncertainty of neuroimaging data, was used to identify consistent regions of activation.ResultsCue-related activation was observed in the ventral striatum (across both subgroups), amygdala (in the treatment-seeking subgroup and overall), and orbitofrontal cortex (in the nontreatment-seeking subgroup and overall) but not insula cortex. Although a different pattern of frontal and temporal lobe activation between the subgroups was observed, these differences were not significant. Finally, right amygdala and left middle frontal gyrus activity were positively associated with craving.ConclusionsThese results substantiate the key neural substrates underlying reactivity to drug cues and drug craving.

Cheetham A., Allen N. B., Yücel M., & Lubman D. I . ( 2010).

The role of affective dysregulation in drug addiction

Clinical Psychology Review,30(6), 621-634.

DOI:10.1016/j.cpr.2010.04.005      URL     [本文引用: 1]

Clark L., Cools R., & Robbins T. W . ( 2004).

The neuropsychology of ventral prefrontal cortex: Decision-making and reversal learning

Brain and Cognition,55(1), 41-53.

DOI:10.1016/S0278-2626(03)00284-7      URL     [本文引用: 1]

Cohenkdoshay O., &Meiran N. ( 2009).

The representation of instructions operates like a prepared reflex: Flanker compatibility effects found in first trial following S-R instructions

Experimental Psychology,56(2), 128-133.

DOI:10.1027/1618-3169.56.2.128      URL     [本文引用: 1]

Craig A.D . ( 2009).

How do you feel—now? The anterior insula and human awareness

Nature Reviews Neuroscience,10(1), 59-70.

DOI:10.1038/nrn2555      URL     [本文引用: 2]

Craig A.D . ( 2010).

Once an island, now the focus of attention

Brain Structure & Function,214(5-6), 395-396.

[本文引用: 1]

Crowley T. J., Dalwani M. S., Mikulich-Gilbertson S. K., Du Y. P., Lejuez C. W., Raymond K. M., Banich M. T ., ( 2010).

Risky decisions and their consequences: Neural processing by boys with antisocial substance disorder

PLoS One,5(9), e12835.

DOI:10.1371/journal.pone.0012835      URL     [本文引用: 2]

Davis M., &Whalen P.J . ( 2001).

The amygdala: Vigilance and emotion

Molecular Psychiatry,6(1), 13-34.

DOI:10.1038/sj.mp.4000812      URL     [本文引用: 1]

De Martino B., Camerer C. F., & Adolphs R . ( 2010).

Amygdala damage eliminates monetary loss aversion

Proceedings of the National Academy of Sciences of the United States of America,107(8), 3788-3792.

DOI:10.1073/pnas.0910230107      URL     [本文引用: 1]

Diekhof E. K., Falkai P., & Gruber O . ( 2008).

Functional neuroimaging of reward processing and decision-making: A review of aberrant motivational and affective processing in addiction and mood disorders

Brain Research Reviews,59(1), 164-184.

DOI:10.1016/j.brainresrev.2008.07.004      URL     [本文引用: 1]

Droutman V., Stephen S. J., & Bechara A . ( 2015).

Revisiting the role of the insula in addiction

Trends in Cognitive Sciences, 19(7), 414-420.

[本文引用: 1]

Dvorak R. D., Merrill J. E., Read J. P., & Simons J. S . ( 2012).

Dimensions and severity of marijuana consequences: Development and validation of the marijuana consequences questionnaire (MACQ)

Addictive Behaviors,37(5), 613-621.

DOI:10.1016/j.addbeh.2012.01.008      URL     [本文引用: 1]

Ersche K. D., Clark L., London M., Robbins T. W., & Sahakian B. J . ( 2006).

Profile of executive and memory function associated with amphetamine and opiate dependence

Neuropsychopharmacology Official Publication of the American College of Neuropsychopharmacology, 31(5), 1036.

[本文引用: 1]

Ersche K. D., Turton A. J., Chamberlain S. R., Müller U., Bullmore E. T., Robbins T. W ., ( 2012).

Cognitive dysfunction and anxious-impulsive personality traits are endophenotypes for drug dependence

Am. J. Psychiatry, 169, 926-936.

DOI:10.1176/appi.ajp.2012.11091421      URL     [本文引用: 1]

Evenden J.L . ( 1999).

Varieties of impulsivity

Psychopharmacology,146(4), 348-361.

DOI:10.1007/PL00005481      URL     [本文引用: 1]

Fattore L. &Diana M. ( 2016).

Drug addiction: An affective-cognitive disorder in need of a cure

Neuroscience & Biobehavioral Reviews, 65, 341-361.

[本文引用: 1]

Fecteau S., Agosta S., Hone-Blanchet A., Fregni F., Boggio P., Ciraulo D., & Pascual-Leone A . ( 2014).

Modulation of smoking and decision-making behaviors with transcranial direct current stimulation in tobacco smokers: a preliminary study

Drug and Alcohol Dependence, 140, 78-84.

[本文引用: 1]

Fecteau S., Knoch D., Fregni F., Sultani N., Boggio P., & Pascual-Leone A . ( 2007).

Diminishing risk-taking behavior by increasing activity in the right prefrontal cortex: A direct current stimulation study

Journal of Neuroscience, 27(46), 12500-12505.

[本文引用: 1]

Fernie G., Peeters M., Gullo M. J., Christiansen P., Cole J. C., & Sumnall H., Fleld M . ( 2013).

Multiple behavioural impulsivity tasks predict prospective alcohol involvement in adolescents

Addiction,108(11), 1916-1923.

DOI:10.1111/add.12283      URL     [本文引用: 1]

Figner B., Knoch D., Johnson E. J., Krosch A. R., Lisanby S. H., Fehr E., Weber E. U . ( 2010).

Lateral prefrontal cortex and self-control in intertemporal choice

Nature Neuroscience,13(5), 538-539.

DOI:10.1038/nn.2516      URL     [本文引用: 2]

Fishbein D. H., Eldreth D. L., Hyde C., Matochik J. A., London E. D., Contoreggi C., … Grant S ., ( 2005).

Risky decision making and the anterior cingulate cortex in abstinent drug abusers and nonusers

Cognitive Brain Research,23(1), 119-136.

DOI:10.1016/j.cogbrainres.2004.12.010      URL     [本文引用: 1]

Fridberg D. J., Queller S., Ahn W. Y., Kim W., Bishara A. J., Busemeyer J. R., .. Stout J. C . ( 2010).

Cognitive mechanisms underlying risky decision-making in chronic cannabis users

Journal of Mathematical Psychology, 54(1), 28-38.

[本文引用: 3]

Fukunaga R., Brown J. W., & Bogg T . ( 2012).

Decision making in the balloon analogue risk task (BART): Anterior cingulate cortex signals loss aversion but not the infrequency of risky choices

Cognitive,Affective, & Behavioral Neuroscience, 12(3), 479-490.

[本文引用: 1]

Garcia-RodriGuez O., Secades-Villa R., Weidberg S., & Yoon J. H . ( 2013).

A systematic assessment of delay discounting in relation to cocaine and nicotine dependence

Behavioural Processes,99(4), 100-105.

DOI:10.1016/j.beproc.2013.07.007      URL     [本文引用: 1]

Gardini, S., &Venneri A. ( 2012).

Reduced grey matter in the posterior insula as a structural vulnerability or diathesis to addiction

Brain Research Bulletin. 87(2-3), 205-211

[本文引用: 1]

Gilmore C. S., Dickmann P. J., Nelson B. G., Lamberty G. J., & Lim K. O . ( 2017).

Transcranial direct current stimulation (tDCS) paired with a decision-making task reduces risk-taking in a clinically impulsive sample

Brain Stimulation,11(2), 302-309.

[本文引用: 1]

Gorini A., Lucchiari C., Russell-Edu W., & Pravettoni G . ( 2014).

Modulation of risky choices in recently abstinent dependent cocaine users: A transcranial direct-current stimulation study

Frontiers in Human Neuroscience, 8, 661-661.

[本文引用: 1]

Gowin J. L., Mackey S., & Paulus M. P . ( 2013).

Altered risk-related processing in substance users: Imbalance of pain and gain

Drug & Alcohol Dependence,132(1-2), 13-21.

[本文引用: 1]

Guttman Z., Moeller S. J., & London E. D . ( 2017).

Neural underpinnings of maladaptive decision-making in addictions

Pharmacology Biochemistry and Behavior, 164, 84-98.

[本文引用: 2]

Hanlon C. A., Wesley M. J., Stapleton J. R., Laurienti P. J., & Porrino L. J . ( 2011).

The association between frontal- striatal connectivity and sensorimotor control in cocaine users

Drug and Alcohol Dependence,115(3), 240-243.

DOI:10.1016/j.drugalcdep.2010.11.008      URL     [本文引用: 1]

Hanson K. L., Luciana M., & Sullwold K . ( 2008).

Reward-related decision-making deficits and elevated impulsivity among mdma and other drug users

Drug and Alcohol Dependence,96(1-2), 99-110.

DOI:10.1016/j.drugalcdep.2008.02.003      URL     [本文引用: 1]

Hanson K. L., Thayer R. E., & Tapert S. F . ( 2014).

Adolescent marijuana users have elevated risk-taking on the balloon analog risk task

Journal of Psychopharmacology,28(11), 1080-1087.

DOI:10.1177/0269881114550352      URL     [本文引用: 1]

Hopko D. R., Lejuez C. W., Daughters S. B., Aklin W. M., Osborne A., Simmons B. L., & Strong D. R . ( 2006).

Construct validity of the balloon analogue risk task (BART): Relationship with MDMA use by inner-city drug users in residential treatment

Journal of Psychopathology and Behavioral Assessment,28(2), 95-101.

DOI:10.1007/s10862-006-7487-5      URL     [本文引用: 1]

Houben K., Nederkoorn C., Wiersb R. W., & Jansena A . ( 2011).

Resisting temptation: Decreasing alcohol-related affect and drinking behavior by training response inhibition

Drug and Alcohol Depend. 116(1-3), 132-136.

DOI:10.1016/j.drugalcdep.2010.12.011      URL     [本文引用: 1]

Hyatt C. J., Assaf M., Muska C. E., Rosen R. I., Thomas A. D., Johnson M. R., … Pearlson G. D . ( 2012).

Reward-related dorsal striatal activity differences between former and current cocaine dependent individuals during an interactive competitive game

Plos One, 7(5), e34917.

[本文引用: 1]

Javadi A.H., &Walsh V. ( 2012).

Transcranial direct current stimulation (tDCS) of the left dorsolateral prefrontal cortex modulates declarative memory

Brain Stimulation, 5(3), 231-241.

[本文引用: 1]

Jia Z., Worhunsky P. D., Carroll K. M., Rounsaville B. J., Stevens M. C., Pearlson G. D., & Potenza M. N . ( 2011).

An initial study of neural responses to monetary incentives as related to treatment outcome in cocaine dependence

Biological Psychiatry, 70(6), 553-560.

[本文引用: 1]

Kenny P. J., Polis I., Koob G. F., & Markou A . ( 2003).

Low dose cocaine self-administration transiently increases but high dose cocaine persistently decreases brain reward function in rats

European Journal of Neuroscience,17(1), 191-195.

DOI:10.1046/j.1460-9568.2003.02443.x      URL     [本文引用: 1]

Kjome K. L., Lane S. D., Schmitz J. M., Green C., Ma L. S., Prasla I., & Gerard Moeller F . ( 2010).

Relationship between impulsivity and decision making in cocaine dependence

Psychiatry Research, 178(2), 299-304.

[本文引用: 1]

Knoch D., Treyer V., Regard M., Müri R. M., Buck A., & Weber B . ( 2006).

Lateralized and frequency-dependent effects of prefrontal rtms on regional cerebral blood flow

Neuroimage,31(2), 641-648.

DOI:10.1016/j.neuroimage.2005.12.025      URL     [本文引用: 1]

Knutson B., Bjork J. M., Fong G. W., Hommer D., Mattay V. S., & Weinberger D. R . ( 2004).

Amphetamine modulates human incentive processing

Neuron, 43(2), 261-269.

[本文引用: 1]

Knutson B., &Greer S.M . ( 2008).

Anticipatory affect: Neural correlates and consequences for choice

Philosophical Transactions of the Royal Society of London,363(1511), 3771-86.

DOI:10.1098/rstb.2008.0155      URL     [本文引用: 2]

Krawczyk D.C . ( 2002).

Contributions of the prefrontal cortex to the neural basis of human decision making

Neuroscience & Biobehavioral Reviews, 26(6), 631-664.

[本文引用: 2]

Kringelbach M. L., O'Doherty J., Rolls E. T., & Andrews C . ( 2003).

Activation of the human orbitofrontal cortex to a liquid food stimulus is correlated with its subjective pleasantness

Cerebral Cortex,13(10), 1064-1071.

DOI:10.1093/cercor/13.10.1064      URL     [本文引用: 1]

Lau B., &Glimcher P.W . ( 2005).

Dynamic response-by- response models of matching behavior in rhesus monkeys

Journal of the Experimental Analysis of Behavior,84(3), 555-579.

DOI:10.1901/jeab.2005.110-04      URL     [本文引用: 1]

Li X. R., Lu Z. L., D'Argembeau A., Ng M., & Bechara A . ( 2010).

The Iowa gambling task in fMRI images

Human Brain Mapping,31(3), 410-423.

[本文引用: 1]

Lopez-Larson M. P., Bogorodzkid P., Rogowskae J., Mc Gladeac E., Kinga J. B., Terrya J., & Yurgelun-Toddabc D . ( 2011)

Altered prefrontal and insular cortical thickness in adolescent marijuana users

Behavioural Brain Research. 220(1), 164-172

DOI:10.1016/j.bbr.2011.02.001      URL     [本文引用: 1]

Maeyer J., Vanderplasschen W., & Broekaert E . ( 2010).

Quality of life among opiate-dependent individuals: A review of the literature

International Journal of Drug Policy,21(5), 364-380.

DOI:10.1016/j.drugpo.2010.01.010      URL     [本文引用: 1]

McConnell P. A., Froeliger B ., ( 2015).

Mindfulness, mechanisms and meaning: Perspectives from the cognitive neuroscience of addiction

Psychological Inquiry,26(4), 349-357.

DOI:10.1080/1047840X.2015.1076701      URL     [本文引用: 1]

Merzagora A. C., Foffani G., Panyavin I., Mordillo-Mateos L., Aguilar J., Onaral B., & Oliviero A ., ( 2010).

Prefrontal hemodynamic changes produced by anodal direct current stimulation

Neuroimage, 49( 3), 2304-2310.

DOI:10.1016/j.neuroimage.2009.10.044      URL     [本文引用: 1]

Moeller F. G., Dougherty D. M., Barratt E. S., Schmitz J. M., Swann A. C., & Grabowski J . ( 2001).

The impact of impulsivity on cocaine use and retention in treatment

Journal of Substance Abuse Treatment,21(4), 193-198.

DOI:10.1016/S0740-5472(01)00202-1      URL     [本文引用: 1]

Moreno-López L., Stamatakis E. A., Fernández-Serrano M. J., Gómez-Río M., Rodríguez-Fernández A., & Pérez- García M ., et al. ( 2012).

Neural correlates of the severity of cocaine, heroin, alcohol, MDMA and cannabis use in polysubstance abusers: A resting-pet brain metabolism study.

Plos One,7(6), e39830.

DOI:10.1371/journal.pone.0039830      URL     [本文引用: 1]

Muellbacher W., Ziemann U., Boroojerdi B., & Hallett M . ( 2000).

Effects of low-frequency transcranial magnetic stimulation on motor excitability and basic motor behavior

Clinical Neurophysiology,111(6), 1002-1007.

DOI:10.1016/S1388-2457(00)00284-4      URL     [本文引用: 1]

Nacewicz B. M., Dalton K. M., Johnstone, T. Long, M. T., McAuliff E. M., Oakes T. R., … Davidson R. J . ( 2006).

Amygdala volume and nonverbal social impairment in adolescent and adult males with autism

Archives of General Psychiatry,63(12), 1417-1428.

[本文引用: 1]

Nestor L., Hester R., & Garavan H . ( 2010).

Increased ventral striatal bold activity during non-drug reward anticipation in cannabis users

Neuroimage,49(1), 1133-1143.

DOI:10.1016/j.neuroimage.2009.07.022      URL     [本文引用: 1]

Nitsche M.A., &Paulus W. ( 2000).

Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation

Journal of Physiology, 527(3), 633-639.

[本文引用: 2]

Noël X., Brevers D., & Bechara A . ( 2013).

A neurocognitive approach to understanding the neurobiology of addiction

Current Opinion in Neurobiology,23(4), 632-638.

DOI:10.1016/j.conb.2013.01.018      URL     [本文引用: 1]

Ouellet J., McGirr A., Eynde F. V. D., Jollant F., Lepage M., & Berlim M. T . ( 2015).

Enhancing decision-making and cognitive impulse control with transcranial direct current stimulation (tDCS) applied over the orbitofrontal cortex (OFC): A randomized and sham-controlled exploratory study

Journal of Psychiatric Research, 69, 27-34.

DOI:10.1016/j.jpsychires.2015.07.018      URL     [本文引用: 1]

Passetti F., Clark L., Mehta M. A., Joyce E., & King M . ( 2008).

Neuropsychological predictors of clinical outcome in opiate addiction

Drug and Alcohol Dependence, 94(1-3), 82-91.

[本文引用: 1]

Paulus M.P., &Frank, L.R . ( 2006).

Anterior cingulate activity modulates nonlinear decision weight function of uncertain prospects

Neuroimage, 30(2), 668-677.

[本文引用: 1]

Paulus M.P., &Stewart J.L . ( 2014).

Interoception and drug addiction

Neuropharmacology, 76(1), 342-350.

DOI:10.1016/j.neuropharm.2013.07.002      URL     [本文引用: 1]

Petry N.M . ( 2003).

Discounting of money, health, and freedom in substance abusers and controls

Drug and Alcohol Dependence,71(2), 133-141.

DOI:10.1016/S0376-8716(03)00090-5      URL     [本文引用: 1]

Philiastides M. G., Auksztulewicz R., Heekeren H. R., & Blankenburg F . ( 2011).

Causal role of dorsolateral prefrontal cortex in human perceptual decision making

Current Biology, 21(11), 980-983.

Preuschoff K., Quartz S. R., Bossaerts P . ( 2008).

Human insula activation reflects risk prediction errors as well as risk

Journal of Neuroscience,28(11):2745-2752.

DOI:10.1523/JNEUROSCI.4286-07.2008      URL     [本文引用: 3]

Rachid F., &Bertschy G. ( 2006).

Safety and efficacy of repetitive transcranial magnetic stimulation in the treatment of depression: A critical appraisal of the last 10 years

Neurophysiologie Clinique/Clinical Neurophysiology, 36(3), 157-183.

[本文引用: 1]

Ríos-Bedoya C. F., Snedecor S. M., Pomerleau C. S., & Pomerleau O. F . ( 2008).

Association of withdrawal features with nicotine dependence as measured by the fagerstrom test for nicotine dependence (FTND)

Addictive Behaviors,33(8), 1086-1089.

DOI:10.1016/j.addbeh.2008.04.005      URL     [本文引用: 1]

Robertson I. H., &Garavan H. ,.( 2000) . Vigilant attention. In M. Gazzaniga (Ed.). The new cognitive neurosciences (pp.563-578). Cambridge , MA: MIT Press.

[本文引用: 1]

Robertson I. H., Levine B., Manly T ., ( 2005).

Goal Management Training

Baycrest Rotman Research Institute.

[本文引用: 1]

Roesch M.R., &Olson C.R . ( 2005).

Neuronal activity dependent on anticipated and elapsed delay in macaque prefrontal cortex, frontal and supplementary eye fields, and premotor cortex

Journal of Neurophysiology,94(2), 1469-1479.

DOI:10.1152/jn.00064.2005      URL     [本文引用: 1]

Rosenbloom M. H., Schmahmann J. D., & Price B. H . ( 2012).

The functional neuroanatomy of decision-making

The Journal of Neuropsychiatry and Clinical Neurosciences,24(3), 266-277.

DOI:10.1176/appi.neuropsych.11060139      URL     [本文引用: 1]

Samejima K., Ueda Y., Doya K., & Kimura M . ( 2005).

Representation of action-specific reward values in the striatum

Science, 310(5752), 1337-1340.

[本文引用: 1]

Sheffer C. E., Christensen D. R., Landes R., Carter L. P., Jackson L., & Bickel W. K . ( 2014).

Delay discounting rates: a strong prognostic indicator of smoking relapse

Addictive Behaviors,39(11), 1682-1689.

DOI:10.1016/j.addbeh.2014.04.019      URL     [本文引用: 1]

Shenhav A., Botvinick M. M., & Cohen J. D . ( 2013).

The expected value of control: an integrative theory of anterior cingulate cortex function

Neuron, 79(2), 217-240.

[本文引用: 1]

Shulman E. P., Smith A. R., Silva K., Icenogle G., Duell N., & Chein J., & Steinbergbc L . ( 2016).

The dual systems model: Review, reappraisal, and reaffirmation

Developmental Cognitive Neuroscience, 17, 103-117.

[本文引用: 1]

Slagter H. A., Lutz A., Greischar L. L., Francis A. D., Nieuwenhuis S., Davis J. M., & Davidson R. J ., ( 2007).

Mental training affects distribution of limited brain resources

PLoS Biol, 5, e138

DOI:10.1371/journal.pbio.0050138      URL     [本文引用: 1]

Sridharan D., Levitin D. J., & Menon V . ( 2008).

A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks

Proceedings of the National Academy of Sciences of the United States of America,105(34), 12569-12574.

DOI:10.1073/pnas.0800005105      URL     [本文引用: 1]

Stevens L., Betanzos-Espinosa P., Crunelle C. L., Vergara- Moragues E., Roeyers H., Lozano O., .. Pérez-García M . ( 2013).

Disadvantageous decision-making as a predictor of drop-out among cocaine-dependent individuals in long- term residential treatment

Frontiers in Psychiatry, 4, 149.

[本文引用: 1]

Stewart J. L., May A. C., Poppa T., Davenport P. W., Tapert S. F., & Paulus M. P . ( 2014).

You are the danger: Attenuated insula response in methamphetamine users during aversive interoceptive decision-making

Drug and Alcohol Dependence, 142, 110-119.

DOI:10.1016/j.drugalcdep.2014.06.003      URL     [本文引用: 1]

Stoops W.W., &Kearns D.N . ( 2018).

Decision-making in addiction: Current knowledge, clinical implications and future directions

Pharmacology Biochemistry and Behavior, 164, 1-3.

DOI:10.1016/j.pbb.2017.12.001      URL     [本文引用: 1]

Su H., Zhong N., Gan H., Wang J. J., Han H., Chen T. Z., … Zhao M . ( 2017).

High frequency repetitive transcranial magnetic stimulation of the left dorsolateral prefrontal cortex for methamphetamine use disorders: A randomised clinical trial

. Drug and Alcohol Dependence, 175, 84-91.

[本文引用: 1]

Tang Y. Y., Posner M. I., Rothbart M. K., Volkow N. D ., ( 2015).

Circuitry of self-control and its role in reducing addiction

Trends in Cognitive Sciences. 19(8), 439-444.

[本文引用: 1]

Torregrossa M. M., Corlett P. R., & Taylor J. R . ( 2011).

Aberrant learning and memory in addiction

Neurobiology of Learning and Memory,96(4), 609-623.

DOI:10.1016/j.nlm.2011.02.014      URL     [本文引用: 1]

Trumbo M. C., Matzen L. E., Coffman B. A., Hunter M. A., Jones A. P., & Robinson C. S. H., Clarkbc V. P . ( 2016).

Enhanced working memory performance via transcranial direct current stimulation: The possibility of near and far transfer

Neuropsychologia, 93(Part A), 85-96.

[本文引用: 1]

Tschernegg M., Pletzer B., Schwartenbeck P., Ludersdorfer P., Hoffmann U., & Kronbichler M . ( 2015).

Impulsivity relates to striatal gray matter volumes in humans: Evidence from a delay discounting paradigm

Frontiers in Human Neuroscience, 9, 384.

[本文引用: 2]

Valls-Serrano C., Caracuel A., & Verdejo-Garcia A . ( 2016).

Goal management training and mindfulness meditation improve executive functions and transfer to ecological tasks of daily life in polysubstance users enrolled in therapeutic community treatment

Drug and Alcohol Dependence, 165, 9-14.

DOI:10.1016/j.drugalcdep.2016.04.040      URL     [本文引用: 1]

Verdejo-García A., &Bechara A. ( 2009).

A somatic marker theory of addiction

Neuropharmacology, 56( Suppl 1), 48-62.

DOI:10.1016/j.neuropharm.2008.07.035      URL     [本文引用: 2]

Verdejo-Garcia A., Benbrook A., Funderburk F., David P., Cadet J. L., & Bolla K. I . ( 2007).

The differential relationship between cocaine use and marijuana use on decision-making performance over repeat testing with the Iowa gambling task

Drug and Alcohol Dependence,90(1), 2-11.

DOI:10.1016/j.drugalcdep.2007.02.004      URL     [本文引用: 3]

Verdejo-García A. J., Perales J. C., & Pérezgarcía M . ( 2007).

Cognitive impulsivity in cocaine and heroin polysubstance abusers

Addictive Behaviors,32(5), 950-966.

DOI:10.1016/j.addbeh.2006.06.032      URL     [本文引用: 1]

Verdejo-García A. &Pérezgarcía M. ( 2008).

Substance abusers' self-awareness of the neurobehavioral consequences of addiction

Psychiatry Research,158(2), 172-180.

DOI:10.1016/j.psychres.2006.08.001      URL     [本文引用: 1]

Wang Y. J., Shen Y., Cao X. Y., Shan C. L., Pan J. B., & He H., … Yuan T. F . ( 2016).

Transcranial direct current stimulation of the frontal-parietal-temporal area attenuates cue-induced craving for heroin

Journal of Psychiatric Research, 79, 1-3.

[本文引用: 1]

Weber M.J., Messing S.B., Rao H., Detre J.A., Thompson- Schill S.L ., ( 2014).

Prefrontal transcranial direct current stimulation alters activation and connectivity in cortical and subcortical reward systems: A tDCS-fMRI study

Hum. Brain Mapp,35(8), 3673-3686.

DOI:10.1002/hbm.v35.8      URL     [本文引用: 1]

Wesley M. J., Hanlon C. A., & Porrino L. J . ( 2011).

Poor decision-making by chronic marijuana users is associated with decreased functional responsiveness to negative consequences

Psychiatry Research: Neuroimaging, 191(1), 51-59.

[本文引用: 1]

Wiers R. W., Gladwin T. E., Hofmann W., Salemink E., & Ridderinkhof K. R . ( 2013).

Cognitive bias modification and cognitive control training in addiction and related psychopathology: mechanisms, clinical perspectives, and ways forward

Clinical Psychological Science, 1(2), 192-212.

[本文引用: 1]

Wilson M.J., &Vassileva J. ( 2016).

Neurocognitive and psychiatric dimensions of hot, but not cool, impulsivity predict HIV sexual risk behaviors among drug users in protracted abstinence

The American Journal of Drug and Alcohol Abuse,42(2), 231-241.

DOI:10.3109/00952990.2015.1121269      URL     [本文引用: 1]

Wittkuhn L., Eppinger B., Bartsch L. M., Thurm F., Korb F. M., & Li S. C . ( 2017).

Repetitive transcranial magnetic stimulation over dorsolateral prefrontal cortex modulates value-based learning during sequential decision-making

Neuroimage, 167, 384-395.

[本文引用: 1]

Yamamoto D. J., Reynolds J., Krmpotich T., Banich M. T., Thompson L., & Tanabe J . ( 2014).

Temporal profile of fronto-striatal-limbic activity during implicit decisions in drug dependence

Drug and Alcohol Dependence, 136(1), 108-114.

[本文引用: 1]

Yao Y. W., Chen P. R., Li C. S. R., Hare T. A., Li S., Zhang J. T., … Fang X. Y . ( 2017).

Combined reality therapy and mindfulness meditation decrease intertemporal decisional impulsivity in young adults with internet gaming disorder

Computers in Human Behavior,68(5), 210-216.

DOI:10.1016/j.chb.2016.11.038      URL     [本文引用: 1]

Yuan K., Qin W., Dong M. H., Liu J. X., Sun J. B., Liu P., .. Tian J . ( 2010).

Gray matter deficits and resting-state abnormalities in abstinent heroin-dependent individuals

Neuroscience Letters, 482(2), 101-105.

[本文引用: 1]

Zalla T., Koechlin E., Pietrini P., Basso G., Aquino P., Sirigu A., & Grafman J . ( 2000).

Differential amygdala responses to winning and losing: A functional magnetic resonance imaging study in humans

European Journal of Neuroscience, 12(5), 1764-1770.

Zanto T. P., Rubens M. T., Arul T., & Adam G . ( 2011).

Causal role of the prefrontal cortex in top-down modulation of visual processing and working memory

Nature Neuroscience,14(5), 656-661.

DOI:10.1038/nn.2773      URL     [本文引用: 1]

/


版权所有 © 《心理科学进展》编辑部
地址:北京市朝阳区林萃路16号院 
邮编:100101 
电话:010-64850861 
E-mail:jinzhan@psych.ac.cn
备案编号:京ICP备10049795号-1 京公网安备110402500018号

本系统由北京玛格泰克科技发展有限公司设计开发